Gevrey multiscale expansions of singular solutions of PDEs with cubic nonlinearity
Publisher
Texas State University
Date
2018-02-13Funders
Ministerio de Economía y Competitividad
Bibliographic citation
Lastra, A. & Malek, S. 2018, “Gevrey multiscale expansions of singular solutions of PDEs with cubic nonlinearity”, Electronic Journal of Differential Equations, vol. 2018, no. 46, pp. 1-89
Keywords
Asymptotic expansion
Borel-Laplace transform
Fourier transform
Cauchy problem
Formal power series
Nonlinear integro-differential equation
Nonlinear partial differential equation
Singular perturbation
Project
info:eu-repo/grantAgreement/MINECO//MTM2016-77642-C2-1-P/ES/Algebra y geometría en sistemas dinámicos y foliaciones singulares/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://ejde.math.txstate.edu/Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2018 Texas State University
Access rights
info:eu-repo/semantics/openAccess
Abstract
We study a singularly perturbed PDE with cubic nonlinearity depending on a complex perturbation parameter ϵ. This is a continuation of the precedent work by the first author. We construct two families of sectorial meromorphic solutions obtained as a small perturbation in ϵ of two branches of an algebraic slow curve of the equation in time scale. We show that the nonsingular part of the solutions of each family shares a common formal power series in ϵ as Gevrey asymptotic expansion which might be different one to each other, in general.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Gevrey_Lastra_El_J_Differ_Eq_2 ... | 703.5Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Gevrey_Lastra_El_J_Differ_Eq_2 ... | 703.5Kb |
![]() |
Collections
- MATEMATIC - Artículos [138]