ELECTRICIDAD
LECCIONES
SOBRE
ELECTRICIDAD
DADAS EN LA INSTITUCION REAL
EN 1875-76
POR JOHN TYNDALL, D. C. L., LL. D., F. R. S.
PROFESOR DE FÍSICA EN LA INSTITUCION REAL
DE GRAN BRETAÑA

Traducidas del Inglés, con autorización del autor,
por A. Gonzalez Garrido.

SEVILLA: 1878
FRANCISCO ALVAREZ Y Cía., impresores de Cámara de S. M. y de SS. AA. RR.
los Sermos. Sres. Infantes Duques de Montpensier
Tetuan, 24.
ES PROPIEDAD
Deseo inscribir en este libro á cinco jóvenes amigos, cuyos nombres se indican á continuación, en el órden aproximado de sus edades (1):

Hugh Spottiswoode.
Henry Huxley.
Rolfe Lubbock.
John Clausius.
Reginald Hooker.

J. T.

(1) Escribo en Suiza y tengo que confiar en mi memoria, de ahí mi falta de certeza.
PREFACIO

Hace más de cincuenta años, la Junta directiva de la Institucion Real resolvió extender la utilidad de ésta, como centro de instrucción científica, dando, durante los días de fiesta de Navidad y Resurreccion de cada año, dos cursos de conferencias adecuadas á la inteligencia de adolescentes de ambos sexos.

En 12 de Diciembre de 1825, un Comité, nombrado por los Directores, informó que habían consultado á Mr. Faraday sobre el asunto de comprometerse á tomar parte en las conferencias juveniles, que se intentaban dar durante las vacaciones de Navidad y Resurreccion, y encontraron que sus ocupaciones eran tales, que le hubiera sido inconveniente en gran manera el obligarse á tales conferencias.

El retraimiento de Faraday, sin embargo, fue sólo temporal, pues en la Navidad de 1827 lo encontramos dando un curso de seis conferencias elementales sobre Química, adaptadas á un auditorio juvenil.
Las conferencias de Resurrección fueron pronto abandonadas, pero, desde la fecha mencionada hasta la presente, las de Navidad han sido una de las fases características de la Institución Real (1).

En la última Navidad me cupo en suerte dar uno de estos cursos. Había oído dudas expresadas con respecto al valor de la enseñanza de la ciencia en las escuelas, y había oído objeciones levantadas con motivo del alto precio de los aparatos. Consideraba yo que estas dudas y objeciones podían ser combatidas, lo más prácticamente posible, manifestando lo que podía hacerse en favor de la cultura y de la instrucción, por medio de lecciones experimentales, que envolviesen el uso de aparatos tan simples e inexpensivos, como para poder estar al alcance de todo el mundo.

Con algunas ampliaciones, este pequeño volumen contiene la sustancia de nuestras lecciones de Navidad.

(1) Estas breves referencias históricas se han publicado ya en el prefacio de las «Formas del agua.»
LECCIONES SOBRE ELECTRICIDAD

§ I.—Introducción

Muchos siglos antes de Jesucristo se había observado que el ámbar amarillo (*elektron*), cuando era frotado, poseía la propiedad de atraer los cuerpos ligeros.

Tales, el fundador de la filosofía jónica (580 años antes de J. C.), se imaginaba el ámbar como dotado de una especie de vida.

Este es el gérmén, del cual se ha desarrollado la ciencia de la *electricidad*, nombre que se deriva de la sustancia en que este poder de atracción fue observado por primera vez.

Mi objeto durante seis horas de estas fiestas de Navidad, será dar á conocer, bajo ciertos límites, la historia, hechos y principios de esta ciencia, y enseñar cómo se ha de trabajar en ella.

Esta ciencia tiene dos grandes divisiones: la una llamada *electricidad* por frotamiento, la otra *electri-
cidad voltáica. Por ahora nuestros estudios se limitarán á la primera, ó más antigua porción de la ciencia llamada electricidad por frotamiento, porque en ella el poder eléctrico se obtiene del rozamiento mútuo de los cuerpos.

§ II.—NOTAS HISTÓRICAS

La atracción de los cuerpos ligeros, por el ámbar frotado, fué la totalidad del conocimiento de electricidad que tuvo el mundo entero durante más de 2,000 años. En 1600 el Dr. Gilbert, médico de la reina Isabel, cuya atención se había dirigido previamente con gran éxito al magnetismo, extendió en gran manera el dominio de la electricidad. Demostró que no sólo el ámbar, sino varios espatas, piedras preciosas, fósiles, piedras, cristales y resinas, manifestaban, cuando eran frotados, el mismo poder que el ámbar.

Robert Boyle (1675) probó que un trozo suspendido de ámbar amarillo que atraía hacia sí otros cuerpos, era á su vez atraído por un cuerpo que se le aproximase. También notó la luz de la electricidad, al observar que un diamante, con el cual experimentaba, emitía luz al ser frotado en la oscuridad.
Boyle imaginaba que el cuerpo electrizado emitía una sustancia invisible glutinosa, que retenía los cuerpos ligeros, y al volver al origen de donde había emanado, los arrastraba consigo.

Otto de Guericke, Burgomaestre de Magdeburgo, contemporáneo de Boyle, el inventor de la máquina neumática, aumentó la intensidad del poder eléctrico previamente obtenido. Inventó lo que puede llamarse la primera máquina eléctrica, que era una bola de azufre del tamaño de la cabeza de un niño próximamente. Dándole vueltas con un manubrio y frotándola con la mano seca, la esfera de azufre emitía luz en la oscuridad.

Otto Guericke también observó, y esto es importante, que una pluma, habiendo sido primero atraída hacia su bola de azufre, era repelida después, y se mantenía a cierta distancia, hasta que habiendo tocado a otro cuerpo era otra vez atraída. Oyó el silbido del «fuego eléctrico» y también observó, que al poner un cuerpo sin electrizar cerca de su esfera excitada, se volvía eléctrico y capaz de ser atraído.

Los miembros de la Academia del Cimento examinaron varias sustancias eléctricamente. Demostraron que el humo era atraído, pero no la llama, la cual vieron que privaba de su poder a un cuerpo electrizado.
Demostraron también que los líquidos eran sensibles á la atracción eléctrica, haciendo ver que cuando el ámbar frotado se mantenía por encima de la superficie de un líquido, sin tocarle, formábase una pequeña eminencia, desde la cual el líquido se arrojaba por último hacia el ámbar.

Sir Isaac Newton, frotando un cristal plano, hizo que varios cuerpos ligeros saltasen entre el cristal y una mesa. También notó la influencia del cuerpo frotante en la excitación eléctrica. Su toga, por ejemplo, se encontró ser mucho más eléctrica que una servilleta.

Newton imaginó que el cuerpo excitado emitía un fluido elástico que penetraba el cristal.

En los esfuerzos de Tales, Boyle y Newton para formarse una pintura mental de la electricidad, tenemos una ilustración de la tendencia del espíritu humano á no descansar satisfaciéndose con los hechos, sino á pasar por encima de ellos hasta sus causas invisibles.

El Dr. Wall (1708) hizo experiencias con grandes trozos de ámbar. Encontró que el mejor frotador de éste era la lana. «Un prodigioso número de pequeños chasquidos» se producían por la fricción, siendo acompañado cada uno de ellos por una llamada de luz. «Esta luz y este chasquido,»
dice el Dr. Wall, «parecen en cierto modo representar el trueno y el relámpago» (1). Esta es la primera analogia publicada respecto al trueno y relámpago con relación a la electricidad.

Stéphen Gray (1729) también observó el plumero luminoso, el estallido y las chispas de la electricidad, y hizo la profética observación de que aunque estos efectos son al presente muy pequeños, es probable que con el tiempo pueda inventarse un medio de acumular mayor cantidad de fuego eléctrico, y en su consecuencia, aumentar la fuerza de este poder, que por varios de estos experimentos, y si nos es permitido comparar grandes cosas con pequeñas, parece ser de la misma naturaleza que el trueno y el relámpago» (2). Esto, como puede observarse, es mucho más terminado que la observación del Dr. Wall.

§ III.—El arte del experimento

Hemos comenzado con algunas notas históricas, con objeto de manifestar el crecimiento gradual de la ciencia eléctrica. Nuestro paso inmediato debe ser obtener algún conocimiento de los hechos

(1) Philosophical Transactions, 1709, p. 69.
referidos y aprender cómo pueden producirse y ampliarse. El arte de producir y ampliar tales hechos y de investigar sobre ellos por medio de instrumentos convenientes, es el arte del experimento, arte de extrema importancia, pues por medio de él podemos, como si dijéramos, conversar con la naturaleza, presentándole cuestiones y recibiendo de ella respuestas.

La insuficiencia del experimento y del raciocinio sobre él basado, fue lo que durante más de 2000 años mantuvo el conocimiento del mundo antiguo limitado al único hecho de la atracción por el ámbar.

La destreza en el arte de experimentar no viene por sí misma, ha de adquirirse solamente por el trabajo. Cuando uno toma por primera vez un taco de billar en sus manos, los primeros golpes son bruscos y mal dirigidos. Cuando se aprende a danzar, los primeros movimientos no son graciosos ni agradables. Sólo por la práctica es posible aprender a danzar y a jugar. Éste también es el único modo de aprender el arte del experimento. No hay que desanimarse, por lo tanto, por la torpeza encontrada siempre al principio, sino que debemos vencerla y adquirir familiaridad en el arte por la repetición.

De esta manera nos pondremos en contacto directo con la verdad natural—pensaremos y racioc—
cinaremos, no sobre lo que se nos ha dicho en los libros, sino sobre lo que nos ha dicho la Naturaleza. El pensamiento, cuando procede de esta fuente, tiene una vitalidad que no puede obtenerse del mero conocimiento de los libros.

§ IV.—Materiales para el experimento

En este punto ya de nuestros trabajos, tenemos que proveernos con los siguientes materiales:

a. Algunas barras de lacre;

b. Dos piezas de tubo de guta-percha, de 18 pulgadas próximamente de largo y 3/4 de pulgada de diámetro exterior;

c. Dos ó tres tubos de cristal, de las mismas dimensiones, cerrados por un extremo y no demasiado finos, con objeto de evitar que se rompan en la mano y la hieran;

d. Dos ó tres piezas de flanela limpia que puedan doblarse y formar almohadillas de dos ó tres capas, de unas ocho ó diez pulgadas en cuadro;

e. Un par de almohadillas compuestas de tres ó cuatro capas de seda, de unas ocho ó diez pulgadas en cuadro;

f. Una tabla de unas diez y ocho pulgadas en cuadro y una pieza de goma elástica.
g. Algunas cintas muy estrechas de seda, R, y una presilla ó corchete de alambre, W, semejante al indicado en la fig. 1, en el cual puedan suspenderse barras de lacre, tubos de gutapercha, varillas de cristal ó un bastón. Eijo una cinta estrecha por la conveniencia de tener una cuerda pendiente que no pueda torcerse ni desliarse.

