A simulator to support machine learning-based wearable fall detection systems
Authors
Collado Villaverde, ArmandoIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/48769DOI: 10.3390/electronics9111831
ISSN: 2079-9292
Publisher
MDPI
Date
2020-11-03Affiliation
Universidad de Alcalá. Departamento de Automática; Universidad de Alcalá. Departamento de Ciencias de la ComputaciónFunders
Junta de Comunidades de Castilla-La Mancha
Comunidad de Madrid
Agencia Estatal de Investigación
Bibliographic citation
Collado Villaverde A., Cobos M., Muñoz P. & F. Barrero, D. 2020, "A simulator to support machine learning-based wearable fall detection systems", Electrónics, vol. 9, no. 11.
Keywords
Fall detection
Machine learning
Simulation
Wearable devices
Project
info:eu-repo/grantAgreement/JCCM//SBPLY%2F18%2F180501%2F000019
info:eu-repo/grantAgreement/JCCM//SBPLY%2F19%2F180501%2F000024
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109891RB-I00/ES/MEJORA DE LA GESTION DE RECURSOS HOSPITALARIOS MEDIANTE LA PREDICCION DE LA DEMANDA CON APRENDIZAJE AUTOMATICO Y PLANIFICACION/
info:eu-repo/grantAgreement/CAM//PEJD-2018-PRE%2FTIC-8176
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://doi.org/10.3390/electronics9111831Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
People’s life expectancy is increasing, resulting in a growing elderly population.
That population is subject to dependency issues, falls being a problematic one due to the associated
health complications. Some projects are trying to enhance the independence of elderly people by
monitoring their status, typically by means of wearable devices. These devices often feature Machine
Learning (ML) algorithms for fall detection using accelerometers. However, the software deployed
often lacks reliable data for the models’ training. To overcome such an issue, we have developed a
publicly available fall simulator capable of recreating accelerometer fall samples of two of the most
common types of falls: syncope and forward. Those simulated samples are like real falls recorded
using real accelerometers in order to use them later as input for ML applications. To validate our
approach, we have used different classifiers over both simulated falls and data from two public
datasets based on real data. Our tests show that the fall simulator achieves a high accuracy for
generating accelerometer data from a fall, allowing to create larger datasets for training fall detection
software in wearable devices.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Simulator_Collado_Electronics_ ... | 1.032Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Simulator_Collado_Electronics_ ... | 1.032Mb |
![]() |