Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells
Authors
Valdueza Felip, SironaPublisher
WILEY-VCH Verlag
Date
2012-01Funders
Ministerio de Ciencia e Innovación
Comunidad de Madrid
Bibliographic citation
Sirona Valdueza-Felip*, Lorenzo Rigutti, Fernando B. Naranjo, Bertrand Lacroi3, Susana Fernández, Pierre Ruterana, François H. Julien, Miguel González-Herráez and Eva Monroy, "Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells". Physica Status Solidi (A) Applications and Materials Science, January 2012,
v. 209, n. 1, p. 17–20
Keywords
Heterostructures
Molecular beam epitaxy
Nitrides
Photoluminescence
Project
info:eu-repo/grantAgreement/MICINN//TEC2009-14423-C02-02/ES/Aplicacion Del Laser Femtocomb Al Estudio De Estructuras Semiconductoras Para Comunicaciones Opticas/
info:eu-repo/grantAgreement/CAM//S2009%2FESP1781/ES//FACTOTEM2
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Access rights
info:eu-repo/semantics/openAccess
Abstract
We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In0.9Ga0.1N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-µm-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at ∼0.73 eV with a full width at half maximum of ∼86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature, explained in terms of carrier localization. A carrier localization energy of ∼12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of ∼16%.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Infrared photoluminescence of ... | 1.730Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Infrared photoluminescence of ... | 1.730Mb |
![]() |
Collections
- ELECTRON - Artículos [166]
- INGFOTON - Artículos [104]