Ultra-long range distributed fibre sensing using virtually transparent propagation
Authors
González Herráez, MiguelIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/26521DOI: 10.1109/CLEOE.2011.5943077
ISBN: 978-1-45770-533-5
Publisher
IEEE
Date
2011-05-22Bibliographic citation
M. González-Herráez, S. Martín-López, M. Alcón-Camas, P. Corredera, L. Thévenaz, J.D. Ania Castañón "Ultra-long range distributed fibre sensing using virtually transparent propagation", 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)
Description / Notes
2011 Conference on Lasers & Electro-Optics Europe & 12th European Quantum Electronics Conference CLEO EUROPE/EQEC, 22-26 May 2011, Munich, Germany.
Document type
info:eu-repo/semantics/conferenceObject
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
http://dx.doi.org/10.1109/CLEOE.2011.5943077Access rights
info:eu-repo/semantics/openAccess
Abstract
Distributed fibre sensors provide unique capabilities for monitoring large infrastructures with high resolution. Practically, all these sensors are based on some kind of backscattering interaction. A pulsed activating signal is launched on one side of the sensing fibre and the backscattered signal is read as a function of the time of flight of the pulse along the fibre. A key limitation in the measurement range of all these sensors is introduced by fibre attenuation. As the pulse travels along the fibre, the losses in the fibre cause a drop of signal contrast and consequently a growth in the measurement uncertainty. In typical single-mode fibres, attenuation imposes a range limit of less than 30km, for resolutions in the order of 1-2 meters. An interesting improvement in this performance can be considered by using distributed amplification along the fibre [1]. Distributed amplification allows having a more homogeneous signal power along the sensing fibre, which also enables reducing the signal power at the input and therefore avoiding nonlinearities. However, in long structures (≥ 50 km), plain distributed amplification does not perfectly compensate the losses and significant power variations along the fibre are to be expected, leading to inevitable limitations in the measurements. From this perspective, it is simple to understand intuitively that the best possible solution for distributed sensors would be offered by a virtually transparent fibre, i.e. a fibre exhibiting effectively zero attenuation in the spectral region of the pulse. In addition, it can be shown that lossless transmission is the working point that allows the minimization of the amplified spontaneous emission (ASE) noise build-up.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Ultra-long range distributed ... | 24.58Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Ultra-long range distributed ... | 24.58Kb |
![]() |