WiFiNet: WiFi-based indoor localisation using CNNs
Authors
Hernández Parra, NoeliaIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/47268DOI: 10.1016/j.eswa.2021.114906
ISSN: 0957-4174
Publisher
Elsevier
Date
2021-03-16Embargo end date
2023-03-16Affiliation
Universidad de Alcalá. Departamento de Automática; Universidad de Alcalá. Departamento de Ciencias de la ComputaciónFunders
Agencia Estatal de Investigación
European Commission
Universidad de Alcalá
Bibliographic citation
Hernández, N., Parra, I., Corrales, H., Izquierdo, R., Ballardini, A.L., Salinas, C. & García, I., 2021, “WiFiNet: WiFi-based indoor localisation using CNNs”, Expert Systems with Applications, vol. 177, 114936.
Keywords
Indoor localisation
WiFi
Fingerprinting
Deep Learning
Project
info:eu-repo/grantAgreement/UAH//CM-JIN-2019-012
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-90035-R/ES/INTERACCION PREDICTIVA ENTRE VEHICULOS AUTONOMOS COOPERATIVOS Y USUARIOS VULNERABLES DE CARRETERA ORIENTADA AL USUARIO FINAL/
info:eu-repo/grantAgreement/EC/H2020/754382/EU/GOT Energy Talent/GET
info:eu-repo/grantAgreement/UAH//CCG2019%2FIA-077
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1016/j.eswa.2021.114906Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2021 Elsevier Ltd
Access rights
info:eu-repo/semantics/openAccess
Abstract
Different technologies have been proposed to provide indoor localisation: magnetic field, Bluetooth, WiFi, etc. Among them, WiFi is the one with the highest availability and highest accuracy. This fact allows for an ubiquitous accurate localisation available for almost any environment and any device. However, WiFi-based localisation is still an open problem. In this article, we propose a new WiFi-based indoor localisation system that takes advantage of the great ability of Convolutional Neural Networks in classification problems. Three different approaches were used to achieve this goal: a custom architecture called WiFiNet, designed and trained specifically to solve this problem, and the most popular pre-trained networks using both transfer learning and feature extraction. Results indicate that WiFiNet is as a great approach for indoor localisation in a medium-sized environment (30 positions and 113 access points) as it reduces the mean localisation error (33%) and the processing time when compared with state-of-the-art WiFi indoor localisation algorithms such as SVM.
Files in this item
Files | Size | Format |
|
---|---|---|---|
WiFiNet_Hernandez_Expert_Syst_ ... | 828.6Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
WiFiNet_Hernandez_Expert_Syst_ ... | 828.6Kb |
![]() |