WiFiNet: WiFi-based indoor localisation using CNNs
Autores
Hernández Parra, NoeliaIdentificadores
Enlace permanente (URI): http://hdl.handle.net/10017/47268DOI: 10.1016/j.eswa.2021.114906
ISSN: 0957-4174
Editor
Elsevier
Fecha de publicación
2021-03-16Fecha fin de embargo
2023-03-16Filiación
Universidad de Alcalá. Departamento de Automática; Universidad de Alcalá. Departamento de Ciencias de la ComputaciónPatrocinadores
Agencia Estatal de Investigación
European Commission
Universidad de Alcalá
Cita bibliográfica
Hernández, N., Parra, I., Corrales, H., Izquierdo, R., Ballardini, A.L., Salinas, C. & García, I., 2021, “WiFiNet: WiFi-based indoor localisation using CNNs”, Expert Systems with Applications, vol. 177, 114936.
Palabras clave
Indoor localisation
WiFi
Fingerprinting
Deep Learning
Proyectos
info:eu-repo/grantAgreement/UAH//CM-JIN-2019-012
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-90035-R/ES/INTERACCION PREDICTIVA ENTRE VEHICULOS AUTONOMOS COOPERATIVOS Y USUARIOS VULNERABLES DE CARRETERA ORIENTADA AL USUARIO FINAL/
info:eu-repo/grantAgreement/EC/H2020/754382/EU/GOT Energy Talent/GET
info:eu-repo/grantAgreement/UAH//CCG2019%2FIA-077
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/acceptedVersion
Versión del editor
https://doi.org/10.1016/j.eswa.2021.114906Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2021 Elsevier Ltd
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
Different technologies have been proposed to provide indoor localisation: magnetic field, Bluetooth, WiFi, etc. Among them, WiFi is the one with the highest availability and highest accuracy. This fact allows for an ubiquitous accurate localisation available for almost any environment and any device. However, WiFi-based localisation is still an open problem. In this article, we propose a new WiFi-based indoor localisation system that takes advantage of the great ability of Convolutional Neural Networks in classification problems. Three different approaches were used to achieve this goal: a custom architecture called WiFiNet, designed and trained specifically to solve this problem, and the most popular pre-trained networks using both transfer learning and feature extraction. Results indicate that WiFiNet is as a great approach for indoor localisation in a medium-sized environment (30 positions and 113 access points) as it reduces the mean localisation error (33%) and the processing time when compared with state-of-the-art WiFi indoor localisation algorithms such as SVM.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
WiFiNet_Hernandez_Expert_Syst_ ... | 828.6Kb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
WiFiNet_Hernandez_Expert_Syst_ ... | 828.6Kb |
![]() |