On Gevrey solutions of threefold singular nonlinear partial differential equations
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/41439DOI: 10.1016/j.jde.2013.07.031
ISSN: 0022-0396
Publisher
Elsevier
Date
2013-11-15Funders
Ministerio de Economía y Competitividad
Ministerio de Ciencia e Innovación
Bibliographic citation
Lastra, A., Malek, S. & Sanz, J. 2013, “On Gevrey solutions of threefold singular nonlinear partial differential equations”, Journal of Differential Equations, vol. 255, no. 10, pp. 3205-3232.
Keywords
Nonlinear partial differential equations
Singular perturbations
Formal power series
Borel-Laplace transform
Borel summability
Gevrey asymptotic expansions
Project
info:eu-repo/grantAgreement/MINECO//MTM2012-31439/ES/ANALISIS DE PERTURBACIONES SINGULARES: ESTUDIO ASINTOTICO, CAPAS LIMITE Y FENOMENOS MULTIESCALA/
info:eu-repo/grantAgreement/MICINN//MTM2009-12561/ES/Estudio De La Dependencia Respecto De Los Parametros De Las Soluciones De Ciertas Ecuaciones De La Fisica Matematica/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1016/j.jde.2013.07.031Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2013 Elsevier
Access rights
info:eu-repo/semantics/openAccess
Abstract
We study Gevrey asymptotics of the solutions to a family of threefold singular nonlinear partial differential equations in the complex domain. We deal with both Fuchsian and irregular singularities, and allow the presence of a singular perturbation parameter. By means of the Borel-Laplace summation method, we construct sectorial actual holomorphic solutions which turn out to share a same formal power series as their Gevrey asymptotic expansion in the perturbation parameter. This result rests on the Malgrange-Sibuya theorem, and it requires to prove that the difference between two neighboring solutions is exponentially small, what in this case involves an asymptotic estimate for a particular Dirichlet-like series.
Files in this item
Files | Size | Format |
|
---|---|---|---|
On_Gevrey_Lastra_J_Differ_Eq_2 ... | 698.9Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
On_Gevrey_Lastra_J_Differ_Eq_2 ... | 698.9Kb |
![]() |
Collections
- MATEMATIC - Artículos [143]