(Yo por lo regular empleo un corchete con los dos extremos, que aquí se ven libres, soldados en uno, lo que hace sea muy difícil su rotura; pero los lectores puede que no estén diestros en el arte de soldar, y por lo tanto elijo el corchete libre, que se construye con mucha facilidad. Respecto al modo de suspensión se encontrará conveniente una disposición parecida á un toallero con una sola varilla horizontal.)

h. Un canutillo de paja, H', fig. 2, delicadamente sostenido sobre la punta de una aguja de coser N, la que se inserta en una barra de lacre A, sujeta por debajo á una pequeña chapa circular de hoja de lata, formando todo un soporte. En la figura 3, el canutillo de paja aparece en mayor escala y separado de su aguja. El pequeño pedacito, también de paja, del punto medio, que sirve como de sombrero, está pegado con lacre.

i. Se da el nombre de «amalgama» á una mez-
cla de mercurio con otros metales. La experiencia ha hecho ver que la eficacia de un frotador de seda se aumenta considerablemente cuando ha sido salpicado con una amalgama compuesta de una parte, en peso de estano, dos de zinc y seis de mercurio; debiendo primero untarse la seda con un poco de manteca y sobre ésta aplicarse la amalgama, la cual, si estuviese áspera, se machacará ó pulverizará con una maja de almirez ó un martillo hasta que esté suave. Pueden comprarse seis peniques de ella á cualquier constructor de instrumentos de Fisica y agregarla á los otros materiales.

k. Yo desearia hacer útiles estas páginas á los jóvenes sin mucho gasto pecuniario, y por lo tanto procuro la economía en mi lista de materiales; pero conviene proveerse desde luego, si es posible, de un plumero de zorra, tal como los que actualmente se emplean en quitar el polvo á los muebles.

§ V.—Atracciones eléctricas

Colóquense el lacre, los tubos de guta-percha y los frotadores de flanela y de seda delante del fuego, para estar seguros de su sequedad, cuidando sobre todo de que los tubos de cristal y frotadores de seda no sólo se pongan templados sino calientes. Hágase
pasar la flanela ya seca con viveza dos ó tres veces sobre una de las barras de lacre ó sobre un tubo de guta-percha. Una insignificante presión excitará la facultad de atraer el canutillo de paja suspendido, como se manifiesta en la fig. 2. Repítase el experimento varias veces y hágase que el canutillo de paja dé vueltas siguiendo al cuerpo que lo atrae. Efectúese lo mismo con un tubo de cristal frotado con la seda.

Yo pongo especial cuidado en calentar el tubo de cristal, porque este cuerpo tiene la propiedad, que ejerce siempre, de condensar sobre su superficie en una película líquida el vapor acuoso del aire ambiente. Esta película debe quitarse.

También yo insistiría, como medio de adiestrarse, en la conveniencia de no abandonar la práctica, por lo tanto se atraerán pedacitos de papel, salvado, panes de oro, burbujas de jabón y otros cuerpos ligeros con el cristal, lacre y guta-percha frotados. Faraday se complacía en hacer dar vueltas tras sus tubos excitados cascarones de huevo vacíos, aros de papel y otros objetos ligeros.

Sólo en los casos que el poder eléctrico es muy débil, es cuando se requiere el canutillo de paja delicadamente suspendido. Con las barras de lacre, tubos y frotadores mencionados pueden atraerse
hasta cuerpos pesados, con tal que estén suspendidos convenientemente. Colóquese, por ejemplo, un bastón ordinario en la presilla ó corchete de alambre atado con la cinta estrecha, fig. 1, y hágaselo oscilar horizontalmente. El cristal frotado con su seda ó el lacre ó la guta-percha frotados con su flanela, atraerán el bastón haciéndole dar vueltas por completo.

Abandónese el corchete de alambre: colóquese un huevo en un huevoro, y balancéese sobre él una larga regla ó liston como se manifiesta en la fig. 4. La regla, aunque sea casi un tablon, seguirá obedeientemente al cristal, guta-percha ó lacre frotados.

Nada puede ser más sencillo que esta disposicion de la regla y el huevo y con dificultad se encontraria cosa alguna que hiciese más impresion; pues cuanto más se trabaja con ellos tanto más agradable aparece la experiencia.

Pásese un peine de ebonito (1) por el cabello. En tiempo seco produce ligeros crujidos; pero su

(1) Ignoramos si esta palabra se encuentra admitida ya en nuestro idioma; pero estándolo en inglés (ebonite) y en alemán (Ebonit) y siendo tan conocida, por sus muchas aplicaciones, la sustancia en cuestion, nos permitimos darle ese nombre, por no saber si lo tiene ya propio. El método de endurecer el cauchue para obtener este cuerpo, que solo se diferencia quimicamente del cauchue volcanizado en su mayor cantidad de azufre, fué inventado en 1852 por el americano Goodyear.—— (Tr.)
accion sobre la regla, puede hacerse manifiesta cualquiera que sea el estado higrométrico de la atmósfera. Se vuelve eléctrico por su fricción contra el cabello y con él puede hacerse dar vueltas por completo á la regla.

Si se moja el cabello con aceite, el peine será todavía excitado y ejercerá atracción; pero si se humedece con agua la excitacion cesa: un peine pasado por el pelo húmedo no tiene poder alguno sobre la regla. Despues se comprenderá la causa de este fenómeno.

Despues de pasarlo por medio del pelo, seco ó mojado en aceite, balanceese el peine mismo sobre el huevo: es atraído por la regla, probándose así que la atraccion es mútua: el peine atrae á la regla y la regla atrae al peine. Suspéndase el cristal frotado, la guta-percha, ó el lacre frotado, en la presilla de alambre, y se verá que todos estos cuerpos serán atraídos por la regla, exactamente lo mismo que la regla era atraída por ellos. Esto es una ampliacion del experimento de Boyle con el ambar suspendido (§ 2).

Más adelante veremos cómo cualquier cuerpo no electrizado atrae al cristal lacre y guta-percha excitados, y es atraído por ellos.

Un ejemplo muy sorprendente de atracción eléc-
trica podemos obtener con la tabla y goma elástica mencionadas en nuestra lista de materiales (§ 4). Colóquese la tabla delante del fuego hasta que se ponga caliente; caliéntese también una hoja de papel (1), la cual se colocará sobre la tabla: no hay atracción en ambos cuerpos. Pásese la goma elástica vigorosamente sobre el papel: ahora se adhiere éste con fuerza a la tabla. Retírese con violencia y manténgase retirado á la longitud del brazo, pues si puede se dirijirá hácia el cuerpo del experimentador. Llévese junto á una puerta ó una pared, y se pegará tenazmente á cualquiera de ellas. El papel electrizado atrae también poderosamente á la regla balanceada desde una gran distancia.

La friccion de la mano, de un pañuelo de batista, ó de cuero de gamuza, electriza al papel en bastante grado; pero se requiere el frotamiento con una sustancia especial para hacer intensa esta excitación. Esto lo aprendemos por la experiencia, la cual nos ha enseñado también que los cuerpos resinosos se excitan en su más alto grado por la flanela, y los cuerpos vitreos por la seda.

En esta investigación no debemos tomar nada por admitido, ni omitir esfuerzo alguno para hacer

(1) El papel de que el autor se sirve (foolscap), que es muy usado en Londres, es
de escribir, color azul claro, satintado y de bastante cuerpo.—(Tr)
nuestro conocimiento completo y seguro; por lo tanto, experimentaremos con varios frotadores para satisfacerlos de que existen entre ellos diferencias semejantes a las observadas primeramente por Newton.

Varíese también el cuerpo frotado, excitando por la fricción la parafina y velas compuestas, la resina, el azufre, la cera, el ebonito y la goma laca, así como también el cristal de roca y otras sustancias vítreas, y atrayendo con todos ellos la regla balanceada. Una película de colodión, una lámina de caucho volcanizado ó papel de estraza calentado al fuego, al frotarlo vigorosamente con la mano seca, atrae la regla y es atraído por ella.

Póngase en claro también la verdadera influencia del calor en el caso de nuestro papel frotado. Extiéndase un pliego de papel frío sobre una tabla —sobre una mesa, por ejemplo. Si el aire no está muy seco, el frotamiento, aún con la goma elástica, no los hará adherirse. ¿Pero era acaso el estar calientes lo que les hacía atraerse mutuamente en el primer ejemplo? Nó, porque puede calentarse la tabla sumergiéndola en agua hirviendo, ó el papel manteniéndolo en una nube de vapor de agua, y calentados así no es posible conseguir que se adhieran. El calor actúa realmente expeliendo la humedad, pues el tiempo frío, con tal de que esté seco, es alta-
mente favorable á la excitacion eléctrica. Durante la
helada, el frotamiento de la mano sobre seda ó
flanela, ó sobre el lomo de un gato, la vuelve elé-
trica.

El experimento de los Académicos de Florencia,
por el cual probaron la atraccion eléctrica de un lí-
quido, es muy precioso y digno de repeticion. Lléñese
con aceite un cristal de reloj muy pequeño, hasta
que el líquido forme una superficie curva redondeada
que se levante un poco sobre el borde del cristal. Un
tubo tambien de cristal fuertemente excitado y man-
tenido por encima del aceite, sin tocarle, levanta no
sólo una eminencia, sino varias, cada una de las
cuales descarga por ultimo una lluvia de gotas con-
tra el tubo electrizado. El efecto se manifiesta en
la fig. 5, en la que G es el cristal de reloj, colocado
en el soporte T, y R el tubo de cristal excitado (1).

Hágase pasar el tubo de cristal excitado muy
cerca del rostro, pero sin tocarle, y entonces se sen-
tirá, del mismo modo que le pasó á Hauksbee, como
si rozase por la cara una tela de araña. Tambien á
veces se percibe un olor peculiar debido á una sustan-
cia desenvuelta por la electricidad, y llamada ozono.

(1) Como medida practica advertimos que el cristal de reloj debe descansar
sobre un pequeño sosten y no sobre una superficie de gran área. El experimento
es muy apropiado especialmente para su proyeccion sobre una pantalla.
Mucho antes de esto, al frotar los tubos se habrá oído el «silbido» y el «chasquido» tan frecuentemente citados por los primeros experimentadores de la electricidad; y si los lectores han frotado un tubo de cristal fuertemente en la oscuridad, habrán visto lo que ellos llamaban el «fuego eléctrico.» Usando en vez de un tubo una botella grande caliente de cristal, un frotador bien templado, y frotación vigorosa, los raudales de fuego eléctrico son muy sorprendentes en la oscuridad.

§ VI.—Descubrimiento de la conductibilidad y del aislamiento

Aquí debo de nuevo referirme a Stephen Gray, físico muy digno de elogio que en 1729 hizo experiencias con un tubo de cristal cerrado por medio de un corcho, el cual, cuando era frotado, atraía los cuerpos ligeros. Gray asegura que «se sorprendió mucho» con esto, y «sacó como conclusión que existía realmente una virtud atractiva comunicada al corcho.» Este fué el punto de partida de nuestro conocimiento respecto á la conductibilidad eléctrica.

Gray observó que un pedazo de madera de abeto de 4 pulgadas de largo clavado en el corcho
atraía también los cuerpos ligeros, y que haciendo mas largas sus varillas ó pedazos de madera, todavía encontraba el poder de atracción en sus extremos. Entonces siguió experimentando con hilos de cáñamo y con alambres; colgó un hilo S, fig. 6, desde la ventana más alta de una casa, de modo que el extremo inferior casi tocaba el suelo, y liando el extremo superior alrededor de su tubo de cristal R, al frotar vivamente el tubo, los cuerpos ligeros eran atraídos por el extremo inferior B del hilo.

