Non-linearity analysis of depth and angular indexes for optimal stereo SLAM
Identificadores
Enlace permanente (URI): http://hdl.handle.net/10017/43550DOI: 10.3390/s100404159
ISSN: 1424-8220
Editor
MDPI
Fecha de publicación
2010-04-26Patrocinadores
Ministerio de Ciencia e Innovación
Comunidad de Madrid
Cita bibliográfica
Bergasa, L.M., Alcantarilla, P.F. & Schleicher, D. 2010, “Non-linearity analysis of depth and angular indexes for optimal stereo SLAM”, Sensors, vol. 10, no. 4, pp. 4159-4179
Palabras clave
Extended Kalman filter
Localization
Mapping
Inverse depth parametrization
Non-linearity analysis
2D warping
Proyectos
Info:eu-repo/grantAgreement/MICINN//TRA2008-03600
info:eu-repo/grantAgreement/CAM//S-0505%2FDPI%2F000176
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/publishedVersion
Versión del editor
https://doi.org/10.3390/s100404159Derechos
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
In this article, we present a real-time 6DoF egomotion estimation system for indoor environments using a wide-angle stereo camera as the only sensor. The stereo camera is carried in hand by a person walking at normal walking speeds 3–5 km/h. We present the basis for a vision-based system that would assist the navigation of the visually impaired by either providing information about their current position and orientation or guiding them to their destination through different sensing modalities. Our sensor combines two different types of feature parametrization: inverse depth and 3D in order to provide orientation and depth information at the same time. Natural landmarks are extracted from the image and are stored as 3D or inverse depth points, depending on a depth threshold. This depth threshold is used for switching between both parametrizations and it is computed by means of a non-linearity analysis of the stereo sensor. Main steps of our system approach are presented as well as an analysis about the optimal way to calculate the depth threshold. At the moment each landmark is initialized, the normal of the patch surface is computed using the information of the stereo pair. In order to improve long-term tracking, a patch warping is done considering the normal vector information. Some experimental results under indoor environments and conclusions are presented.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
NonLinearity_Bergasa_Sensors_2 ... | 564.1Kb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
NonLinearity_Bergasa_Sensors_2 ... | 564.1Kb |
![]() |
Colecciones
- ELECTRON - Artículos [152]
- ROBESAFE - Artículos [37]