On the existence of birational surjective parametrizations of affine surfaces
Authors
Caravantes Tortajada, JorgeIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/45758DOI: 10.1016/j.jalgebra.2017.12.028
ISSN: 0021-8693
Publisher
Elsevier
Date
2018-05-01Funders
Ministerio de Economía y Competitividad
Junta de Extremadura
Bibliographic citation
Caravantes, J., Sendra, J.R., Sevilla, D. & Villarino, C. 2018, "On the existence of birational surjective parametrizations of affine surfaces", Journal of Algebra, vol. 501, pp. 206-214.
Keywords
Rational surface
Birational parametrization
Surjective parametrization
Project
info:eu-repo/grantAgreement/MINECO//MTM2014-54141-P/ES/CONSTRUCCIONES ALGEBRO-GEOMETRICAS: FUNDAMENTOS, ALGORITMOS Y APLICACIONES/
FQM024 (Junta de Extremadura y FEDER)
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1016/j.jalgebra.2017.12.028Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
© 2018 Elsevier
Access rights
info:eu-repo/semantics/openAccess
Abstract
In this paper we show that not all affine rational complex surfaces can be parametrized birational and surjectively. For this purpose, we prove that, if S is an affine complex surface whose projective closure is smooth, a necessary condition for S to admit a birational surjective parametrization from an open subset of the affine complex plane is that the curve at infinity of S must contain at least one rational component. As a consequence of this result we provide examples of affine rational surfaces that do not admit birational surjective parametrizations.
Files in this item
Files | Size | Format |
|
---|---|---|---|
On_the_existence_Caravantes_J_ ... | 629.7Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
On_the_existence_Caravantes_J_ ... | 629.7Kb |
![]() |
Collections
- MATEMATIC - Artículos [138]