dc.contributor.author | Pérez Díaz, Sonia | |
dc.contributor.author | Blasco Lorenzo, Ángel | |
dc.date.accessioned | 2020-03-11T14:06:58Z | |
dc.date.available | 2020-03-11T14:06:58Z | |
dc.date.issued | 2019-01-01 | |
dc.identifier.bibliographicCitation | Blasco, Ángel & Pérez-Díaz, Sonia. 2019, “An in depth analysis, via resultants, of the singularities of a parametric curve”, Computer Aided Geometric Design, vol. 68 (Enero 2019), pp. 22-47 | |
dc.identifier.issn | 0167-8396 | |
dc.identifier.uri | http://hdl.handle.net/10017/41542 | |
dc.description.abstract | Let C be an algebraic space curve defined by a rational parametrization P(t)∈K(t)ℓ, ℓ≥2. In this paper, we consider the T-function, T(s), which is a polynomial constructed from P(t) by means of a univariate resultant, and we show that T(s) contains essential information concerning the singularities of C. More precisely, we prove that T(s)=∏i=1nHPi(s), where Pi, i=1,…,n, are the (ordinary and non-ordinary) singularities of C and HPi, i=1,…,n, are polynomials, each of them associated to a singularity, whose factors are the fiber functions of those singularities as well as those other belonging to their corresponding neighborhoods. That is, HQ(s)=HQ(s)m−1∏j=1kHQj(s)mj−1, where Q is an m-fold point, Qj,j=1,…,k, are the neighboring singularities of Q, and mj,j=1,…,k, are their corresponding multiplicities (HP denotes the fiber function of P). Thus, by just analyzing the factorization of T, we can obtain all the singularities (ordinary and non-ordinary) as well as interesting data relative to each of them, like its multiplicity, character, fiber or number of associated tangents. Furthermore, in the case of non-ordinary singularities, we can easily get the corresponding number of local branches and delta invariant. | en |
dc.description.sponsorship | Agencia Estatal de Investigación | es_ES |
dc.format.mimetype | application/pdf | en |
dc.language.iso | eng | en |
dc.publisher | Elsevier | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | * |
dc.rights | © 2019 Elsevier | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Rational parametrization | en |
dc.subject | Singularities of an algebraic curve | en |
dc.subject | Multiplicity of a point | en |
dc.subject | Ordinary and non-ordinary singularities | en |
dc.subject | T-function | en |
dc.subject | Fiber function | en |
dc.title | An in depth analysis, via resultants, of the singularities of a parametric curve | en |
dc.type | info:eu-repo/semantics/article | en |
dc.subject.eciencia | Matemáticas | es_ES |
dc.subject.eciencia | Mathematics | en |
dc.contributor.affiliation | Universidad de Alcalá. Departamento de Física y Matemáticas. Unidad docente Matemáticas | es_ES |
dc.date.updated | 2020-03-11T14:04:04Z | |
dc.relation.publisherversion | https://doi.org/10.1016/j.cagd.2018.12.003 | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | en |
dc.identifier.doi | 10.1016/j.cagd.2018.12.003 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88796-P/ES/COMPUTACION SIMBOLICA: NUEVOS RETOS EN ALGEBRA Y GEOMETRIA Y SUS APLICACIONES/ | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en |
dc.identifier.uxxi | AR/0000029432 | |
dc.identifier.publicationtitle | Computer Aided Geometric Design | en |
dc.identifier.publicationvolume | 68 | |
dc.identifier.publicationlastpage | 47 | |
dc.identifier.publicationfirstpage | 22 | |