Identification of clusters in multifocal electrophysiology recordings to maximize discriminant capacity (patients vs. control subjects)
Authors
Ortiz del Castillo, MiguelIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/41573DOI: 10.1007/s10633-019-09720-8
ISSN: 0012-4486
Publisher
Springer
Date
2019-09-19Funders
Agencia Estatal de Investigación
Bibliographic citation
Castillo, M.O., Cordón, B., Sánchez Morla, E.M. et al. Identification of clusters in multifocal electrophysiology recordings to maximize discriminant capacity (patients vs. control subjects). Doc Ophthalmol 140, 43–53 (2020)
Keywords
Multifocal electroretinogram
Multifocal visual-evoked potential
Multiple sclerosis
Visual field
Project
PI17/01726
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-88438-R/ES/INVESTIGACION DE LA TECNICA DE POTENCIALES EVOCADOS VISUALES MULTIFOCALES. APLICACION EN ESTUDIOS DE EVOLUCION DE ESCLEROSIS MULTIPLE Y EVALUACION DE MEDICAMENTOS/
RD16/0008/020
RD16/0008/029
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://doi.org/10.1007/s10633-019-09720-8Rights
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
Purpose
To propose a new method of identifying clusters in multifocal electrophysiology (multifocal electroretinogram: mfERG; multifocal visual-evoked potential: mfVEP) that conserve the maximum capacity to discriminate between patients and control subjects.
Methods
The theoretical framework proposed creates arbitrary N-size clusters of sectors. The capacity to discriminate between patients and control subjects is assessed by analysing the area under the receiver operator characteristic curve (AUC). As proof of concept, the method is validated using mfERG recordings taken from both eyes of control subjects (n = 6) and from patients with multiple sclerosis (n = 15).
Results
Considering the amplitude of wave P1 as the analysis parameter, the maximum value of AUC = 0.7042 is obtained with N = 9 sectors. Taking into account the AUC of the amplitudes and latencies of waves N1 and P1, the maximum value of the AUC = 0.6917 with N = 8 clustered sectors. The greatest discriminant capacity is obtained by analysing the latency of wave P1: AUC = 0.8854 with a cluster of N = 12 sectors.
Conclusion
This paper demonstrates the effectiveness of a method able to determine the arbitrary clustering of multifocal responses that possesses the greatest capacity to discriminate between control subjects and patients when applied to the visual field of mfERG or mfVEP recordings. The method may prove helpful in diagnosing any disease that is identifiable in patients’ mfERG or mfVEP recordings and is extensible to other clinical tests, such as optical coherence tomography.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Identification_Ortiz_Doc_Ophth ... | 2.095Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Identification_Ortiz_Doc_Ophth ... | 2.095Mb |
![]() |
Collections
- ELECTRON - Artículos [152]