Computing the singularities of rational surfaces
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/29589DOI: 10.1090/S0025-5718-2014-02907-4
ISSN: 0025-5718
Publisher
American Mathematical Society
Date
2015-07Funders
Ministerio de Ciencia e Innovación
Keywords
Singularities of rational surfaces
Rational surfaces
Description / Notes
The authors are members of the of the Research Group ASYNACS (Ref. CCEE2011/R34).
Project
info:eu-repo/grantAgreement/MICINN//MTM2008-04699-C03-01/ES/VARIEDADES PARAMETRICAS: ALGORITMOS Y APLICACIONES/
info:eu-repo/grantAgreement/MICINN//MTM2011-25816-C02-01/ES/ALGORITMOS Y APLICACIONES EN GEOMETRIA DE CURVAS Y SUPERFICIES/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
http://dx.doi.org/10.1090/S0025-5718-2014-02907-4Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
(c) American Mathematical Society, 2015
Access rights
info:eu-repo/semantics/openAccess
Abstract
Given a rational projective parametrization P(s, t, v) of a rational projective surface S we present an algorithm such that, with the exception of a finite set (maybe empty) B of projective base points of P, decomposes the projective parameter plane as P^2 (K) \ B = U_{k=1^n} G_k, such that, if (s0 :t0 :v0) ∈ G_k, then P(s , t , v ) is a point of S of multiplicity k.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Computing_Sendra_MC_2015 (1) ... | 573.0Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Computing_Sendra_MC_2015 (1) ... | 573.0Kb |
![]() |
Collections
- MATEMATIC - Artículos [138]