Show simple item record

dc.contributor.authorValdueza Felip, Sirona 
dc.contributor.authorRigutti, Lorenzo
dc.contributor.authorNaranjo Vega, Fernando Bernabé 
dc.contributor.authorLacroix, Bertrand
dc.contributor.authorFernández, S.
dc.contributor.authorRuterana, Pierre
dc.contributor.authorJulien, François H.
dc.contributor.authorGonzález Herráez, Miguel 
dc.contributor.authorMonroy, Eva
dc.date.accessioned2016-04-28T11:43:36Z
dc.date.available2016-04-28T11:43:36Z
dc.date.issued2012-01
dc.identifier.bibliographicCitationSirona Valdueza-Felip*, Lorenzo Rigutti, Fernando B. Naranjo, Bertrand Lacroi3, Susana Fernández, Pierre Ruterana, François H. Julien, Miguel González-Herráez and Eva Monroy, "Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells". Physica Status Solidi (A) Applications and Materials Science, January 2012, v. 209, n. 1, p. 17–20
dc.identifier.urihttp://hdl.handle.net/10017/25058
dc.description.abstractWe report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In0.9Ga0.1N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-µm-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at ∼0.73 eV with a full width at half maximum of ∼86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature, explained in terms of carrier localization. A carrier localization energy of ∼12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of ∼16%.en
dc.description.sponsorshipMinisterio de Ciencia e Innovaciónes_ES
dc.description.sponsorshipComunidad de Madrides_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherWILEY-VCH Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectHeterostructuresen
dc.subjectMolecular beam epitaxyen
dc.subjectNitridesen
dc.subjectPhotoluminescenceen
dc.titleInfrared photoluminescence of high In-content InN/InGaN multiple-quantum-wellsen
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaCIENCIAS TECNOLÓGICASes_ES
dc.subject.ecienciaElectrónicaes_ES
dc.subject.ecienciaTECHNOLOGYen
dc.subject.ecienciaElectronicsen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Electrónicaes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1002/pssa.201100188
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//TEC2009-14423-C02-02/ES/Aplicacion Del Laser Femtocomb Al Estudio De Estructuras Semiconductoras Para Comunicaciones Opticas/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/Comunidad de Madrid//S2009%2FESP1781/ES//FACTOTEM2en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen


Files in this item

Thumbnail

This item appears in the following Collection(s)

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Este ítem está sujeto a una licencia Creative Commons.