Pero el experimento más notable de Gray fue el siguiente: —Suspendió horizontalmente un largo cordón de cáñamo por medio de presillas de la misma materia, pero no pudo transmitir a través de él el poder eléctrico; después lo suspendió por medio de presillas de seda, consiguiendo entonces transmitir la "virtud eléctrica" a través de 765 pies de hilo. Al principio pensó que la seda era eficaz, porque era delgada; pero habiendo reemplazado una presilla de seda rota por un alambre todavía más fino, no obtuvo acción alguna, y vino por último a la conclusión, de que sus presillas eran eficaces, no porque fuesen delgadas, sino porque eran de seda. Este fue el punto de partida de nuestros conocimientos respecto al aislamiento.

Es interesante hacer notar el entusiasmo de algu-
nos hombres de ciencia por sus trabajos. El Dr. Wells, que escribió un precioso ensayo en el que explicaba el origen del rocío, lo concluyó cuando estaba casi a las puertas de la tumba. Stephen Gray estaba tan próximo a morir cuando hizo sus últimos experimentos, que no le fue posible escribir una narración de ellos, y en su lecho de muerte, precisamente el día antes de fallecer, la descripción de ellos fue tomada de sus mismos labios por el Dr. Mortimer, Secretario de la Sociedad Real, é impresa después en las «Transacciones filosóficas.»

Una palabra de definición será útil aquí. Algunas sustancias, como demostró Stephen Gray, poseen en muy alto grado el poder de permitir a la electricidad su paso a través de las mismas, y otras sustancias impiden el paso de la electricidad. Los cuerpos de la primera clase se llaman conductores, los de la segunda se denominan aisladores.

Será muy conveniente repetir aquí los experimentos de Gray. Introdúzcase un corcho en el extremo abierto de un tubo de cristal, y frótense éste, llevando la fricción hasta el extremo en que está el corcho; éste atraerá la regla colocada en equilibrio, como se indica en la fig. 4, con la que los lectores se han familiarizado ya.

Pero aquí el cristal excitado se encuentra tan
cerca del extremo del corcho, que no podemos conocer con certeza, si la atracción observada es la de este último; sin embargo, podemos probar que el corcho atrae por su acción sobre los cuerpos ligeros que á él se adhieren. Clávese un cabo de pluma en el corcho y frótese el tubo de cristal como antes: el extremo libre del cabo atraerá la regla. Clávese una varilla de pino de tres ó cuatro piés de largo en el corcho: su extremidad libre atraerá la regla cuando se excite el tubo de cristal. De esta manera se prueba hasta la evidencia que el poder eléctrico es transmitido á través de la varilla.

§ VII.—El Electróscopo.—Investigaciones adicionales sobre la conducción y el aislamiento.

Ahora será de desear una pequeña adición á nuestra serie de aparatos. Puede comprarse un librito de «metal holandés» por cuatro peniques, y un frasco globular, semejante al manifestado en la fig. 7, por seis ó á lo más por un chelín. Escójase un corcho, C, que se adapte al frasco; pásese un alambre, W, á través del frasco y doblese en ángulo recto cerca de un extremo. Fíjense por medio de cera á este brazo doblado, que debe ser de unos tres cuartos de pulgada de largo, dos tiras, L, del metal holandés,
de unas tres pulgadas de largo y de media pulgada á tres cuartos de ancho. Las tiras quedarán pendientes cara á cara en contacto una de otra. Asegúrese con lacre sobre el otro extremo del alambre una pequeña placa de hojalata ó lámina de zinc, T, de unas dos pulgadas de diámetro. Debe cuidarse siempre al usar del lacre, hacerlo de modo que no interrumpa la conexión metálica de las diferentes partes de nuestro aparato, al que llamaremos *electróscopo*. En estos aparatos se emplean usualmente panes de oro, en vez de metal holandés; pero recomiendo el *metal* porque es más barato y porque resistirá á un uso más frecuente.

Procúrese que el frasco esférico esté seco y libre de polvo. Llévese el lacre frotado, R, ó el cristal frotado *cerca* de la pequeña lámina de hojalata: las hojas de metal holandés se abren; séparese el cuerpo frotado, y las hojas caen reuniéndose. Nosotros investigaremos inmediatamente la causa de esta acción. Practíquese la aproximación y la separación por un pequeño tiempo, y luego pásese el lacre ó el cristal frotados por el márgen de la lámina de hojalata, T. Las hojas divergen y después de retirado el lacre ó cristal permanecen divergentes. En el primer experimento no se comunicó electricidad alguna al electróscopo, pero no así en el
segundo. Al presente sólo exijiré que se conside- dere la separación de las hojas como una prueba de que la electricidad ha sido comunicada á ellas.

Y ahora estamos en disposición de hacer los experimentos de Gray en una forma diferente de la suya. Póngase en comunicación el extremo de un largo alambre con la lámina de hojalata del electróscopo; liése el otro extremo alrededor del tubo de cristal y frótese éste con fuerza llevando la fricción cerca del alambre enroscado. Un solo golpe del fro- tador, si es dado con destreza, hará diverger las hojas. Es evidente que la electricidad ha pasado por medio del alambre hasta el electróscopo.

Sustitúyase el alambre con un cordon de bra- mante ordinario, frótese con fuerza y se harán diverger las hojas; pero hay una diferencia notable con respecto á la prontitud de la divergencia y pudiéndonos quedar pronto satisfechos de que la electricidad pasa con mucha mayor facilidad á través del alambre que á través de la cuerda. Sustitúyase el bramante con un cordon de seda y entonces con nin- gun cuerpo, por muy vigorosa que sea la frotación, podrá obtenerse divergencia alguna. La electricidad de ningún modo puede pasar á través de la seda.

Este es el lugar para demostrar de manera que nunca se olvide la influencia de la humedad. Hu-
medézcase el cordon de seda seco de un extremo á otro y esprímase un poco de modo que el agua que contenga no pueda escurrir sobre el tubo de cristal. Líese como antes alrededor del tubo y excitese éste: las hojas del electróscopo divergen inmediatamente. El agua es aquí el conductor. La influencia de la humedad fué por primera vez demostrada por Du Fay (1733 á 1737) que consiguió enviar electricidad á través de 1,256 pies de cuerda humedecida.

Apénas es necesario indicar el significado del experimento de Gray, cuando encontró que con presillas de alambre ó de bramante no podía enviar la electricidad de un extremo á otro de su cordon suspendido; pues evidentemente la electricidad se escapaba en cada uno de estos casos hácia la tierra, por medio del soporte conductor.

Mi ayudante, Mr. Cottrell, que ha trabajado con mucho interés en servicio nuestro, ha inventado un electróscopo que emplearemos frecuentemente en nuestras lecciones. M. fig. 8, es una pequeña lámina de metal, ó de madera cubierta con papel de estaño, sostenida por una varilla, G, de cristal ó de lacre. N, es otra lámina de papel metálico (metal holandés) separada como una pulgada de M, y unida con lacre á un largo canutillo de paja II', que se representa cortado en la figura. AA' es un eje horizontal for-
mado por una aguja de coser, y mantenido sobre una tira encorvada de metal, como se indica en la figura. Contrapesando el canutillo de paja con un pequeño alambre cerca de I, lo equilibrámos así de tal manera que la lámina N queda precisamente levantada de M. El alambre w, que puede ser de cien pies de largo, se dirige desde M hasta el tubo de cristal á cuyo alrededor está liado. Un sólo golpe vigoroso del tubo con el frotador envía electricidad por medio de w hasta M; N, es atraido hácia abajo, elevándose el otro extremo del largo canutillo de paja á una distancia considerable. En las figuras subsiguientes veremos el índice de paja completo y su modo de aplicación.

Algunas experiencias con cualquiera de estos instrumentos nos permitirán clasificar los cuerpos como conductores, semi-conductores y aisladores. A continuacion ponemos una lista de unos cuantos de cada clase, los cuales, sin embargo, difieren mucho entre si:

Conductores

Los metales comunes
Carbon bien calcinado
Ácidos concentrados
Soluciones de sales
Agua de lluvia
Lino
Vegetales y animales vivos

Semi-conductores

Alcohol y éter Papel
Madera seca Paja
Mármol

Aisladores

Aceites grasos Seda
Cal Cristal
Goma elástica Lacre
Papel seco Azufre
Cabello Goma laca

Reflexionando brevemente podremos variar estos experimentos indefinidamente. Frótense el lacre ó cristal excitados contra la placa de hoja de lata del electróscopo y efectúese la divergencia de las hojas. Tóquese la placa con alguno de los conductores mencionados en la lista: el electróscopo se descarga inmediatamente; tóquese con un cuerpo semi-conductor: las hojas caerán como antes, pero con ménos
prontitud; tóquese por último la placa con un aislador: la electricidad no puede pasar y las hojas permanecen invariables.

§ VIII.—Cuerpos eléctricos y no-eléctricos

Por largo tiempo los cuerpos eran divididos en eléctricos y no-eléctricos; aquellos se consideraban capaces de ser electrizados, éstos nó. Así, al ámbar de los antiguos, y á los espastos, las piedras preciosas, los fósiles, piedras, cristales y resinas experimentadas por el Dr. Gilbert se les llamó cuerpos eléctricos; mientras todos los metales fueron llamados no-eléctricos. Ahora debemos nosotros determinar el verdadero significado de esta distinción.

Tómense en la mano sucesivamente una pieza de latón, de madera cubierta con papel de estaño, una bala de plomo, manzanas, peras, zanahorias, pepinos—madera no muy seca sin corteza también hará el efecto—y frótense vigorosamente con la franela ó con el plumero de zorra: ninguno de dichos cuerpos atraerá la regla balanceada, figura 4, ni manifestará alguna señal de excitación eléctrica, todos ellos por tanto hubieran sido llamados desde luego no-eléctricos.

Pero suspendanse uno tras otro por un cordon
de seda mantenido en la mano y frótense de nuevo; ahora cada uno de ellos atraerá la regla.

Reflexiónese sobre el significado de este experimento. Hemos introducido un aislador—el cordón de seda—entre la mano y el cuerpo frotado, y encontramos que por su introducción el cuerpo no eléctrico se ha convertido en eléctrico.

La explicación es sencilla. Cuando se tenía en la mano el cuerpo, aunque la electricidad se desenvolvía en cada caso por la fricción, pasaba inmediatamente a través de la mano y de nuestro cuerpo hacia la tierra; pero al estar interceptado este transporte por medio de la seda, una vez excitada la electricidad, es retenida, y la atracción de la regla es la consecuencia.

De la misma manera un tubo de latón cojido en la mano y frotado con un plumero de zorra no manifiesta poder eléctrico, pero cuando una barra de lacre, de ebonito, ó de guta-percha se introduce en el tubo á manera de mango, el frotamiento del tubo produce entonces el poder de atracción.

Y ahora se comprenderá, con más claridad que al principio, la significación del experimento con el papel calentado y la goma elástica. El papel y la madera embeben siempre cierta cantidad de humedad procedente del aire, así que, cuando se pasaba
el frotador por el papel frío, la electricidad era excitada; pero el papel, trasformado en conductor a causa de su humedad, le permitía que se escapase.

Compruébense todas las cosas. Extiéndase el papel frío sobre una tabla fría mantenida por copas ó vasos secos; pásese la goma elástica sobre el papel; levántese éste por una presilla de seda que se le habrá unido anteriormente, pues se descargará si se le toca, y entonces se le encontrará eléctrico, pudiendo cargar con él el electróscopo y atraer desde cierta distancia la regla balanceada.

