On a q-analog of a singularly perturbed problem of irregular type with two complex time variables
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/41509DOI: 10.3390/math7100924
ISSN: 2227-7390
Publisher
MDPI
Date
2019-10-03Funders
Ministerio de Economía y Competitividad
Bibliographic citation
Lastra, A. & Malek, S. 2019, “On a q-analog of a singularly perturbed problem of irregular type with two complex time variables”, Mathematics, vol. 7, no. 10, 924
Keywords
Asymptotic expansion
Borel-Laplace transform
Fourier transform
Initial value problem
Formal power series
q-difference equation
Boundary layer
Singular perturbation
Project
info:eu-repo/grantAgreement/MINECO//MTM2016-77642-C2-1-P/ES/Algebra y geometría en sistemas dinámicos y foliaciones singulares/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://doi.org/10.3390/math7100924Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
The analytic solutions of a family of singularly perturbed q-difference-differential equations in the complex domain are constructed and studied from an asymptotic point of view with respect to the perturbation parameter. Two types of holomorphic solutions, the so-called inner and outer solutions, are considered. Each of them holds a particular asymptotic relation with the formal ones in terms of asymptotic expansions in the perturbation parameter. The growth rate in the asymptotics leans on the --1-branch of Lambert W function, which turns out to be crucial.
Files in this item
Files | Size | Format |
|
---|---|---|---|
On_a_q_analog_Lastra_Mathemati ... | 430.7Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
On_a_q_analog_Lastra_Mathemati ... | 430.7Kb |
![]() |
Collections
- MATEMATIC - Artículos [143]