dc.contributor.author | Pérez Díaz, Sonia | |
dc.contributor.author | Blasco Lorenzo, Ángel | |
dc.date.accessioned | 2020-03-10T17:32:46Z | |
dc.date.issued | 2019-09-01 | |
dc.identifier.bibliographicCitation | Blasco, Ángel & Pérez-Díaz, Sonia. 2019, “The limit point and the T-function”, Journal of Symbolic Computation, vol. 94 (Sept-Oct. 2019), pp. 30-51 | |
dc.identifier.issn | 0747-7171 | |
dc.identifier.uri | http://hdl.handle.net/10017/41538 | |
dc.description.abstract | Let P(t) ϵ P2 (K(t)) be a rational projective parametrization of a plane curve C. In this paper, we introduce the notion of limit point, PL, of P(t), and some remarkable properties of PL are obtained. In particular, if the singularities of C are P1, . . . , Pn and PL (all of them ordinary) and their respective multiplicities are m1, . . . , mn and mL, we show that T(s) = n i=1 HPi (s) m-1HPL (s) mL-1 , where T(s) is the univariate resultant of two polynomials obtained from P(t), and HP1 (s), . . . , HPn (s), HPL (s) are the fibre functions of the singularities. The fibre function of a point P is a polynomial HP (s) whose roots are the fibre of P. Thus, a complete classification of the singularities of a given plane curve, via the factorization of a resultant, is obtained. | en |
dc.description.sponsorship | Agencia Estatal de Investigación | es_ES |
dc.format.mimetype | application/pdf | en |
dc.language.iso | eng | en |
dc.publisher | Elsevier | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | * |
dc.rights | © 2019 Elsevier | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Algebraic parametric curve | en |
dc.subject | Rational parametrization | en |
dc.subject | Singularities | en |
dc.subject | Limit point | en |
dc.subject | T-function | en |
dc.subject | Fibre Function | en |
dc.title | The limit point and the T-function | en |
dc.type | info:eu-repo/semantics/article | en |
dc.subject.eciencia | Matemáticas | es_ES |
dc.subject.eciencia | Mathematics | en |
dc.contributor.affiliation | Universidad de Alcalá. Departamento de Física y Matemáticas. Unidad docente Matemáticas | es_ES |
dc.date.updated | 2020-03-10T17:31:13Z | |
dc.relation.publisherversion | https://doi.org/10.1016/j.jsc.2018.06.009 | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | en |
dc.identifier.doi | 10.1016/j.jsc.2018.06.009 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88796-P/ES/COMPUTACION SIMBOLICA: NUEVOS RETOS EN ALGEBRA Y GEOMETRIA Y SUS APLICACIONES/ | es_ES |
dc.date.embargoEndDate | 2020-09-01 | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en |
dc.identifier.uxxi | AR/0000029016 | |
dc.identifier.publicationtitle | Journal of Symbolic Computation | en |
dc.identifier.publicationvolume | 94 | |
dc.identifier.publicationlastpage | 51 | |
dc.identifier.publicationfirstpage | 30 | |