El cuerpo humano fué clasificado entre los no eléctricos. Hagamos evidente para nosotros mismos la razón, y para ello póngase el lector en pie sobre el suelo, haga que un amigo le frote vigorosamente con el plumero de zorra y presente la coyuntura á la regla balanceada: no producirá atracción alguna. Aquí, sin embargo, está el lector sobre la tierra; así es que, aún en el caso de que la electricidad haya sido desenvuelta, nada hay para impedirle que se escape; pero coloque sobre el suelo cuatro vasos de cristal calientes y sobre ellos una tabla (1), súbase en ésta y presente su coyuntura á

(1) Alguna precaución es aquí necesaria, pues cierta clase numerosa de vasos de cristal baratos conducen tan libremente la electricidad que no son apropiados para este experimento y otros análogos. Véase § XIX.
la regla: un solo golpe de la piel de zorra, si es dado con destreza, producirá atracción. Colocándose sobre una torta de resina, de ebonito, ó sobre una lámina de buena goma elástica el efecto será el mismo, y también se puede cargar el electróscopo con esta electricidad.

Coloque el lector sobre sus hombros un mackintosh (1), y que un amigo lo frote con el plumero de zorra; la fuerza atractiva se aumenta considerablemente, y si después de una fuerte fricción presenta su coyuntura á la del amigo, una chispa pasará entre ambos, explicándose todavía más con este experimento lo que ya se ha observado con frecuencia, á saber: que no es sólo el frotamiento, sino el frotamiento de sustancias especiales unas contra otras lo que produce la electricidad.

Así comprobamos que los cuerpos no-eléctricos, lo mismo que los eléctricos, pueden ser excitados, siendo necesario para conseguirlo, que se interponga un aislador entre el no-eléctrico y la tierra. Claro es que la antigua división en eléctricos y no-eléctricos equivalen realmente á una división en aisladores y conductores.

(1) Se da este nombre, tomado del inventor del procedimiento (en 1823), á cierta clase de capas ó sobretodos construidos de tela hecha impermeable por la interposición de una capa de goma elástica.—(Tr.)
§ IX. — Repulsiones eléctricas. — Descubrimiento de las dos electricidades

Hasta aquí nos hemos ocupado casi exclusivamente con las atracciones eléctricas, pero en un experimento ya mencionado (§ 2). Otto de Guericke observó la repulsion de una pluma por su globo de azufre. Yo también he anticipado un ejemplo en el uso de nuestro electróscopo de metal holandés, en el cual la repulsion de las hojas nos manifiesta la propagación de la electricidad.

Du Fay, que fue el verdadero inventor de este fenómeno, halló que un pan de oro flotante en el aire era primero atraído y después repelido por el mismo cuerpo electrizado. Después demostró que cuando el pan de oro flotante era repelido por el cristal frotado, lo atraía la resina frotada —y que cuando lo repelía la resina frotada era atraído por el cristal frotado. De aquí la importante declaración que hizo Du Fay de que existen dos clases de electricidad.

La electricidad excitada en el cristal fue por algún tiempo llamada electricidad vitrea, al paso que la excitada en el lacre fue llamada electricidad resinoso. Estos términos son, sin embargo, impropios, porque cambiando el frotador podemos obtener la
electricidad del lacre sobre el cristal y la electricidad
del cristal sobre el lacre.

Póngase áspera por ejemplo la superficie de uno
de los tubos de cristal por medio de una piedra dura
de moler, convenientemente montada, y frótese con
la franela: la electricidad del lacre se encontrará
sobre la superficie vitrea. Esto podremos confirmarlo
inmediatamente.

Nosotros usamos ahora el término electricidad
positiva ó plus para denotar la desenvuelta en el
cristal por la frotacion de la seda, y el de electricidad
negativa ó minus para indicar la desarrollada sobre
el lacre por la fricción de la franela. Estos términos
se adoptan puramente por conveniencia, pues no
existe fundamento alguno en la naturaleza para
que la electricidad resinosa, no pudiera llamarse
positiva, y la electricidad vitrea negativa. Una vez
convenidos, sin embargo, en aplicar dichos términos,
como aquí se han fijado, debemos adherirnos á este
convenio por completo.

§ X.—LEY FUNDAMENTAL DE LA ACCION ELÉCTRICA

En todos los experimentos que hasta ahora he-
mos hecho, una de las sustancias con que se ha
operado ha sido electrizada por la frotacion, y la otra
nó; pero una vez ocupados en investigaciones de este género, se ocurren á la mente sin cesar cuestiones, cuya solución extiende nuestros conocimientos y sugiere otras nuevas. Supongamos que en vez de excitar sólo uno de los cuerpos mutuamente presentados tuviéramos que excitar á ambos, ¿qué ocurriría? Esta es la cuestión que se propuso y contestó Du Fay, y á la que nosotros debemos ahora responder por nuestra parte.

Aquí viene otra vez á la escena nuestra presilla ó corchete de alambre, fig. 1, en el cual se colocará un tubo de guta-percha no frotado, ó una barra de lacre, procurando asegurarse de que está sin frotar —de que no tiene adherida electricidad alguna de experimentos anteriores. Claro es, que si deja de atraer cuerpos ligeros está sin excitar; pero si los atrae, pásele la mano sobre él varias veces, ó mejor todavía, hágasele pasar por encima ó por medio de la llama de una lámpara de espíritu de vino, lo cual alejará todo rastro de electricidad. Satisfacerse de que el tubo de guta-percha sin frotar es atraído por uno frotado.

Quítese del corchete el tubo no frotado y excítese éste con su frotador de franela. Un extremo del tubo se tiene cojido en la mano, y por lo tanto está sin excitar. Vuélvase el tubo al corchete conservando la
vista sobre el extremo excitado. Llévese un segundo tubo frotado cerca del extremo excitado del suspendido: fuerte repulsión es la consecuencia. Hágase dar vueltas por completo al tubo suspendido por medio de esta fuerza de repulsión.

Llévese un tubo de cristal frotado cerca del extremo excitado del tubo de guta-percha: fuerte atracción es el resultado.

Repítase este experimento paso por paso con dos tubos de cristal, para demostrar que el tubo de cristal frotado atrae al no-frotado; quítese este último del corchete y excítesele con su frotador; vuélvase al corchete y confírmese la repulsión del cristal por el cristal. Llévese guta-percha ó lacre frotados cerca del cristal frotado: fuerte atracción es la consecuencia.

Estos experimentos nos llevan directamente a la ley fundamental de la acción eléctrica, que es como sigue: —Los cuerpos cargados con la misma electricidad se repelen mutuamente, mientras que los cuerpos cargados con electricidades opuestas se atraen mutuamente. El positivo repele al positivo y atrae al negativo. El negativo repele al negativo y atrae al positivo.

Invéntense experimentos que ilustren aún más esta ley. Repítase, por ejemplo, el de Otto von Gue-
ricke, colgando de un cordon de seda una pluma y acercándole el tubo de cristal frotado: la pluma es atraída, toca con el tubo, se carga con la electricidad de éste, y es al momento repelida. Hágase que se aparte del tubo en varias direcciones. El experimento de Du Fay con el pan de oro se repetirá y explanará más adelante.—Véase § 18.

Cuélguese la pluma con un cordon ordinario; si ninguna sustancia aisladora interviene entre ella y la tierra, no puede obtenerse repulsion alguna. ¿Por qué? Evidentemente porque la carga de electricidad positiva comunicada por el tubo ó cuerpo excitante no es retenida por la pluma, sino que se dirije á la tierra, y por esta causa no se tiene un cuerpo positivo actuando sobre otro positivo. El por qué un cuerpo neutro es atraído por el electrizado aparecerá muy pronto, según yá hemos dicho.

Atráigase el canutillo de paja montado en la aguja con el tubo de cristal frotado, procurando que aquél choque con el tubo de modo que haya rozamiento entre ambos; el canutillo de paja acepta la electricidad del tubo y la repulsion sigue inmediatamente á la atracción, como se manifiesta en la fig. 9.

Mr. Cottrell ha inventado el sencillo electróscopio que se representa en la fig. 10 para demostrar la repulsion. A, es un vástagos de lacre con un pequeño
círculo de hojalata, T, en su parte superior. W, es un alambre encorvado, que procede de T, con un pequeño disco fijado en su extremo por medio de lacre. II' es un pequeño índice de paja sostenido por la aguja N, como se indica en la fig. 10. El vástago A', también de lacre, no está del todo vertical, siendo el objeto hacer que el pedacito de papel I' descanse sobre W cuando el aparato no esté electrizado. Cuando la electricidad se comunica al círculo T, pasa por los alambres W, y w al disco y al índice, siendo su consecuencia la inmediata repulsión de este último.

Para ilustrar el carácter repulsivo de sí mismo de la electricidad no puede hacerse experimento mejor que el siguiente: Caliéntese la tabla cuadrada (\S 5), y también la hoja de papel como anteriormente; extiéndase éste sobre la tabla y excítese por la fricción de la goma elástica. Córtense de la hoja de papel con un corta-plumas dos tiras largas, que se unirán, cogiéndolas por uno de sus extremos; sepárense de la tabla y elévense en el aire: entonces se repelen con fuerza mútuamente produciendo una divergencia completa.

Córtense varias tiras, como para formar una especie de borla, y después de cogerlas todas reunidas por uno de sus extremos, sepárense de la tabla y
levántense en el aire; entonces son separadas unas de otras por la electricidad repelente de sí misma, presentando una apariencia que hará recordar el cabello de Medusa. El efecto está representado en la fig. 11 (1).

Otro experimento muy precioso es aquí bastante apropiado. Hágase salir arena fina de plata, S, fig. 12, de un embudo de cristal, por una abertura de un octavo de pulgada de diámetro; pónganse en conexión la arena del embudo, por medio de un alambre fino, w, fig. 13, con uno de los tubos de cristal caliente. No estando electrizado, las partículas descienden como una corriente contínua, SS’, fig. 12; pero á cada golpe del frotador se dividen, desviándose unas de otras, como en la fig. 13, por su propia repulsion (2).

(1) En una de mis primeras conferencias en la Institución Real, después de haber frotado una hoja de papel, estaba ya próximo á levantara por completo de la tabla caliente y colocarla contra la pared, cuando se me ocurrió la idea de cortarla en tiras y hacer que actuasen unas sobre otras. El resultado, que naturalmente fué el arriba descrito, tan sencillo y obvio como era, produjo la más viva satisfacción á Faraday, que estaba presente entonces. El más simple experimento, sólo con tal de que fuese adecuado á su objeto, le deleitaba.

(2) Para esta experiencia y también para experimentos con el electroscopecio, el profesor de una clase numerosa encontrará en extremo útiles las sombras proyectadas sobre una pantalla blanca por la luz que se obtiene dirigiendo sobre un cilindro de cal la llama de una mezcla de oxígeno e hidrógeno en las proporciones para formar agua, (ó mejor todavía las de la luz eléctrica). De este modo se hacen visibles los efectos para todos á la vez.
Ó háganse salir tres ó cuatro filetes de agua de otros tantos agujeros de la magnitud de un alfiler y muy cercanos practicados en el fondo de una vasija; póngase en conexión el agua de ésta con el tubo de cristal y frótese como antes: las venas líquidas, á cada golpe del frotador, se dispersan en pequeñas partículas, como las que arrastra el viento de lo alto de las olas.

