Multi-agent nonlinear negotiation for Wi-Fi channel assignment
Authors
Hoz de la Hoz, Enrique de laPublisher
International Foundation for Autonomous Agents and Multiagent Systems
Date
2017-05-08Embargo end date
2017-11-12Affiliation
Universidad de Alcalá. Departamento de Automática; Universidad de Alcalá. Departamento de Física y MatemáticasFunders
Ministerio de Economía y Competitividad
Bibliographic citation
Hoz, E., Marsa-Maestre, I., Gimenez-Guzman, J.M., Orden, D. & Klein, M., 2017, "Multi-agent nonlinear negotiation for Wi-Fi channel assignment", Proceedings of the Sixteenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2017).
Description / Notes
AAMAS 2017 - Sixteenth International Conference on Autonomous Agents and Multiagent Systems, 08/05/2017-12/05/2017, Sao Paulo, Brasil.
Project
info:eu-repo/grantAgreement/MINECO//TIN2016-80622-P/ES/Dynamic Network Agreement: negociaciones estructurales en redes complejas/DNA
info:eu-repo/grantAgreement/MINECO//TIN 2014-61627-EXP/ES/DIVIDE AND NOT CONQUER-COMPORTAMIENTOS EMERGENTES EN REDES COMPLEJAS EGOISTAS/
info:eu-repo/grantAgreement/MINECO//MTM2014-54207-P/ES/COMBINATORIA Y COMPLEJIDAD DE ESTRUCTURAS GEOMETRICAS DISCRETAS/
Document type
info:eu-repo/semantics/conferenceObject
Version
info:eu-repo/semantics/acceptedVersion
Rights
International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org)
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
Optimizing resource use in complex networks with self-interested participants (e.g. transportation networks, electric grids, Internet systems) is a challenging and increasingly critical real-world problem. We propose an approach for solving this problem based on multi-agent nonlinear negotiation, and demonstrate it in the context of Wi-Fi channel assignment.
We compare the performance of our proposed approaches with a complete information optimizer based on particle swarms, together with the \emph{de facto} heuristic technique based on using the least congested channel. We have evaluated all these techniques in a wide range of settings, including randomly generated scenarios and real-world ones.
Our experiments show that our approach outperforms the rest of techniques in terms of social welfare.
The particle swarm optimizer is the only technique whose performance is close to ours, but its computation cost is much higher. Finally, we also study the effect of some graphs metrics on the gain that our approach can achieve.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Multi-agent_AAMAS_2017.pdf | 1.230Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Multi-agent_AAMAS_2017.pdf | 1.230Mb |
![]() |