Simulating use cases for the UAH autonomous electric car
Authors
Gómez Huélamo, CarlosIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/45109DOI: 10.1109/ITSC.2019.8917017
ISBN: 978-1-5386-7025-5
Publisher
IEEE
Date
2019-10Funders
Ministerio de Economía y Competitividad
Comunidad de Madrid
Bibliographic citation
Gómez Huelamo, C., Bergasa, L. M., Barea, R., López Guillén, E., Arango, F. & Sánchez, P. 2019, "Simulating use cases for the UAH Autonomous Electric Car”, en 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019, pp. 2305-2311
Description / Notes
2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27-30 Oct. 2019
Project
info:eu-repo/grantAgreement/MINECO//TRA2015-70501-C2-1-R/ES/VEHICULO INTELIGENTE PARA PERSONAS MAYORES/
info:eu-repo/grantAgreement/MINECO//TRA2015-70501-C2-2-R/ES/SMARTELDERLYCAR. CONTROL Y PLANIFICACION DE RUTAS/
info:eu-repo/grantAgreement/Comunidad de Madrid//P2018%2FNMT-4331/ES/Madrid Robotics Digital Innovation Hub/RoboCity2030-DIH-CM
Document type
info:eu-repo/semantics/conferenceObject
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1109/ITSC.2019.8917017Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
© 2019 IEEE
Access rights
info:eu-repo/semantics/openAccess
Abstract
This paper presents the simulation use cases for
the UAH Autonomous Electric Car, related with typical driving
scenarios in urban environments, focusing on the use of hierarchical interpreted binary Petri nets in order to implement the
decision making framework of an autonomous electric vehicle.
First, we describe our proposal of autonomous system architecture, which is based on the open source Robot Operating
System (ROS) framework that allows the fusion of multiple
sensors and the real-time processing and communication of
multiple processes in different embedded processors. Then, the
paper focuses on the study of some of the most interesting
driving scenarios such as: stop, pedestrian crossing, Adaptive
Cruise Control (ACC) and overtaking, illustrating both the
executive module that carries out each behaviour based on
Petri nets and the trajectory and linear velocity that allows
to quantify the accuracy and robustness of the architecture
proposal for environment perception, navigation and planning
on a university Campus.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Simulating_Gomez_ITSC_2019.pdf | 3.418Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Simulating_Gomez_ITSC_2019.pdf | 3.418Mb |
![]() |