Estos experimentos se hacen mejor con el «frotador de Cottrell» descrito en el § 24.

Y ahora debemos aprender á determinar con certeza la clase de electricidad con que puede estar cargado un cuerpo cualquiera que se nos presente. Vemos desde luego que la atracción no es prueba segura porque los cuerpos sin electrizar son atraídos. Más adelante (§ 14) estaremos en disposición de defendernos de otra causa posible de error en el empleo de la atracción.

Al determinar la cualidad debemos evidenciar experimentalmente cuál es la clase de electricidad por la que se repele el cuerpo cargado; si por ejemplo un cuerpo electrizado cualquiera repele al lacre frotado con la franela, ó es repelido por él, la electricidad del cuerpo en cuestión es negativa; si repele al cristal frotado con seda, ó es repelido por él, su electricidad es negativa. Du Fay tuvo la ingeniosa
penetración de proponer este método de atestiguar la cualidad.

Aplíquese este método de prueba á las tiras de papel excitadas por la goma elástica. Acérquese á ellas un tubo de guta-percha frotado, se tendrá una fuerte atracción. Llévese hacia el medio de ellas un tubo de cristal frotado, se tendrá una fuerte repulsión aumentando la divergencia. Por lo tanto, la electricidad de las tiras, al ser repelida por el cristal positivo, es ella misma positiva.

§ XI.—Electricidad del frotador.—Carácter doble ó «polar» de la fuerza eléctrica

Hemos examinado la acción de cada clase de electricidad sobre sí misma y sobre la otra clase, pero hasta aquí hemos hecho caso omiso del frotador. Una de las cuestiones que inevitablemente se ocurren al ánimo investigador científico sería: ¿cómo se afecta al frotador por el acto de la fricción? Aquí, como en cualquier otro caso, debe cada uno examinar la cuestión por sí mismo y basar sus conclusiones sobre los hechos que va estableciendo.

Examínese pues el frotador por medio de la
regla ó liston balanceado. La regla es atraída por la franela que ha frotado con la guta-percha, y es atraída por la seda que ha frotado con el cristal.

Con respecto á la clase de electricidad del frotador de seda ó de franela, la atracción de la regla nada nos enseña, pero suspéndase un tubo de cristal frotado y acérquesele el frotador de franela: se sigue repulsión, mientras que el frotador de seda por el contrario atrae al tubo de cristal. Suspéndase un tubo de guta-percha frotado y aproximesele el frotador de seda: también hay repulsión, y la franela por el contrario atrae al tubo.

La conclusion es obvia; la electricidad de la franela es positiva; la de la seda es negativa.

Pero la franela es el frotador de la guta-percha, cuya electricidad es negativa, y la seda es el frotador del cristal cuya electricidad es positiva; en su consecuencia, no sólo hemos demostrado que el frotador se electriza por la fricción, sino también que la electricidad del frotador es opuesta en cualidad á la del cuerpo frotado.

Todas las experiencias subsiguientes vendrán á verificar la afirmación de que las dos electricidades van siempre unidas; de que no puede excitarse una de ellas sin excitar al mismo tiempo la otra; y de que la electricidad del frotador, si bien opuesta en
cualidad, es en todos los casos precisamente igual en cantidad á la del cuerpo frotado.

Y ahora vamos á confirmar estos principios con un nuevo experimento. Por el § 5 sabemos que un peine de ebonito era electrizado por su pasaje á través del cabello seco. Puede probarse fácilmente que la electricidad del peine es negativa. Pero el cabello es aquí el frotador, y de acuerdo con el principio que acabamos de establecer una cantidad igual de electricidad positiva ha sido excitada en el cabello. Si el experimentador se halla sobre el suelo sin estar aislado, la electricidad del cabello pasa libremente á la tierra á través de su cuerpo.

Pero que se coloque sobre un banquillo aislado (1),—por ejemplo, sobre la tabla sostenida por los cuatro vasos calientes, que ya hemos usado—mientras yo, que estoy en el suelo, paso el peine con viveza por su pelo. Lo paso diez, veinte, treinta veces, y después le invito á que atraiga la regla balancaeda. Le presenta la coyuntura, pero no hay atraccion.

En esta experiencia el peine y el cabello ad-

(1) Un banquillo sin respaldo con piernas de cristal, las cuales para protegerlas de la humedad del aire se cubren ordinariamente con una solución de goma laca. Con respecto á la atraccion que ejerce el cristal sobre la humedad atmosférica, debe recordarse lo dicho en el § 5.
quieren muy pronto su máximo de excitación, mas allá del cual no tiene lugar desenvolvimiento posterior de electricidad. Ahora bien, aunque el peine, como se ha manifestado en el § 5, es competente para atraer la regla, mientras el cuerpo del experimentador es incompetente para ello, esto puede ser a causa de que la pequeña cantidad de electricidad, que se encuentra en una forma concentrada en el peine, al difundirse por el cuerpo humano viene a ser demasiado débil para producir atracción.

¿No puede hacerse más intensa la electricidad del cuerpo del experimentador? Guiados por los principios establecidos procuremos hacerlo. Paso primero el peine sin electrizar por su cabello, al salir está electrizado. Después de descargarlo pasando mi mano por encima de él, lo vuelvo a pasar de nuevo por el cabello; sale electrizado como anteriormente y vuelvo de nuevo a descargarlo. Verifico esto diez ó veinte veces privando siempre de su electricidad al peine después de haberlo retirado del cabello. Si el experimentador ahora presenta su coyuntura á la regla balanceada es atraída poderosamente.

Según llevamos dicho, el peine no electrizado arrastra siempre consigo electricidad al salir del cabello; pero también, de acuerdo con los principios
que van expuestos, deja tras sí una cantidad igual de electricidad opuesta, y si bien la que corresponde a una sola carga del peine cuando era difundida por el cuerpo se manifestaba insensible a nuestros medios de prueba, esa misma cantidad, veinte ó treinta veces multiplicada ha llegado á ser no sólo sensible, sino intensa. Y en verdad que descargando el peine y pasándolo en cada caso, no electrizado, a través del cabello, el cuerpo humano aislado puede adquirir una tension eléctrica considerable.

Casi al principio de esta sección dijimos, si bien de cierto modo al parecer impremeditado, que la franela frotada repele al cristal frotado, mientras la seda frotada repele á la guta-percha frotada. Ahora bien, mientras que es fácil por lo general obtener la repulsión por la franela no es en modo alguno siempre fácil obtener la de la seda. Repetidas veces me he visto chasqueado en mis ensayos para demostrar esta repulsión. Deseo por lo tanto que estén informados los lectores de un método infalible de obtenerla.

Colóquese un lector en el banquillo aislador y frote vigorosamente un tubo de cristal con la seda amalgamada; yo entonces cojo el tubo y paso la mano por su superficie, retirando de ella casi toda su electricidad; después le doy otra vez el tubo y lo
excita de nuevo; vuélvolo á cojer y á descargarlo. En cada caso, por lo tanto, el lector excita un tubo de cristal no-electrizado, y en cada caso el tubo deja tras sí sobre el frotador un tanto de electricidad negativa igual en cantidad á la positiva que se lleva. Agregándose de este modo cada carga á las anteriores, el frotador adquiere una tension eléctrica elevada, y aunque su poder aislador se debilitase por la amalgama, puede ahora estar en disposicion de suministrar una porción de su electricidad á la mano y cuerpo del lector y todavía repeler con fuerza á la guta-percha frotada. El principio, que podia dilucidarse con más extension, es evidentemente el mismo que el aplicado en el caso del peine.

§ XII.—¿Qué es electricidad?

Hasta aquí, pues, hemos procedido de hecho en hecho adquiriendo conocimientos de muy valioso carácter. Pero los hechos aisladamente no pueden satisfacernos, buscamos algún conocimiento de los principios que tras ellos se encuentran y que sólo por la inteligencia han de discenirse. Así, pues, habiendo hablado, como lo hemos hecho, de la electricidad pasando de un lugar á otro y siéndole im-
pedido el paso, con dificultad un joven circunspecto
ó joven pensadora puede evitar el preguntarse: ¿qué
es lo que así pasa?—¿Qué es electricidad? Boyle y
Newton no satisfacieron debidamente su necesidad
de una respuesta á esta cuestión imaginando el uno
sus filamentos untuosos, que, saliendo el cuerpo
electricizado, volvían á él de nuevo, y el otro, que
existía un fluido elástico que penetraba por su cristal
frotado.

Al decir «imaginando» no es mi ánimo represen-
tar las concepciones de estos grandes hombres como
vanas imágenes hijas de la fantasía. Sin imaginacion
nada podemos hacer aquí. Por imaginacion es mi
ánimo significar el poder de representarse mental-
mente cosas, que, si bien tienen una existencia tan
real como la del mundo que nos rodea, no pueden
percibirse directamente por los órganos de los sen-
tidos. Me refiero á la depurada imaginacion cientí-
fica, sin cuyo ejercicio no podemos dar un solo paso
en la región de las causas y de los principios (1).

Por el ejercicio de la imaginacion científica in-
ventó Franklin para explicar los fenómenos de la

(1) Los lectores que deseen examinar más detenidamente este asunto, pueden
ver lo que sobre él dice el autor en su Address delivered before the British
Association at Belfast (Setiembre 1874), y en un articulo, Materialism and its
opponents, publicado en la Fortnightly Review (Noviembre 1875) — (Tr.)
electricidad, la teoría de un simple fluido eléctrico que suponia repulsivo de sí mismo y difundido en cantidades definidas por todos los cuerpos. Suponia que cuando un cuerpo tiene una cantidad mayor que la suya propia está electrizado positivamente y negativamente cuando la tiene menor. Por el ejercicio de la misma facultad inventó Symmer la teoría de dos fluidos eléctricos, cada uno repulsivo de sí propio, pero que ambos se atraían el uno al otro.

A primera vista la teoría de Franklin parece con mucho la más simple de las dos; pero su simplicidad es sólo aparente, pues aunque Franklin suponia sólo un fluido, veíase obligado a suponer tres acciones distintas. En primer lugar, la propia repulsión de las partículas eléctricas. En segundo, la atracción mutua de las partículas eléctricas y las partículas ponderables del cuerpo a través del cual estaba difundida la electricidad. En tercer lugar, estas dos suposiciones seguidas estrictamente llevan a la conclusión inevitable de que también las partículas materiales se repelen mutuamente unas a otras. Así la teoría no es en modo alguno tan simple como parece.

La teoría de Symmer, aunque a primera vista parece la más complicada, en realidad es con
mucho la más simple de las dos. Según ella las acciones eléctricas son producidas por dos fluidos, cada uno repulsivo de sí mismo, pero que ambos se atraen el uno al otro. Estos fluidos se adhieren estrechamente a los átomos de la materia y arrastran consigo la materia á que se han adherido. Todo cuerpo en su condición natural, posee ambos fluidos en cantidades iguales. Miéntras tanto que los fluidos están reunidos se neutralizan uno al otro, estando el cuerpo, en el cual se hallan así mezclados, en su condición natural ó no-eléctrica.

Por la fricción (y por otros varios medios) estos dos fluidos pueden separarse, adhiriéndose el uno con preferencia al frotador, y el otro al cuerpo frotado.

De acuerdo con esta teoría debe haber siempre atracción entre el frotador y el cuerpo frotado, porque, como se acaba de demostrar, están opuestamente electrizados. Tal es el caso en efecto, y nótese con especialidad lo que ahora digo: Además del rozamiento ordinario hay que vencer esta atracción eléctrica siempre que frotamos el cristal con la seda ó el lacre con la franela.

