Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells
Autores
Valdueza Felip, SironaIdentificadores
Enlace permanente (URI): http://hdl.handle.net/10017/25058DOI: 10.1002/pssa.201100188
Editor
WILEY-VCH Verlag
Fecha de publicación
2012-01Patrocinadores
Ministerio de Ciencia e Innovación
Comunidad de Madrid
Cita bibliográfica
Sirona Valdueza-Felip*, Lorenzo Rigutti, Fernando B. Naranjo, Bertrand Lacroi3, Susana Fernández, Pierre Ruterana, François H. Julien, Miguel González-Herráez and Eva Monroy, "Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells". Physica Status Solidi (A) Applications and Materials Science, January 2012,
v. 209, n. 1, p. 17–20
Palabras clave
Heterostructures
Molecular beam epitaxy
Nitrides
Photoluminescence
Proyectos
info:eu-repo/grantAgreement/MICINN//TEC2009-14423-C02-02/ES/Aplicacion Del Laser Femtocomb Al Estudio De Estructuras Semiconductoras Para Comunicaciones Opticas/
info:eu-repo/grantAgreement/CAM//S2009%2FESP1781/ES//FACTOTEM2
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/publishedVersion
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In0.9Ga0.1N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-µm-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at ∼0.73 eV with a full width at half maximum of ∼86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature, explained in terms of carrier localization. A carrier localization energy of ∼12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of ∼16%.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Infrared photoluminescence of ... | 1.730Mb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Infrared photoluminescence of ... | 1.730Mb |
![]() |
Colecciones
- ELECTRON - Artículos [166]
- INGFOTON - Artículos [104]