%0 Journal Article
%A Pérez Díaz, Sonia
%A Schicho, Josef
%A Sendra Pons, Juan Rafael
%T Properness and inversion of rational parametrizations of surfaces
%D 2002
%@ 0938-1279
%U http://hdl.handle.net/10017/49638
%X In this paper we characterize the properness of rational parametrizations of hypersurfaces by means of the existence of intersection points of some additional algebraic hypersurfaces directly generated from the parametrization over a field of rational functions. More precisely, if V is a hypersurface over an algebraically closed field ? of characteristic zero and is a rational parametrization of V, then the characterization is given in terms of the intersection points of the hypersurfaces defined by x i q i (t¯)−p i (t¯), i=1,...,n over the algebraic closure of ?(V). In addition, for the case of surfaces we show how these results can be stated algorithmically. As a consequence we present an algorithmic criteria to decide whether a given rational parametrization is proper. Furthermore, if the parametrization is proper, the algorithm also computes the inverse of the parametrization. Moreover, for surfaces the auxiliary hypersurfaces turn to be plane curves over ?(V), and hence the algorithm is essentially based on resultants. We have implemented these ideas, and we have empirically compared our method with the method based on Gröbner basis.
%K Proper rational parametrization
%K Parametrization inverse
%K Unirrationality
%K Matemáticas
%K Mathematics
%~ Biblioteca Universidad de Alcala