Strongly regular multi-level solutions of singularly perturbed linear partial differential equations
Identificadores
Enlace permanente (URI): http://hdl.handle.net/10017/41438DOI: 10.1007/s00025-015-0493-8
ISSN: 1422-6383
Editor
Springer Verlag
Fecha de publicación
2016-11-01Patrocinadores
Ministerio de Economía y Competitividad
Cita bibliográfica
Lastra, A., Malek, S. & Sanz, J. 2016, “Strongly regular multi-level solutions of singularly perturbed linear partial differential equations”, Results in Mathematics, 2016, vol. 70, pp. 581-614.
Palabras clave
Linear partial differential equations
Singular perturbations
Formal power series
Borel-Laplace transform
Borel summability
Gevrey asymptotic expansions
Strongly regular sequence
Proyectos
info:eu-repo/grantAgreement/MINECO//MTM2012-31439/ES/ANALISIS DE PERTURBACIONES SINGULARES: ESTUDIO ASINTOTICO, CAPAS LIMITE Y FENOMENOS MULTIESCALA/
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/acceptedVersion
Versión del editor
https://doi.org/10.1007/s00025-015-0493-8Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2016 Springer Verlag
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
We study the asymptotic behavior of the solutions related to a family of singularly perturbed partial differential equations in the complex domain. The analytic solutions are asymptotically represented by a formal power series in the perturbation parameter. The geometry of the problem and the nature of the elements involved in it give rise to different asymptotic levels related to the so-called strongly regular sequences. The result leans on a novel version of amulti-level Ramis-Sibuya theorem.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Strongly_Lastra_Results_Math_2 ... | 909.1Kb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Strongly_Lastra_Results_Math_2 ... | 909.1Kb |
![]() |
Colecciones
- MATEMATIC - Artículos [138]