Show simple item record

dc.contributor.authorTejedor Noguerales, Javier 
dc.contributor.authorMacías Guarasa, Javier 
dc.contributor.authorFidalgo Martins, Hugo 
dc.contributor.authorPastor Graells, Juan 
dc.contributor.authorMartín López, Sonia 
dc.contributor.authorCorredera, Pedro
dc.contributor.authorDe Pauw, G.
dc.contributor.authorDe Smet, F.
dc.contributor.authorPostvoll, W.
dc.contributor.authorAhlen, C.H.
dc.contributor.authorGonzález Herráez, Miguel 
dc.date.accessioned2018-05-07T08:29:38Z
dc.date.available2018-05-07T08:29:38Z
dc.date.issued2018
dc.identifier.bibliographicCitationTejedor, J, Macias-Guarasa, J, Martins, HF, Pastor-Graells, J, Martin-Lopez, S, Guillen, PC, De Pauw, G, De Smet, F, Postvoll, W, Ahlen, CH, Gonzalez-Herraez, M. "Real Field Deployment of a Smart Fiber-Optic Surveillance System for Pipeline Integrity Threat Detection: Architectural Issues and Blind Field Test Results". Journal of Lightwave Technology. 2018, 36 (4), pp. 1052-1062.
dc.identifier.issn0733-8724
dc.identifier.urihttp://hdl.handle.net/10017/33080
dc.description.abstractThis paper presents an on-line augmented surveillance system that aims to real time monitoring of activities along a pipeline. The system is deployed in a fully realistic scenario and exposed to real activities carried out in unknown places at unknown times within a given test time interval (socalled blind field tests). We describe the system architecture that includes specific modules to deal with the fact that continuous on-line monitoring needs to be carried out, while addressing the need of limiting the false alarms at reasonable rates. To the best or our knowledge, this is the first published work in which a pipeline integrity threat detection system is deployed in a realistic scenario (using a fiber optic along an active gas pipeline) and is thoroughly and objectively evaluated in realistic blind conditions. The system integrates two operation modes: The machine+activity identification mode identifies the machine that is carrying out a certain activity along the pipeline, and the threat detection mode directly identifies if the activity along the pipeline is a threat or not. The blind field tests are carried out in two different pipeline sections: The first section corresponds to the case where the sensor is close to the sensed area, while the second one places the sensed area about 35 km far from the sensor. Results of the machine+activity identification mode showed an average machine+activity classification rate of 46:6%. For the threat detection mode, 8 out of 10 threats were correctly detected, with only 1 false alarm appearing in a 55:5-hour sensed period.en
dc.description.sponsorshipEuropean Commissionen
dc.description.sponsorshipMinisterio de Economía y Competitividades_ES
dc.description.sponsorshipComunidad de Madrides_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherIEEE
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC-BY-NC-ND 4.0)*
dc.rights(c) 2018 IEEE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDistributed fiber sensingen
dc.subjectAcoustic sensingen
dc.subjectVibration sensingen
dc.subjectPipeline integrityen
dc.subjectphase-sensitive OTDRen
dc.subjectPattern recognitionen
dc.titleReal Field Deployment of a Smart Fiber Optic Surveillance System for Pipeline Integrity Threat Detection: Architectural Issues and Blind Field Test Resultsen
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaElectrónicaes_ES
dc.subject.ecienciaElectronicsen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Electrónicaes_ES
dc.relation.publisherversionhttp:dx.doi.org/10.1109/JLT.2017.2780126
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.identifier.doi10.1109/JLT.2017.2780126
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/307441/EU/Ubiquitous optical FIbre NErves/U-FINE
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/722509/EU/Fibre Nervous Sensing Systems/FINESSE
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2013-45265-R/ES/DETECCION TEMPRANA DE AMENAZAS PARA INFRAESTRUCTURAS CRITICAS USANDO SISTEMAS DISTRIBUIDOS DE FIBRA OPTICA/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2015-71127-C2-2-R/ES/REDUCCION DE LOS EFECTOS DE RUIDO EN SISTEMAS DE FIBRA OPTICA NO LINEALES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2013-47630-C2-1-R/ES/SUPERVISION DE PATRONES DE COMPORTAMIENTO HUMANO MEDIANTE MULTIPLES SENSORES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2016-75982-C2-1-R/ES/DETECCION SEMANTICA MULTISENSORIAL DE SITUACIONES ANOMALAS EN ENTORNOS SIN RESTRICCIONES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM//S2009%2FMIT2790/ES/Sensores e INstrumentación en tecnologías FOTÓNicas/SINFOTON
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/608099/EU/Allied Initiative for Training and Education in Coherent Optical Networks/ICONE
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivatives 4.0 International (CC-BY-NC-ND 4.0)
Este ítem está sujeto a una licencia Creative Commons.