Reparametrizing Swung Surfaces over the Reals
Authors
Andradas, Carlos; Recio, Tomás; Sendra Pons, Juan RafaelIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/20448DOI: 10.1007/s00200-014-0215-6
ISSN: 0938-1279
Publisher
Springer
Date
2014Funders
Ministerio de Ciencia e Innovación
Bibliographic citation
Applicable Algebra in Engineering, Communication and Computing, 2014, v. 25, n. 1-2, pp. 39-65.
Keywords
Swung surfaces
Revolution surface
Real and complex surfaces
8 rational parametrization
Ultraquadrics
Project
info:eu-repo/grantAgreement/MICINN//MTM2011-25816-C02-01/ES/ALGORITMOS Y APLICACIONES EN GEOMETRIA DE CURVAS Y SUPERFICIES/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/submittedVersion
Publisher's version
http://dx.doi.org/10.1007/s00200-014-0215-6Rights
© Springer, 2014
Access rights
info:eu-repo/semantics/openAccess
Abstract
Let K ⊆ R be a computable subfield of the real numbers (for instance, Q).
We present an algorithm to decide whether a given parametrization of a rational swung
surface, with coefficients in K(i), can be reparametrized over a real (i.e., embedded
in R) finite field extension of K. Swung surfaces include, in particular, surfaces of
revolution.
Files in this item
Files | Size | Format |
|
---|---|---|---|
swungsurfacesVersionRepositorio.pdf | 864.7Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
swungsurfacesVersionRepositorio.pdf | 864.7Kb |
![]() |
Collections
- MATEMATIC - Artículos [138]