Las personas á quienes se destinan estas lecciones son demasiado jóvenes para comprender aún por completo este asunto, y en verdad que el entrar
del todo en él nos llevaría demasiado lejos. Pero no dejaré de emitir, para que sobre ella se reflexione en lo sucesivo, la observación de que el vencimiento de la fricción ordinaria produce calor en el acto mismo del frotamiento y precisamente sobre la superficie frotada, mientras la fuerza consumida en vencer la atracción eléctrica puede convertirse en calor que podrá aparecer un millar de millas distante del lugar donde fué engendrado.

Las concepciones teóricas se limitan y corrijen sin cesar por el progreso de los conocimientos, y esta teoría de los fluidos eléctricos es puesta en duda por muchos hombres científicos eminentes. En todo caso tendrá que ser traducida en una forma que la relacione con el calor y la luz antes de que pueda aceptarse como completa. No obstante, manteniéndonos independientes con la teoría la encontraremos de inmenso servicio para desenmarañar y conectar los fenómenos eléctricos.

§ XIII.—Inducción eléctrica.—Definición del término

Ahora tenemos que aplicar la teoría de los fluidos eléctricos al importante asunto de la inducción eléctrica.

Los primeros observadores notaron que el con-
tacto no era necesario para la excitación eléctrica. Otto von Guericke, como ya hemos visto (§ 2), encontró que un cuerpo llevado cerca de su globo de azufre se volvía eléctrico. Stephen Gray, acercando su tubo de cristal excitado a uno de los extremos de un conductor, atrajo cuerpos ligeros en el otro extremo, y también obtuvo atracción a través del cuerpo humano. Con gran sorpresa por su parte obtuvo también Du Fay una chispa del cuerpo humano.

Canton en 1753 suspendió bolas de médula vejetal por medio de cordones, y presentando un tubo de cristal excitado, a una considerable distancia de ellas, las hizo divergir. Al retirar el tubo volvían á caer y reunirse de nuevo, no habiéndoseles comuni-dado carga permanente alguna. Tales fenómenos fueron estudiados con más extensión, y desenvueltos por Wicleke y Àepinus, Coulomb y Poisson.

Estos resultados, y todos sus semejantes, se comprenden en la ley de que cuando un cuerpo electrizado se lleva cerca de un conductor no-electrizado, el fluido neutro de este último se descompone, siendo atraída una de sus partes constituyentes y repelida la otra. Cuando se retira el cuerpo electrizado las electricidades separadas vuelven de nuevo á fluir reuniéndose y transformando en no-eléctrico al conductor.
Esta descomposición del fluido neutro por la mera presencia de un cuerpo electrizado se llama inducción. También se le llama electrización por influencia.

Si se toca el cuerpo influido, mientras está bajo la influencia del electrizado, la electricidad libre (que es siempre de la misma clase que la del cuerpo influyente) desaparece conservándose retenida la electricidad opuesta.

Al retirar el cuerpo electrizado queda libre la electricidad retenida, resultando el conductor cargado con electricidad de clase opuesta a la del cuerpo que lo electrizó.

Nada mejor puede hacerse aquí que repetir el experimento de Stephen Gray. Colóquese una pequeña tabla ó liston, LL', fig. 14, sobre un vaso caliente G y pónganse bajo uno de sus extremos, L, y en el espacio de cuatro ó cinco pulgadas de distancia del mismo, pedacitos de papel ligero ó de panes de oro. Excítense vigorosamente un tubo de cristal R, y llévese sobre el otro extremo de la tabla sin tocarle. Los extremos pueden estar apartados seis ó ocho pies; los cuerpos ligeros serán atraidos. El experimento se hace fácilmente y no debe uno quedar satisfecho hasta poderlo hacer con facilidad y fijeza.

Esta es una ocasión favorable para repetir que
no debe perderse de vista lo dicho acerca de las copas ó vasos que se emplean para el aislamiento, pues algunos de ellos, construidos de vidrio ordinario, no pueden considerarse en modo alguno como aisladores.

§ XIV.—Investigaciones experimentales sobre la inducción eléctrica.

Nuestro dominio sobre este asunto de la inducción debe ser completo, pues sirve de fundamento á todas nuestras investigaciones subsiguientes. Sin referencia á ella nada puede explicarse; poseyéndola, obtendremos, no sólo un poder admirable de explicación, sino de predicción. Hemos de acometerla, por lo tanto, con propósito de apurarla.

Y aquí debe hacerse una ligera adición á nuestra serie de aparatos. Debemos estar en situación de tomar muestras de electricidad y de llevarlas de un lugar á otro, con el fin de examinarlas. Para este objeto se encontrará conveniente el pequeño «portador» representado en la fig. 15. T, es un pedacito de hoja de estano de dos ó tres pulgadas en cuadro. Un vástago, consistente en un canutillo de paja, se fija á él por medio de lacre, cubriéndose también de lacre
el extremo inferior del vástago. Para hacer seguro el aislamiento, la parte entre R y S' es completamente de lacre. Pueden tenerse vástagos de ebonito, que son más fuertes, por muy pocos peniques; pero éste se puede tener por sólo una fracción de penique. El extremo R es para cogerlo en la mano; el cuerpo electrizado ha de ser tocado por T, y la electricidad llevada á un electróscopo para examinarla.

Tóquese la varilla de cristal frotado con T y después el electróscopo: las hojas divergen con electricidad positiva. Tóquese con T la guta-percha ó lacre frotados y luego el electróscopo: las hojas divergen con electricidad negativa. Si la electricidad de un cuerpo cualquiera aumenta la divergencia producida por el cristal, la electricidad de ese cuerpo es positiva; pero si aumenta la divergencia producida por la guta-percha, su electricidad es negativa. Y ahora estamos ya dispuestos para nuestros trabajos subsiguientes.

Colóquese un huevo E, fig. 16, de lado sobre una copa de vino seca; llévese un tubo de cristal frotado, G, á una distancia como de una pulgada del extremo del huevo. ¿Cuál es la situación de éste? Su electricidad es descompuesta, cubriendo el fluido negativo el extremo a, adyacente al cristal, y el positivo el otro extremo b. Retírese el tubo de cristal:
¿qué ocurre? Las dos electricidades se reúnen y la neutralidad es restituida. Pruébese esta neutralidad. Ni un frotador que toque al huevo, ni tampoco el huevo mismo, tienen poder alguno para afectar al electróscopo ni para atraer la regla balanceada.

Llévese otra vez el tubo excitado cerca del huevo, y tóquese con el portador su parte distante b. El portador ahora atrae al índice (fig. 2) ó á la regla balanceada (fig. 4) y también causa divergencia en las hojas del electróscopo. ¿Cuál es la cualidad de la electricidad? Repelé al cristal frotado y es repelida por él; la electricidad de b es por tanto positiva. Descárguese el portador tocándole, y póngase en contacto con el extremo a del huevo más próximo al tubo de cristal; la electricidad que se obtiene repelé á la guta-percha y es repelida por ella, es por lo tanto negativa. Examínese también su cualidad por medio del electróscopo.

Mientras el tubo G está cerca del huevo, tóquese el extremo b con el dedo y procúrese ahora cargar el portador tocando á b; no puede hacerse: la electricidad positiva ha desaparecido. ¿Ha desaparecido también la negativa? Nó. Retírese el tubo de cristal y una vez más tóquese el huevo en b con el portador; éste se carga, no de electricidad positiva, sino de negativa. Compréndase con claridad este experi-
mento: la electricidad neutra del huevo se descompone, primero en negativa y positiva, aquélla es atraida y ésta repelida por el cristal excitado; la electricidad repelida está libre para escaparse, y así lo ha hecho al tocar el huevo con el dedo; pero la electricidad atraida no puede escaparse mientras tanto que se mantenga cerca el tubo influyente. Cuando se aparta el tubo, que mantiene esclavizado al fluido negativo, se difunde éste inmediatamente sobre todo el huevo. Una manzana, ó un nabío, podrán servir para estos experimentos, por lo menos, tan bien como un huevo.

Descárguese el huevo tocándolo; vuelvase á excitar el tubo de cristal, aproximésele otra vez al huevo y toquése éste en a con un alambre ó con el dedo. ¿Es el fluido negativo que hay en a, donde se ha puesto el dedo, el que se escapa? No hay tal cosa. El fluido positivo libre se dirige á través del negativo y del dedo hacia la tierra. Confírmese esto retirando primero el dedo y después el tubo de cristal. El huevo está cargado negativamente.

Ahora colóquense dos huevos, EE, fig. 17, en sentido de su longitud sobre dos copas de vino secas, gg, y hágase que dos de sus extremos se toquen mutuamente como se ve en G. Llévese el tubo de cristal frotado cerca del extremo a, y mientras está
allí, sepárense los huevos, retirando una de las copas de la otra. Apártense el tubo y examínense ambos huevos: \(a\), repele al lacre frotado, y \(b\) repele al cristal frotado: \(a\), es por lo tanto negativo, \(b\) es positivo. Las dos cargas además se neutralizan mutua y exactamente en el electróscopo. Vuélnense á juntar de nuevo los huevos y restitúyase el tubo frotado á su lugar cerca de \(a\). Tóquese en \(a\) y sepárense los huevos. Examínense éstos después de retirado el cristal: \(a\), es negativo, \(b\) es neutro: su electricidad se ha escapado á través del dedo, aunque éste se colocó en \(a\).

Igualmente buenas, aunque en verdad no más convenientes para estos experimentos, son dos manzanas AA, fig. 18, mantenidas sobre vástagos de lacre. Una aguja se calienta é introduce en la parte superior de cada una de las barras de lacre y sobre la aguja se clava la manzana. Los vástagos de lacre se aseguran derritiéndolos por el pie sobre pequeñas tablitas que sirven de base. Con aparatos arreglados de este modo se hacen experimentaciones que son más instructivas que las hechas por lo general con instrumentos veinte veces más costosos.

Llévense aún más adelante las investigaciones, y en vez de poner juntos los huevos ó las manzanas, colóquense separados como unos seis piés próxima-
mente, y extiéndase del uno al otro una ligera cadena, C, fig. 19, ó un alambre. Dos bolas de latón ó de madera cubiertas con papel de estaño, manteniéndose por vasos ó copas grandes, GG’, serán mejores que los huevos para este experimento, pues podrán soportar mejor la tensión de la cadena; pero puede hacerse el experimento con los huevos, ó más fácilmente con las dos manzanas ó dos nabos. Por lo pronto, supondremos que no está en el sitio indicado el índice de paja II’. Frótese el tubo de cristal R, y acérquese á una de las bolas; examínense ámbaras: la más cercana, T’, es negativa, la distante, T, positiva. Tóquese la cercana; la electricidad positiva, que ha sido impelida á través de la cadena hasta la parte más remota del sistema, vuelve de nuevo por la cadena, pasa á través de la negativa, que se mantiene aprisionada por el tubo, y se escapa á la tierra. Cuando se retira el tubo R, la electricidad negativa se esparce por la cadena y las bolas.

