%0 Journal Article %A Valdivieso López, David %T Design, implementation and evaluation of automated surveillance systems %D 2018 %U http://hdl.handle.net/10017/37872 %X El reconocimiento de patrones ha conseguido un nivel de complejidad que nos permite reconocer diferente tipo de eventos, incluso peligros, y actuar en concordancia para minimizar el impacto de una situación complicada y abordarla de la mejor manera posible. Sin embargo, creemos que todavía se puede llegar a alcanzar aplicaciones más eficientes con algoritmos más precisos. Nuestra aplicación quiere probar a incluir el nuevo paradigma de la programación, las redes neuronales. Nuestra idea en principio fue explorar la alternativa que las nuevas redes neuronales convolucionales aportaban, en donde se podía ver en vídeos de ejemplos la alta tasa de detección e identificación que, por ejemplo, YOLOv2 podría mostrar. Después de comparar las características, vimos que YOLOv3 ofrecía un buen balance entre precisión y rapidez como comentaremos más adelante. Debido a la tasa de baja detecciones, haremos uso de los filtros de Kalman para ayudarnos a la hora de hacer reidentificación de personas y objetos. En este proyecto, haremos un estudio además de las alternativas de videovigilancia con las que cuentan empresas del sector y veremos que clase de productos ofrecen y, por otro lado, observaremos cuales son los trabajos de los grupos de investigadores de otras universidades que más similitudes tienen con nuestro objetivo. Dedicaremos, por lo tanto, el uso de esta red neuronal para detectar eventos como el abandono de mochilas y para mostrar la densidad de tránsito en localizaciones concretas, así como utilizaremos una metodología más tradicional, el flujo óptico, para detectar actuaciones anormales en una multitud. %K Automated surveillance %K Anomaly detection %K Deep Learning %K Ingeniería industrial %K Industrial engineering %~ Biblioteca Universidad de Alcala