Show simple item record

dc.contributor.authorPérez Díaz, Sonia 
dc.contributor.authorBlasco Lorenzo, Ángel 
dc.date.accessioned2020-03-11T14:06:58Z
dc.date.available2020-03-11T14:06:58Z
dc.date.issued2019-01-01
dc.identifier.bibliographicCitationBlasco, Ángel & Pérez-Díaz, Sonia. 2019, “An in depth analysis, via resultants, of the singularities of a parametric curve”, Computer Aided Geometric Design, vol. 68 (Enero 2019), pp. 22-47
dc.identifier.issn0167-8396
dc.identifier.urihttp://hdl.handle.net/10017/41542
dc.description.abstractLet C be an algebraic space curve defined by a rational parametrization P(t)∈K(t)ℓ, ℓ≥2. In this paper, we consider the T-function, T(s), which is a polynomial constructed from P(t) by means of a univariate resultant, and we show that T(s) contains essential information concerning the singularities of C. More precisely, we prove that T(s)=∏i=1nHPi(s), where Pi, i=1,…,n, are the (ordinary and non-ordinary) singularities of C and HPi, i=1,…,n, are polynomials, each of them associated to a singularity, whose factors are the fiber functions of those singularities as well as those other belonging to their corresponding neighborhoods. That is, HQ(s)=HQ(s)m−1∏j=1kHQj(s)mj−1, where Q is an m-fold point, Qj,j=1,…,k, are the neighboring singularities of Q, and mj,j=1,…,k, are their corresponding multiplicities (HP denotes the fiber function of P). Thus, by just analyzing the factorization of T, we can obtain all the singularities (ordinary and non-ordinary) as well as interesting data relative to each of them, like its multiplicity, character, fiber or number of associated tangents. Furthermore, in the case of non-ordinary singularities, we can easily get the corresponding number of local branches and delta invariant.en
dc.description.sponsorshipAgencia Estatal de Investigaciónes_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)*
dc.rights© 2019 Elsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectRational parametrizationen
dc.subjectSingularities of an algebraic curveen
dc.subjectMultiplicity of a pointen
dc.subjectOrdinary and non-ordinary singularitiesen
dc.subjectT-functionen
dc.subjectFiber functionen
dc.titleAn in depth analysis, via resultants, of the singularities of a parametric curveen
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaMatemáticases_ES
dc.subject.ecienciaMathematicsen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Física y Matemáticas. Unidad docente Matemáticases_ES
dc.date.updated2020-03-11T14:04:04Z
dc.relation.publisherversionhttps://doi.org/10.1016/j.cagd.2018.12.003
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.identifier.doi10.1016/j.cagd.2018.12.003
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88796-P/ES/COMPUTACION SIMBOLICA: NUEVOS RETOS EN ALGEBRA Y GEOMETRIA Y SUS APLICACIONES/es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.uxxiAR/0000029432
dc.identifier.publicationtitleComputer Aided Geometric Designen
dc.identifier.publicationvolume68
dc.identifier.publicationlastpage47
dc.identifier.publicationfirstpage22


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Este ítem está sujeto a una licencia Creative Commons.