A Contextual GMM-HMM Smart Fiber Optic Surveillance System for Pipeline Integrity Threat Detection
Autores
Tejedor Noguerales, JavierIdentificadores
Enlace permanente (URI): http://hdl.handle.net/10017/39513DOI: 10.1109/JLT.2019.2908816
ISSN: 0733-8724
Fecha de publicación
2019-04-02Patrocinadores
European Commission
Ministerio de Economía y Competitividad
Comunidad de Madrid
Cita bibliográfica
Tejedor, J., Macias-Guarasa, J., Martins, H. F., Martín-López, S. & González-Herráez, M. 2019, "A Contextual GMM-HMM Smart Fiber Optic Surveillance System for Pipeline Integrity Threat Detection", JLT, vol. 37, no. 18, pp. 4514-4522.
Palabras clave
Distributed fiber sensing
Acoustic sensing
Vibration sensing
Pipeline integrity
Phase-sensitive OTDR
Pattern recognition
Proyectos
info:eu-repo/grantAgreement/EC/FP7/307441/EU/Ubiquitous optical FIbre NErves/U-FINE
info:eu-repo/grantAgreement/EC/H2020/722509/EU/Fibre Nervous Sensing Systems/FINESSE
info:eu-repo/grantAgreement/MINECO/TEC2013-45265-R/ES/DETECCION TEMPRANA DE AMENAZAS PARA INFRAESTRUCTURAS CRITICAS USANDO SISTEMAS DISTRIBUIDOS DE FIBRA OPTICA/
info:eu-repo/grantAgreement/MINECO//TEC2015-71127-C2-2-R/ES/REDUCCION DE LOS EFECTOS DE RUIDO EN SISTEMAS DE FIBRA OPTICA NO LINEALES/
info:eu-repo/grantAgreement/MINECO//BES-2015-075982/ES/BES-2015-075982/
info:eu-repo/grantAgreement/Comunidad de Madrid//S2009%2FMIT2790/ES/Sensores e INstrumentación en tecnologías FOTÓNicas/SINFOTON
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/acceptedVersion
Derechos
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
(c) 2019 IEEE
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
This paper presents a novel pipeline integrity surveillance system aimed to the detection and classification of threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical time domain reflectometry ( $\phi$ -OTDR) technology for signal acquisition and pattern recognition strategies for threat identification. The proposal incorporates contextual information at the feature level in a Gaussian Mixture Model-Hidden Markov Model (GMM-HMM)-based pattern classification system and applies a system combination strategy for acoustic trace decision. System combination relies on majority voting of the decisions given by the individual contextual information sources and the number of states used for HMM modelling. The system runs in two different modes: (1) machine+activity identification, which recognizes the activity being carried out by a certain machine, and (2) threat detection, aimed to detect threats no matter what the real activity being conducted is. In comparison with the previous systems based on the same rigorous experimental setup, the results show that the system combination from the contextual feature information and the GMM-HMM approach improves the results for both machine+activity identification (7.6% of relative improvement with respect to the best published result in the literature on this task) and threat detection (26.6% of relative improvement in the false alarm rate with 2.1% relative reduction in the threat detection rate).
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Contextual_Tejedor_JLT_2019.pdf | 1.050Mb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Contextual_Tejedor_JLT_2019.pdf | 1.050Mb |
![]() |
Colecciones
- ELECTRON - Artículos [152]
- Framework Program 7 [105]
- Horizon 2020 Framework Programme [92]
- INGFOTON - Artículos [104]