Show simple item record

dc.contributor.authorJiménez Molina, Pedro 
dc.contributor.authorBergasa Pascual, Luis Miguel 
dc.contributor.authorNuevo Chiquero, Jesús 
dc.contributor.authorFernández Alcantarilla, Pablo 
dc.date.accessioned2020-06-22T05:34:54Z
dc.date.available2020-06-22T05:34:54Z
dc.date.issued2012-09
dc.identifier.bibliographicCitationJiménez, P., Bergasa, L.M., Nuevo, J. & Alcantarilla, P.F. 2012, "Face pose estimation with automatic 3D model creation in challenging scenarios", Image and Vision Computing, vol. 30, no. 9, pp. 589-602.
dc.identifier.issn0262-8856
dc.identifier.urihttp://hdl.handle.net/10017/43367
dc.description.abstractThis paper proposes a new method to perform real-time face pose estimation for ± 90° yaw rotations and under low light conditions. The algorithm works on the basis of a completely automatic and run-time incremental 3D face modelling. The model is initially made up upon a set of 3D points derived from stereo grey-scale images. As new areas of the subject face appear to the cameras, new 3D points are automatically added to complete the model. In this way, we can estimate the pose for a wide range of rotation angles, where typically 3D frontal points are occluded. We propose a new feature re-registering technique which combines views of both cameras of the stereo rig in a smart way in order to perform a fast and robust tracking for the full range of yaw rotations. The Levenberg–Marquardt algorithm is used to recover the pose and a RANSAC framework rejects incorrectly tracked points. The model is continuously optimised in a bundle adjustment process that reduces the accumulated error on the 3D reconstruction. The intended application of this work is estimating the focus of attention of drivers in a simulator, which imposes challenging requirements. We validate our method on sequences recorded in a naturalistic truck simulator, on driving exercises designed by a team of psychologists.en
dc.description.sponsorshipMinisterio de Ciencia e Innovaciónes_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights© 2012 Elsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject3D face pose estimationen
dc.subjectFace modelen
dc.subjectYaw rotationen
dc.subjectFeature re-registeringen
dc.subjectStereo visionen
dc.titleFace pose estimation with automatic 3D model creation in challenging scenariosen
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaElectrónicaes_ES
dc.subject.ecienciaElectronicsen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Electrónicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.imavis.2012.06.013
dc.type.versioninfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1016/j.imavis.2012.06.013
dc.relation.projectIDInfo:eu-repo/grantAgreement/MICINN//TRA2008-03600
dc.relation.projectIDPSE-370000-2009-12 (Ministerio de Ciencia e Innovación)
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.publicationtitleImage and Vision Computing
dc.identifier.publicationvolume30
dc.identifier.publicationlastpage602
dc.identifier.publicationissue9
dc.identifier.publicationfirstpage589


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons.