View Item 
  •   e_Buah Home
  • INVESTIGACIÓN
  • DEPARTAMENTOS
  • Física y Matemáticas
  • Unidad docente Matemáticas
  • MATEMATIC - Libros
  • View Item
  • INVESTIGACIÓN
  • DEPARTAMENTOS
  • Física y Matemáticas
  • Unidad docente Matemáticas
  • MATEMATIC - Libros
  • View Item
  • Biblioteca
    • English
    • español
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultraquadrics associated to affine and projective automorphims

Show full item record
RefworksUtilizar EndNote Import
Authors
Recio, Tomás; Sendra Pons, Juan RafaelUniversity of Alcalá Author; Tabera, Luis Felipe; Villarino Cabellos, CarlosUniversity of Alcalá Author
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/20455
DOI: 10.1007/s00200-014-0236-1
ISSN: 0938-1279
ISBN: 9788469706510
Publisher
Springer
Date
2014
Affiliation
Universidad de Alcalá. Departamento de Física y Matemáticas. Unidad docente Matemáticas
Funders
Ministerio de Ciencia e Innovación
Bibliographic citation
Appicable Algebra in Engineering Communication and Computing, 2014, v.25, p.431-455
Encuentros de Álgebra Computacional y Aplicaciones, Barcelona, 2014, p.147-150
Keywords
Ultraquadrics
Parametrization
Polynomial automorphims
Rational parametrization
Field automorphisms
Optimal reparameterization
Description / Notes
J. R. Sendra and C. Villarino are members of the research group ASYNACS (Ref. CCEE2011/R34).
Project
info:eu-repo/grantAgreement/MICINN//MTM2011-25816-C02-01/ES/ALGORITMOS Y APLICACIONES EN GEOMETRIA DE CURVAS Y SUPERFICIES/
Document type
info:eu-repo/semantics/article
info:eu-repo/semantics/bookPart
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
http://www.ub.edu/eaca2014/2014_EACA_Conference_Proceedings.pdfhttp://dx.doi.org/10.1007/s00200-014-0236-1
Rights
© Springer, 2014
Access rights
info:eu-repo/semantics/openAccess
Share
 
Abstract
In this extended abstract, we study the properties of ultraquadrics associated with automorphisms of the field K(\alpha )(t1, . . . , tn), defined by linear rational (with common denominator) or by polynomial (with polynomial inverse) coordinates. We conclude that ultraquadrics related to polynomial automorphisms can be characterized as varieties K−isomorphic to linear varieties, while ultraquadrics arising from projective automorphisms are isomorphic to the Segre embedding of a blowup of the projective space along an ideal and, in some general case, linearly isomorphic to a toric variety. This information helps us to compute a parametrization of some ultraquadrics.
Files in this item
FilesSizeFormat
View
EACA2014AutomorfismosVersionRe ...576.7KbPDF
FilesSizeFormat
View
EACA2014AutomorfismosVersionRe ...576.7KbPDF
Collections
  • MATEMATIC - Libros [2]

Contact Us | Send Feedback | About DSpace
¡CSS Válido!@mire NV
¡CSS Válido!@mire NV
 

 

Browse

All of e_BuahCommunities y CollectionsIssue DateAuthorsTitlesSubjectsIn this CollectionIssue DateAuthorsTitlesSubjects

My Account

My e_BuahCreate account

Help

What is e-Buah?Guide e_BuahDeposit documentsFAQContact us

Statistics

View Usage Statistics

Information

Open Science. Open accessOpen access PolicyPublishing permissionsCopyrightResearch datae-cienciaDatos RepositoryPlan de Gestión de Datos

Los contenidos se difunden en


Contact Us | Send Feedback | About DSpace
¡CSS Válido!@mire NV
¡CSS Válido!@mire NV