En la fig. 8 se tomó conocimiento de la placa N, y el índice de paja II’ manifestado en menor escala en la fig. 19. Por medio de ellos se vé inmediatamente el efecto de la primera inducción y la consecuencia de tocar cualquier parte del sistema con el dedo. La placa N está situada sobre la bola ó manzana T, siendo la posición del índice de paja la indicada con
línea de puntos. Llévese el tubo frotado cerca de T', el extremo N del índice inmediatamente desciende y el otro extremo se levanta a lo largo de la escala graduada. Apártese el tubo de cristal: el índice II cae inmediatamente. Practíquese esta aproximación y apartamiento y obsérvese con cuánta prontitud el índice declara la separación y recomposición de los fluidos.

Mientras el tubo está cerca de T' y el extremo N del índice es atraído, tóquese con el dedo en T'. El extremo N queda inmediatamente en libertad, pues la electricidad que lo empujaba hacia abajo se escapa por la cadena y a través del dedo hacia la tierra. Retírese ahora el tubo excitado: la electricidad negativa retenida se difunde sobre ambas bolas y el índice es atraído de nuevo.

En vez de la cadena pueden colocarse entre las bolas cien pisos de alambre sostenido por presillas de seda. Así está hecho en la fig. 20, que representa el alambre w sostenido por los cordones de seda SSS. La bola ó manzana T' se ha sustituido por un cilindro, C, sobre un soporte de cristal G, ocupando la pequeña mesita M el lugar de la bola I. Cada aproximación y separación del tubo de cristal frotado es seguida obedientemente por la atracción y abandono de N y el correspondiente movimiento del índice NI.
Repítase aquí una experiencia hecha la primera vez por un gran experimentador en electricidad, llamado Æpinus. Deseo que todos hagan estos experimentos históricos. Aíslese un prolongado conductor de metal, CC', fig. 21, ó uno formado de madera revestida con papel de estaño—hasta una zanahoria, un pepino ó una chirivía, con tal de que estén aislados, podrán servir. Hágase descansar una pequeña pesa, W, suspendida de un cordon de seda, S, sobre uno de los extremos del conductor y manténgase por encima del otro extremo el tubo de cristal frotado R. Puede adivinarse anticipadamente que ocurrirá cuando se retire la pesa: ésta lleva consigo electricidad que repele al cristal frotado y atrae la regla balanceada.

Colóquese una persona sobre un banquillo aislador, ó hágase éste colocando una tabla sobre cuatro vasos calientes; que presente las coyunturas de la mano derecha al extremo de la regla balanceada y extienda su brazo izquierdo: no hay atracción. Pero que un amigo ó un compañero lleve el tubo de cristal frotado por encima del brazo izquierdo: la regla inmediatamente es atraída por la mano derecha.

Tóquese la regla ó cualquier otro cuerpo que no se halle aislado; la «virtud atractiva,» como la llamaba Gray, desaparece. Después de esto, mientras
tanto que el tubo excitado se mantenga por encima del brazo no hay atracción; pero tan pronto como el tubo se retire, el poder atractivo de la mano se presentará de nuevo. En esta experiencia la primera atracción ha sido causada por la electricidad positiva impelida á la mano derecha desde la izquierda, y la segunda atracción por la electricidad negativa puesta en libertad por haber retirado el tubo de cristal. El experimento prueba que la lógica de la teoría es perfecta.

Colóquese uno sobre un banquillo aislador y ponga su mano derecha sobre el electróscopo: no hay acción alguna; pero que extienda el brazo izquierdo y procure que un compañero acerque y retire alternativamente un tubo de cristal excitado: los panes de oro se abren y vuelven á reunirse con la misma alternativa. Á cada aproximación es impelida la electricidad positiva hacia los panes de oro y á cada separación se restituye el equilibrio.

Ahora estamos en condiciones de repetir con facilidad el experimento de Du Fay, mencionado en el § 13. Una tabla se halla suspendida por cuatro cuerdas de seda y sobre ella está tendido un muchacho; póngase su frente, ó mejor todavía, su nariz, bajo el extremo del índice de paja II', fig. 22; después acérquese por encima de sus piernas el tubo de cris-
tal frotado; instantáneamente el extremo I' es atraído y el extremo I se levanta á lo largo de la escala graduada: Antes de que el extremo I' se ponga en contacto con la nariz ó la frente, pasa una chispa entre él y el muchacho.

Ahora exigiré que se cargue el electróscopo de metal holandés (fig. 7) positivamente por medio de la guta-percha frotada y que se cargue negativamente por medio del cristal frotado. Un momento de reflexion indicará la manera de hacerlo. Acérquese el cuerpo excitado: la electricidad de la misma clase que la que éste posee es impelida hacia las hojas, que divergen por repulsion. Tóquese el electróscopo: las hojas vuelven á reunirse. Retírese el dedo y retírese después el cuerpo excitado: las hojas entonces divergen con la electricidad opuesta.

El modo más simple de examinar la cualidad de la electricidad consiste en cargar el electróscopo con electricidad de una clase conocida; si á la aproximacion de un cuerpo para examinarlo divergen todavía más las hojas, éstas y el cuerpo están igualmente electrizados. La razón es obvia.

Omitiendo la última experiencia, la riqueza de conocimientos que estas investigaciones envuelven, puede ponerse al alcance de cualquier jóven inteli-
gente con el gasto bien dirigido de media corona (unas tres pesetas).

Una vez poseídos con firmeza del principio de inducción y versados en su aplicación, las dificultades de nuestro asunto desaparecen á nuestra vista. En realidad, los trabajos que nos restan consistirán principalmente en desenmarañar los fenómenos con la ayuda de este principio.

Sin conocimiento de este principio no podríamos dar razón alguna de la atracción de los cuerpos neutros por nuestros tubos excitados. Verdaderamente los cuerpos atraídos no son neutros; se electrizan primero por influencia, y el estar así electrizados es la causa de que sean atraídos.

Esta es la ocasión para referirnos más extensamente á un punto aludido ya. Los cuerpos neutros, como acaba de establecerse, son atraídos por haberse convertido realmente en cuerpos electrificados por inducción. Supóngase que un cuerpo está electrificado positivamente, en grado muy débil, y que se lleva el tubo de cristal frotado hasta situarlo sobre el cuerpo. Claramente se vé que la electricidad negativa inducida puede ser lo bastante fuerte para ocultar y sobreponerse á la débil carga positiva poseída por el cuerpo; tendríamos de este modo dos cuerpos semejantemente electrificados, atrayéndose el uno al
otro. Este es el peligro contra el cual prometi pre-
venir á los lectores en el § 10, donde desechamos la
prueba de atracción.

Ahora aplicaremos el principio de inducción para
explanar un bellísimo invento, dado á conocer por el
celebrado Volta en 1775.

§ XV.—El Electróforo.

Córtese un círculo, T, fig. 23, de seis pulgadas
de diámetro, de una lámina de zinc ó de hojalata
ordinaria. Caliéntese en su centro con la llama de
una lámpara de espíritu de vino ó de una bujía y
fíjesele allí una barra de lacre, H, la cual cuando el
metal se enfrié ha de servir como mango aislador.—
Tenemos ya la tapa del electróforo. Una superficie
resinosa, ó lo que es más simple, una hoja de cau-
chuc volcanizado, P, y hasta de papel de estraza
caliente, servirá de plancha ó torta del electróforo.

Frótese la «torta» con franela ó sacúdase vigo-
rosamente con un plumero de zorra: con esto se
electrizá negativamente. Colóquese la «tapa» del elec-
tróforo sobre la superficie excitada, con la cual se
pone en contacto sólo en algunos puntos. En su
mayor parte la tapa y la torta están separadas por
una película de aire.
Á través de esta película la superficie excitada actúa por inducción sobre la tapa, atrayendo su electricidad positiva y repeliendo la negativa. Tenemos de hecho en la tapa dos capas de electricidad: la inferior, que está "retenida," positiva, y la superior, que está "libre," negativa. Levántase la tapa; las electricidades se reúnen de nuevo, se restituye la neutralidad, y la tapa no puede atraer la regla equilibrada.

Colóquese otra vez la tapa sobre la superficie excitada, y tóquese con el dedo. ¿Qué ocurre? Debe ya saberse. La electricidad libre, que es negativa, se escapará a través del cuerpo del experimentador hacia la tierra, dejando tras sí a la no-libre positiva.

Levántese ahora la tapa por el mango: ¿en qué condición se encuentra? Vuelvo a decir que los lectores deben saberlo. Está cubierta con electricidad positiva libre. Si la presentamos a la regla, la atraerá fuertemente; si se presenta a la coyuntura producirá una chispa.

Una moneda de media-corona lisa, o un penique podrán servir para este experimento. Fíjese a la moneda una pulgada de lacre como mango aislador; colóquese sobre el caucho excitado; tóquese y levántese la moneda, presentándola después a la regla:
ésta puede ser de seis ó ocho pies de largo, tres pulgadas de ancho y media de espesor; la pequeña tapa de electróforo formada por la media-corona le hará dar vueltas por completo. La experiencia es en verdad muy impresiva.

Continúense aún más las investigaciones con este instrumento. Hágase descansar el extremo de un alambre delgado sobre la tapa del electróforo, bajo una pequeña pesa si es necesario, y póngase el otro extremo del alambre en comunicación con el electróscopo. Cuando se haga descender la tapa hacia la plancha ó lámina excitada del electróforo, ¿qué debe ocurrir? Los lectores tienen ya el poder de prevision y deben ejercitarlo. La electricidad repelida fluirá sobre las hojas del electróscopo, haciéndolas divergir. Levántese la tapa, vuelven á reunirse. Bájese y súbase la tapa varias veces observando la correspondiente acción rítmica de las hojas del electróscopo.

Una pequeña protuberancia de lacre, B, cubierta de papel de estaño, ó en realidad cualquier protuberancia con una superficie conductora nos permitirá obtener una chispa mejor. La razón de esto aparecerá inmediatamente.

Más de la mitad del valor de nuestro trabajo presente consiste en coordinar cada experiencia en
el pensamiento antes de que se realice de hecho; y más de la mitad del placer de nuestros ejercicios consistirá en observar la verificación de lo que ya de antemano se ha concebido y predicho.

§ XVI. — Acción de las puntas y de las llamas

El curso de la exposición procede naturalmente del electróforo á la máquina eléctrica. Pero antes de ocuparnos de esta última, debemos aclarar en nuestra mente el procedimiento que sigue la electricidad al difundirse sobre los conductores, y más especialmente sobre los conductores prolongados y puntiagudos.

Frótese un tubo de cristal y llévese sobre una esfera de metal aislada —de madera cubierta con papel de estaño, ó de cualquier otro conductor esférico aislado. Repítase la operación varias veces hasta que se cargue bien la esfera; una vez cargada, toquense con el portador y transfiérase la carga al electróscopo. Observése con atención la divergencia de las hojas. Descárguese el electróscopo y repítase el experimento, empero tocando cualquier otro punto de la esfera; el electróscopo indica sensiblemente la misma suma de divergencia; y, aún poniendo en juego la mayor exactitud del experimentador más
práctico, se encuentra el conductor esférico igualmente cargado en todos los puntos de su superficie. Podemos figurarnos el fluido eléctrico como un pequeño oceano rodeando á la esfera, y de igual profundidad en todas sus partes.

Pero en el caso de que el conductor, en vez de ser una esfera, sea un cubo, un cilindro prolongado, un cono, ó un disco, la profundidad ó como á veces se llama la densidad de la electricidad no será la misma en todas sus partes. Las esquinas del cubo comunicarán al portador una carga más fuerte que los lados. El extremo del cilindro comunicará una carga más fuerte que su medio. El borde del disco comunicará más fuerte carga que su superficie plana. La cima ó vértice del cono comunicará más fuerte carga que su superficie curva ó su base.

