Show simple item record

dc.contributor.authorHernández Parra, Noelia 
dc.contributor.authorParra Alonso, Ignacio 
dc.contributor.authorCorrales Sánchez, Héctor 
dc.contributor.authorIzquierdo Gonzalo, Rubén 
dc.contributor.authorBallardini, Augusto Luis 
dc.contributor.authorSalinas Maldonado, Carlota 
dc.contributor.authorGarcía Daza, Iván 
dc.date.accessioned2021-04-15T13:54:25Z
dc.date.issued2021-03-16
dc.identifier.bibliographicCitationHernández, N., Parra, I., Corrales, H., Izquierdo, R., Ballardini, A.L., Salinas, C. & García, I., 2021, “WiFiNet: WiFi-based indoor localisation using CNNs”, Expert Systems with Applications, vol. 177, 114936.
dc.identifier.issn0957-4174
dc.identifier.urihttp://hdl.handle.net/10017/47268
dc.description.abstractDifferent technologies have been proposed to provide indoor localisation: magnetic field, Bluetooth, WiFi, etc. Among them, WiFi is the one with the highest availability and highest accuracy. This fact allows for an ubiquitous accurate localisation available for almost any environment and any device. However, WiFi-based localisation is still an open problem. In this article, we propose a new WiFi-based indoor localisation system that takes advantage of the great ability of Convolutional Neural Networks in classification problems. Three different approaches were used to achieve this goal: a custom architecture called WiFiNet, designed and trained specifically to solve this problem, and the most popular pre-trained networks using both transfer learning and feature extraction. Results indicate that WiFiNet is as a great approach for indoor localisation in a medium-sized environment (30 positions and 113 access points) as it reduces the mean localisation error (33%) and the processing time when compared with state-of-the-art WiFi indoor localisation algorithms such as SVM.en
dc.description.sponsorshipAgencia Estatal de Investigaciónes_ES
dc.description.sponsorshipEuropean Commissionen
dc.description.sponsorshipUniversidad de Alcaláes_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)*
dc.rights© 2021 Elsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectIndoor localisationen
dc.subjectWiFien
dc.subjectFingerprintingen
dc.subjectDeep Learningen
dc.titleWiFiNet: WiFi-based indoor localisation using CNNsen
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaTelecomunicacioneses_ES
dc.subject.ecienciaTelecommunicationen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Automáticaes_ES
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Ciencias de la Computaciónes_ES
dc.date.updated2021-04-15T13:50:40Z
dc.relation.publisherversionhttps://doi.org/10.1016/j.eswa.2021.114906
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.identifier.doi10.1016/j.eswa.2021.114906
dc.relation.projectIDinfo:eu-repo/grantAgreement/UAH//CM-JIN-2019-012en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-90035-R/ES/INTERACCION PREDICTIVA ENTRE VEHICULOS AUTONOMOS COOPERATIVOS Y USUARIOS VULNERABLES DE CARRETERA ORIENTADA AL USUARIO FINAL/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/754382/EU/GOT Energy Talent/GETen
dc.relation.projectIDinfo:eu-repo/grantAgreement/UAH//CCG2019%2FIA-077en
dc.date.embargoEndDate2023-03-16
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.uxxiAR/0000037164
dc.identifier.publicationtitleExpert Systems with Applications
dc.identifier.publicationvolume177


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Este ítem está sujeto a una licencia Creative Commons.