A spatial contextual postclassification method for preserving linear objects in multispectral imagery
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/32106DOI: 10.1109/TGRS.2012.2197756
ISSN: 0196-2892
Date
2013-01-01Funders
Ministerio de Ciencia e Innovación
Universidad de Alcalá
Bibliographic citation
IEEE Transactions on Geoscience and Remote Sensing, 2013, v. 51, n. 1, p. 174-183
Keywords
Classification smoothing
contextual classification
Relaxation methods,
Remote sensing
Project
info:eu-repo/grantAgreement/MICINN//CGL2010-15357/ES/DETECCION DE CAMBIOS CARTOGRAFICOS A PARTIR DE INFORMACION GEORREFERENCIADA BITEMPORAL/
Info:eu-repo/grantAgreement/UAH//CCG2011%2FEXP-031
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
http://dx.doi.org/10.1109/TGRS.2012.2197756Rights
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
Classification of remote sensing multispectral data is important for segmenting images and thematic mapping and is generally the first step in feature extraction. Per-pixel classification, based on spectral information alone, generally produces noisy classification results. The introduction of spatial information has been shown to be beneficial in removing most of this noise. Probabilistic label relaxation (PLR) has proved to be advantageous using second-order statistics; here, we present a modified contextual probabilistic relaxation method based on imposing directional information in the joint probability with third-order statistics. The proposed method was tested in synthetic images and real images; the results are compared with a "Majority" algorithm and the classical PLR method. The proposed third-order method gives the best results, both visually and numerically.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Spatial_Rodriguez_IEEE_2013.pdf | 2.015Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Spatial_Rodriguez_IEEE_2013.pdf | 2.015Mb |
![]() |
Collections
- MATEMATIC - Artículos [138]