On parametric multilevel q-Gevrey asymptotics for some linear q-difference-differential equations
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/41447DOI: 10.1186/s13662-015-0678-1
ISSN: 1687-1839
Publisher
SpringerOpen
Date
2015-05-01Bibliographic citation
Lastra, A., Malek, S. 2015, "On parametric multilevel q-Gevrey asymptotics for some linear q-difference-differential equations". Advances in Difference Equations, vol. 2015, 344
Keywords
Asymptotic expansion
Borel-Laplace transform
Fourier transform
Formal power series
Singular perturbation
q-difference-differential equation
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://doi.org/10.1186/s13662-015-0678-1Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
We study linear q-difference-differential equations under the action of a perturbation parameter . This work deals with a q-analog of the research made in (Lastra and Malek in Adv. Differ. Equ. 2015:200, 2015) giving rise to a generalization of the work (Malek in Funkc. Ekvacioj, 2015, to appear). This generalization is related to the nature of the forcing term which suggests the use of a q-analog of an acceleration procedure. The proof leans on a q-analog of the so-called Ramis-Sibuya theorem which entails two distinct q-Gevrey orders. The work concludes with an application of the main result when the forcing term solves a related problem.
Files in this item
Files | Size | Format |
|
---|---|---|---|
On_parametric_Lastra_Adv_Diffe ... | 2.206Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
On_parametric_Lastra_Adv_Diffe ... | 2.206Mb |
![]() |
Collections
- MATEMATIC - Artículos [138]