Maillet type theorem for nonlinear totally characteristic partial differential equations
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/41535DOI: 10.1007/s00208-019-01864-x
ISSN: 0025-5831
Publisher
Springer
Date
2019-07-05Embargo end date
2020-07-05Funders
Ministerio de Economía y Competitividad
Bibliographic citation
Lastra, A. & Tahara, H., S. 2019, “Maillet type theorem for nonlinear totally characteristic partial differential equations”, Mathematische Annalen, vol. 2019
Project
info:eu-repo/grantAgreement/MINECO//MTM2016-77642-C2-1-P/ES/Algebra y geometría en sistemas dinámicos y foliaciones singulares/
JSPS KAKENHI 15K04966
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1007/s00208-019-01864-xRights
© 2019 Springer
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
The paper discusses a holomorphic nonlinear singular partial differential equation (t∂t)mu=F(t,x,{(t∂t)j∂αxu}j+α≤m,j<m)(t∂t)mu=F(t,x,{(t∂t)j∂xαu}j+α≤m,j<m) under the assumption that the equation is of nonlinear totally characteristic type. By using the Newton polygon at x=0x=0, the notion of the irregularity at x=0x=0 of the equation is defined. In the case where the irregularity is greater than one, it is proved that every formal power series solution belongs to a suitable formal Gevrey class. The precise bound of the order of the formal Gevrey class is given, and the optimality of this bound is also proved in a generic case.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Maillet_Lastra_Math_Ann_2019.pdf | 990.1Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Maillet_Lastra_Math_Ann_2019.pdf | 990.1Kb |
![]() |
Collections
- MATEMATIC - Artículos [150]