Show simple item record

dc.contributor.authorLi, Zhang
dc.contributor.authorPereira da Costa, Luis Duarte 
dc.contributor.authorZhisheng, Yang
dc.contributor.authorSoto Hernández, Marcelo Alfonso 
dc.contributor.authorGonzález Herráez, Miguel 
dc.contributor.authorThévenaz, Luc
dc.date.accessioned2019-10-07T14:57:59Z
dc.date.available2019-10-07T14:57:59Z
dc.date.issued2019-09-15
dc.identifier.bibliographicCitationZhang, L., Costa, L., Yang, Z., Soto, M. A., González-Herráez, M. & Thévenaz, L. 2019, "Analysis and reduction of large errors in Rayleigh-based distributed sensor", JLT, vol. 37, no. 18, pp. 4710-4719.
dc.identifier.issn0733-8724
dc.identifier.urihttp://hdl.handle.net/10017/39529
dc.description.abstractCommonly, the frequency shift of back-reflection spectra is the key parameter to measure quantitatively local temperature or strain changes in frequency-scanned Rayleigh-based distributed fiber sensors. Cross correlation is the most common method to estimate the frequency shift; however, large errors may take place, particularly when the frequency shift introduced by the temperature or strain change applied to the fiber is beyond the spectral width of the main correlation peak. This fact substantially limits the reliability of the system, and therefore requires careful analysis and possible solutions. In this paper, an analytical model is proposed to thoroughly describe the probability of large errors. This model shows that the cross correlation intrinsically and inevitably leads to large errors when the sampled signal distribution is finite, even under perfect signal-to-noise ratio. As an alternative solution to overcome such a problem, least mean squares is employed to estimate the frequency shift. In addition to reducing the probability of large errors, the proposed method only requires to measure a narrow spectrum, significantly reducing the measurement time compared to state-of-the-art implementations. Both the model and the solution are experimentally verified using a frequency-scanned phase-sensitive optical time-domain reflectometry system, achieving a spatial resolution of 5 cm, with a sensing range of 860 m and an acquisition time below 15 s, over a measurable temperature range of more than 100 K with a repeatability of 20 mK, corresponding to a temperature dynamic range of 5000 resolved points.en
dc.description.sponsorshipEuropean Commissionen
dc.description.sponsorshipSwiss Commission for Technology and Innovationen
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)*
dc.rights© 2019 IEEE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectFiber opticsen
dc.subjectFiber optics sensorsen
dc.subjectRayleigh scatteringen
dc.titleAnalysis and reduction of large errors in Rayleigh-based distributed sensoren
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaElectrónicaes_ES
dc.subject.ecienciaElectronicsen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Electrónicaes_ES
dc.date.updated2019-10-07T14:55:57Z
dc.relation.publisherversionhttps://doi.org/10.1109/JLT.2019.2917746
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.identifier.doi10.1109/JLT.2019.2917746
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/722509/EU/Fibre Nervous Sensing Systems/FINESSEen
dc.relation.projectID18337.2 PFNM-NM (Swiss Commission for Technology and Innovation)en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.uxxiAR/0000031208
dc.identifier.publicationtitleJournal of Lightwave Technologyen
dc.identifier.publicationvolume37
dc.identifier.publicationlastpage4719
dc.identifier.publicationissue18
dc.identifier.publicationfirstpage4710


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Este ítem está sujeto a una licencia Creative Commons.