The limit point and the T-function
Identificadores
Enlace permanente (URI): http://hdl.handle.net/10017/41538DOI: 10.1016/j.jsc.2018.06.009
ISSN: 0747-7171
Editor
Elsevier
Fecha de publicación
2019-09-01Fecha fin de embargo
2020-09-01Patrocinadores
Agencia Estatal de Investigación
Cita bibliográfica
Blasco, Ángel & Pérez-Díaz, Sonia. 2019, “The limit point and the T-function”, Journal of Symbolic Computation, vol. 94 (Sept-Oct. 2019), pp. 30-51
Palabras clave
Algebraic parametric curve
Rational parametrization
Singularities
Limit point
T-function
Fibre Function
Proyectos
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88796-P/ES/COMPUTACION SIMBOLICA: NUEVOS RETOS EN ALGEBRA Y GEOMETRIA Y SUS APLICACIONES/
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/acceptedVersion
Versión del editor
https://doi.org/10.1016/j.jsc.2018.06.009Derechos
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
© 2019 Elsevier
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
Let P(t) ϵ P2 (K(t)) be a rational projective parametrization of a plane curve C. In this paper, we introduce the notion of limit point, PL, of P(t), and some remarkable properties of PL are obtained. In particular, if the singularities of C are P1, . . . , Pn and PL (all of them ordinary) and their respective multiplicities are m1, . . . , mn and mL, we show that T(s) = n i=1 HPi (s) m-1HPL (s) mL-1 , where T(s) is the univariate resultant of two polynomials obtained from P(t), and HP1 (s), . . . , HPn (s), HPL (s) are the fibre functions of the singularities. The fibre function of a point P is a polynomial HP (s) whose roots are the fibre of P. Thus, a complete classification of the singularities of a given plane curve, via the factorization of a resultant, is obtained.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
The_limit_Blasco_J_Symb_Comput ... | 896.7Kb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
The_limit_Blasco_J_Symb_Comput ... | 896.7Kb |
![]() |
Colecciones
- MATEMATIC - Artículos [150]