Covering of surfaces parametrized without projective base points
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/20682DOI: 10.1145/2608628.2608635
ISBN: 9781450325011
Publisher
ACM Press
Date
2014Funders
Ministerio de Ciencia e Innovación
Bibliographic citation
Proceeding ISSAC 201414, 2014, p. 375-380
Keywords
Rational algebraic surface
Parametrization coverings
Base points
Description / Notes
This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in "Sendra J.R., Sevilla D., Villarino C. Covering of surfaces parametrized without projective base points. Proc. ISSAC2014 ACM Press, pages 375-380, 2014,
ISBN:978-1-4503-2501-1". http://dx.doi.org/10.1145/2608628.2608635
The first
and third authors belong to the Research Group ASYNACS
(Ref. CCEE2011/R34).
Project
info:eu-repo/grantAgreement/MICINN//MTM2011-25816-C02-01/ES/ALGORITMOS Y APLICACIONES EN GEOMETRIA DE CURVAS Y SUPERFICIES/
Document type
info:eu-repo/semantics/conferenceObject
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
http://dx.doi.org/10.1145/2608628.2608635Rights
© ACM, 2014
Access rights
info:eu-repo/semantics/openAccess
Abstract
We prove that every a ne rational surface, parametrized by means of an a ne rational parametrization without projective base points, can be covered by at most three parametrizations.
Moreover, we give explicit formulas for computing the coverings. We provide two di erent approaches: either
covering the surface with a surface parametrization plus a curve parametrization plus a point, or with the original parametrization plus two surface reparametrizations of it.
Files in this item
Files | Size | Format |
|
---|---|---|---|
issac2014VersionRepositorio.pdf | 364.5Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
issac2014VersionRepositorio.pdf | 364.5Kb |
![]() |