Show simple item record

dc.contributor.advisorBergasa Pascual, Luis Miguel 
dc.contributor.advisorPizarro Pérez, Daniel 
dc.contributor.authorBronte Palacios, Sebastián 
dc.date.accessioned2019-06-04T08:14:58Z
dc.date.available2019-06-04T08:14:58Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10017/37906
dc.description.abstractEn la actualidad las aplicaciones que basan su funcionamiento en una correcta localización y reconstrucción dentro de un entorno real en 3D han experimentado un gran interés en los últimos años, tanto por la comunidad investigadora como por la industrial. Estas aplicaciones varían desde la realidad aumentada, la robótica, la simulación, los videojuegos, etc. Dependiendo de la aplicación y del nivel de detalle de la reconstrucción, se emplean diversos dispositivos, algunos específicos, más complejos y caros como las cámaras estéreo, cámara y profundidad (RGBD) con Luz estructurada y Time of Flight (ToF), así como láser y otros más avanzados. Para aplicaciones sencillas es suficiente con dispositivos de uso común, como los smartphones, en los que aplicando técnicas de visión artificial, se pueden obtener modelos 3D del entorno para, en el caso de la realidad aumentada, mostrar información aumentada en la ubicación seleccionada.En robótica, la localización y generación simultáneas de un mapa del entorno en 3D es una tarea fundamental para conseguir la navegación autónoma. Este problema se conoce en el estado del arte como Simultaneous Localization And Mapping (SLAM) o Structure from Motion (SfM). Para la aplicación de estas técnicas, el objeto no ha de cambiar su forma a lo largo del tiempo. La reconstrucción es unívoca salvo factor de escala en captura monocular sin referencia. Si la condición de rigidez no se cumple, es porque la forma del objeto cambia a lo largo del tiempo. El problema sería equivalente a realizar una reconstrucción por fotograma, lo cual no se puede hacer de manera directa, puesto que diferentes formas, combinadas con diferentes poses de cámara pueden dar proyecciones similares. Es por esto que el campo de la reconstrucción de objetos deformables es todavía un área en desarrollo. Los métodos de SfM se han adaptado aplicando modelos físicos, restricciones temporales, espaciales, geométricas o de otros tipos para reducir la ambigüedad en las soluciones, naciendo así las técnicas conocidas como Non-Rigid SfM (NRSfM).En esta tesis se propone partir de una técnica de reconstrucción rígida bien conocida en el estado del arte como es PTAM (Parallel Tracking and Mapping) y adaptarla para incluir técnicas de NRSfM, basadas en modelo de bases lineales para estimar las deformaciones del objeto modelado dinámicamente y aplicar restricciones temporales y espaciales para mejorar las reconstrucciones, además de ir adaptándose a cambios de deformación que se presenten en la secuencia. Para ello, hay que realizar cambios de manera que cada uno de sus hilos de ejecución procesen datos no rígidos.El hilo encargado del seguimiento ya realizaba seguimiento basado en un mapa de puntos 3D, proporcionado a priori. La modificación más importante aquí es la integración de un modelo de deformación lineal para que se realice el cálculo de la deformación del objeto en tiempo real, asumiendo fijas las formas básicas de deformación. El cálculo de la pose de la cámara está basado en el sistema de estimación rígido, por lo que la estimación de pose y coeficientes de deformación se hace de manera alternada usando el algoritmo E-M (Expectation-Maximization). También, se imponen restricciones temporales y de forma para restringir las ambigüedades inherentes en las soluciones y mejorar la calidad de la estimación 3D.Respecto al hilo que gestiona el mapa, se actualiza en función del tiempo para que sea capaz de mejorar las bases de deformación cuando éstas no son capaces de explicar las formas que se ven en las imágenes actuales. Para ello, se sustituye la optimización de modelo rígido incluida en este hilo por un método de procesamiento exhaustivo NRSfM, para mejorar las bases acorde a las imágenes con gran error de reconstrucción desde el hilo de seguimiento. Con esto, el modelo se consigue adaptar a nuevas deformaciones, permitiendo al sistema evolucionar y ser estable a largo plazo.A diferencia de una gran parte de los métodos de la literatura, el sistema propuesto aborda el problema de la proyección perspectiva de forma nativa, minimizando los problemas de ambigüedad y de distancia al objeto existente en la proyección ortográfica. El sistema propuesto maneja centenares de puntos y está preparado para cumplir con restricciones de tiempo real para su aplicación en sistemas con recursos hardware limitados.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElectrónicaes_ES
dc.subjectVisión artificial (Robótica)es_ES
dc.subjectDeformaciones (Mecánica)es_ES
dc.titleReal Time Sequential Non Rigid Structure from motion using a single cameraes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesisen
dc.subject.ecienciaElectrónicaes_ES
dc.subject.ecienciaElectronicsen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Electrónicaes_ES
dc.contributor.affiliationUniversidad de Alcalá. Programa de Doctorado en Electrónica: Sistemas Electrónicos Avanzados. Sistemas Inteligenteses_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons.