Real-time semantic segmentation for fisheye urban driving images based on ERFNet
Autores
Bergasa Pascual, Luis MiguelIdentificadores
Enlace permanente (URI): http://hdl.handle.net/10017/43126DOI: 10.3390/s19030503
ISSN: 1424-8220
Editor
MDPI
Fecha de publicación
2019-01-25Patrocinadores
Ministerio de Economía y Competitividad
Comunidad de Madrid
Dirección General de Tráfico
Cita bibliográfica
Sáez, Á., Bergasa, L. M., López-Guillén, E., Romera, E., Tradacete, M., Gómez-Huélamo, C., & Del Egido, J. 2019, "Real-Time Semantic Segmentation for Fisheye Urban Driving Images Based on ERFNet". Sensors (Basel, Switzerland), 19(3), 503. doi: 10.3390/s19030503
Palabras clave
Fisheye
Intelligent vehicles
CNN (Convolutional Neural Network)
Deep Learning
Distortion
Proyectos
info:eu-repo/grantAgreement/MINECO//TRA2015-70501-C2-1-R/ES/VEHICULO INTELIGENTE PARA PERSONAS MAYORES/
SPIP2017-02305 (Dirección General de Tráfico)
info:eu-repo/grantAgreement/CAM//S2013%2FMIT-2748/ES/ROBOTICA APLICADA A LA MEJORA DE LA CALIDAD DE VIDA DE LOS CIUDADANOS, FASE III/RoboCity2030-III-CM
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/publishedVersion
Versión del editor
https://doi.org/10.3390/s19030503Derechos
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
The interest in fisheye cameras has recently risen in the autonomous vehicles field, as they are
able to reduce the complexity of perception systems while improving the management of dangerous driving situations. However, the strong distortion inherent to these cameras makes the usage of conventional computer vision algorithms difficult and has prevented the development of these devices. This paper presents a methodology that provides real-time semantic segmentation on fisheye cameras leveraging only synthetic images. Furthermore, we propose some Convolutional Neural Networks (CNN) architectures based on Efficient Residual Factorized Network (ERFNet) that demonstrate notable skills handling distortion and a new training strategy that improves the segmentation on the image borders. Our proposals are compared to similar state-of-the-art works showing an outstanding performance and tested in an unknown real world scenario using a fisheye camera integrated in an open-source autonomous electric car, showing a high domain adaptation capability.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
RealTime_Alvaro_Sensors_2019.pdf | 77.36Mb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
RealTime_Alvaro_Sensors_2019.pdf | 77.36Mb |
![]() |
Colecciones
- ELECTRON - Artículos [152]
- ROBESAFE - Artículos [37]