Puede cada uno satisfacerse de la verdad de todo esto, de un modo tosco pero seguro, cargando después de la esfera un nabo cortado en forma de cubo, ó una petaca cubierta con papel de estaño, un cilindro de metal ó una de madera vestido con papel de estaño, un disco de hojalata ó de lámina de zinc, una zanahoria ó chirivía con su forma natural mejorada de modo que tome la figura de un cono agudo. Se encontrará que la carga comunicada al portador por las esquinas agudas y vértices de tales
cuerpos, cuando están electrizados, es mayor que la suministrada por las superficies suavemente redondeadas o planas. La diferencia puede no ser considerable, pero será visible. También un huevo puesto de costado, como el de que nos hemos servido en nuestros experimentos sobre inducción, suministra más fuerte carga por sus extremos que por su parte media.

Permitaseme presentar un ejemplo de esta distribución tomado de la excelente obra sobre «Electricidad friccional» del profesor Riess de Berlín. Dos conos, fig. 24, se han puesto reunidos base con base. Llamando 100 la intensidad de la carga a lo largo del borde circular donde se unen mutuamente los dos conos, la carga en el vértice del menos agudo es 133, y en el vértice del más agudo 202. Los otros números indican las cargas que se obtienen de los puntos donde están colocados. Además la fig. 25 representa un cubo con un cono colocado sobre él. Siendo 1 la carga en la cara del cubo, los otros números indican las que se obtienen en los ángulos del mismo y en el vértice del cono: todos exceden bastante a la electricidad obtenida en la superficie plana.

Riess encontró que podia deducir con gran exactitud la agudeza de una punta por la carga que su-
ministraba. De este modo comparó la agudeza de varias espinas de arbustos con la de una aguja fina de coser inglesa. El resultado es el siguiente: —la espina de euforbio era más aguda que la aguja, la de uva espin de la misma agudeza que la aguja, mientras las de nopal (higuera chumba ó de Indias), endrino y rosal eran más y más inferiores á la de la aguja. Llamando por ejemplo la carga obtenida de la de euforbio 90, la obtenida de la aguja era 80, y la del rosal sólo 53.

Considerando que cada una de las electricidades es repulsiva de sí misma, y que se acumula sobre una punta, de la manera aquí manifestada, se encontrará poca dificultad en concebir que cuando la carga de un conductor que tenga una punta sea suficiente fuerte, la electricidad acabará por dispersarse fluyendo por la punta.

Los experimentos que siguen son importantes bajo el punto de vista teórico.—Fíjese una barra de lacre en una pequeña lámina de hojalata ó de madera de modo que pueda mantenerse vertical. Caliéntese una aguja e insertese en la parte superior de la barra de lacre; sobre esta aguja mótense horizontalmente una zanahoria. De este modo se tiene un conductor aislado. Pinchese en la zanahoria por uno de sus extremos una aguja de coser, y
manténgase por un instante el tubo de cristal fro-tado frente de esta aguja sin tocarla. ¿Qué ocurre? La electricidad negativa de la zanahoria se descarga inmediatamente desde la punta hacia el tubo de cristal. Retírese éste y examíñese la zanahoria: está electrizada positivamente.

Otro experimento que no se hace con tanta facilidad, pero que de seguro se obtiene teniendo cuidado, es el que sigue: Excítense el tubo de cristal; apártense la aguja de él y llévesele cerca del otro extremo de la zanahoria. ¿Qué ocurre? La electricidad positiva es ahora repelida hacia la punta, desde la cual pasará al aire. Retírese el tubo y examíñese la zanahoria; está electrizada negativamente.

Vuelvase de nuevo la punta hacia el experimentador y colóquese frente de ella una lámina de cristal seco, de lacre, resina, goma laca, parafina, guta-percha ó cualquier otro aislador. Pásese el tubo de cristal una vez por debajo ó por encima, estando la lámina aisladora entre el tubo excitado y la punta. Esta última descargará su electricidad contra la lámina aisladora, que al ser examinada se encon-trará electrizada negativamente.
§ XVII.—LA MÁQUINA ELÉCTRICA.

Una máquina eléctrica se compone de dos partes principales: el aislador, que es excitado por la ficción, y el «conductor principal.»

La esfera de azufre de Otto von Guericke fue, como se ha dicho, la primera máquina eléctrica. La mano era el frotador, y ciertamente continuó siéndolo por largo tiempo. Hauksbee y Winckler sustituyeron la esfera de azufre con globos de cristal. Boze de Wittemberg (1741) agregó el conductor principal, que era al principio un tubo de hojalata mantenido por resina o suspendido por medio de seda. Poco después Gordon sustituyó el globo con un cilindro de cristal, que unas veces se montaba vertical y otras horizontalmente. De este modo hizo Gordon sus descargas tan intensas como para poder matar pequeños pájaros con ellas. En 1760 introdujo Planta la máquina de disco que se usa comúnmente en la actualidad.

Mr. Cottrell ha construido para estas lecciones la pequeña máquina de cilindro representada en la fig. 26. El cilindro de cristal es de unas 7 pulgadas
de largo y 4 de diámetro: su costo es 18 peniques. A través del cilindro pasa herméticamente á modo de eje un pedazo de liston, que se asegura con lacre á su entrada y salida en el cilindro. G, es una varillla de cristal que sostiene al conductor C, que es una pieza de liston vestido de papel de estaño. En el liston se han introducido la serie de puntas de alfileres P, P. El frotador R, que se ve al otro lado del cilindro, está mantenido por un liston vertical R', y se le hace apoyar con fuerza contra el cristal. S' es una falda de seda fijada al frotador. Cuando se da vueltas al manubrio, pueden sacarse chispas del botón C, ó cargarse en él una botella de Leyden (1).

La fig. 27 representa una máquina de disco. P, es el disco que dá vueltas sobre un eje que pasa por su centro; R y R' son dos frotadores que abrazan al disco y á los que se fijan las faldas de seda S S'. A, y A' son filas de puntas que forman parte del conductor principal C. G G' es una varilla aisladora de cristal, que interrumpe la conexión entre el conductor y el manubrio de la máquina.

El conductor principal se carga de la manera siguiente: Cuando se dá vueltas al disco de cristal, como pasa por cada uno de los frotadores, se elec-

(1) Que se explicará después.
triza positivamente. Mirando al cristal electrizado, está la hilera de puntos colocada entre los frotadores á igual distancia de cada uno de ellos. El cristal actúa por inducción sobre estas puntas, atrayendo la electricidad negativa y repeliendo la positiva. De acuerdo con los principios ya explicados en el § XVI la electricidad negativa fluye por las puntas hacia el cristal excitado, que entonces se dirige neutralizado al frotador inmediato donde vuelve de nuevo á excitarse.

Así, pues, el conductor principal se carga, no por comunicarle directamente la electricidad positiva, sino por privarle de la que tiene negativa.

Si estando cargado el conductor se le acerca la coyuntura, la electricidad pasa del conductor á ella en forma de una chispa.

Sáquese esta chispa con la coyuntura no muy doblada miéntras se dá vueltas á la máquina, y después examínese el efecto de presentar al conductor los extremos de los dedos en vez de la coyuntura: la chispa se presenta con excesiva brillantez. Sustitúyanse los extremos de los dedos con la punta de una aguja: entonces no se consigue chispa alguna. Para obtener una buena chispa la electricidad del conductor principal debe alcanzar una suficiente densidad (ó tension como á veces se llama), y para que
esto sea seguro, no debe haber sobre el conductor punta alguna, desde la cual puede fluir la electricidad, ni tampoco debe presentárselé. Por lo tanto, todas las partes del conductor se construyen cuidadosamente redondeadas, evitando las puntas, filos, orillas ó márgenes agudos.

Es costumbre fijar al conductor un electróscoplo consistente en un vástago metálico vertical, A C, fig. 28, al cual se fija un canutillo de paja con una bola de médula vegetal en su extremo libre. El canutillo de paja gira con libertad sobre un eje en C. La electricidad al pasar por el conductor se difunde por el electróscoplo todo, y el canutillo y el vástago, estando ambos positivamente electrizados, se repelen el uno al otro; el canutillo, siendo el cuerpo movible, se separa, midiéndose la cantidad de divergencia sobre un arco graduado.

§ XVIII.—Experimentos adicionales sobre la acción de las puntas.—El Molino eléctrico.—El Pez de oro.—Pararayos.

Si no se encuentra sobre el conductor punta alguna, una sola vuelta del manubrio de la máquina es suficiente por lo general para hacer que el canutillo se separe y se mantenga formando un gran
ángulo con el vástago. Si por el contrario se fija una punta en el conductor no puede producirse gran divergencia, porque la electricidad, tan pronto como es producida, se dispersa por la punta. El mismo efecto se observa al presentar una punta al conductor: éste actúa por inducción sobre la punta haciendo fluir á la electricidad negativa desde ella hacia el conductor, que de este modo es neutralizado casi tan pronto como se carga. Las llamas y las cenizas incandescentes actúan lo mismo que las puntas: descargan también rápidamente la electricidad.

La electricidad, al escapar desde una punta ó llama hacia el aire, convierte á éste en repulsivo de sí propio. La consecuencia es que cuando se coloca la mano por encima de una punta, montada sobre el conductor principal de una máquina en bastante acción, se siente distintamente un soplo frío. El Dr. Watson observó este soplo en una llama colocada sobre un conductor electrizado, mientras que Wilson observó el de una punta. Jallabert y el Abate Nollet observaron también y describieron la influencia de las puntas y de las llamas. El soplo es llamado «viento eléctrico.» Wilson puso en movimiento por su acción algunos cuerpos. Faraday hizo descender con él la superficie de un líquido. Hamilton empleó la reacción del viento eléctrico para
hacer dar vueltas á alambres puntiagudos. Se en-
contró tambien que el viento producia evaporacion.

El aparato de Hamilton se llama el «molino eléctrico.» Puede hacerse uno del modo siguiente:
Colóquense dos canutillos de paja SS, S'S', fig. 29, de unas ocho pulgadas de largo, atravesado el uno sobre el otro formando ángulo recto. Asegúrense en su centro con un poco de lacre y pásese un alambre fino á través de cada uno, encorvándolo á su salida de modo que forme un pequeño brazo puntiagudo perpendicular al canutillo y de media pulgada á tres cuartos de pulgada de largo. Es fácil, por medio de un pedacito de corcho ó de lacre, fijar el alambre de manera que los pequeños brazos encorvados mi-
ren, no hácia arriba ni hácia abajo, sino hácia los dos lados, cuando la cruz esté horizontal. Unas pun-
tas de agujas de coser pueden emplearse para for-
mar los brazos encorvados. Un pequeño pedazo de canutillo de paja fijo á la cruz en el centro forma una especie de gorra, que se mueve suavemente sobre una aguja de coser, N, sostenida por una barra de la-
cre, A. Póngase en comunicacion la aguja de coser con la máquina eléctrica y dése vueltas á ésta. Por cada una de las puntas se descarga un viento de cier-
ta fuerza, y la cruz es impelida y da vueltas con la misma fuerza en direccion opuesta.
Como es natural, fácilmente se podían disponer las puntas de modo que el viento de algunas de ellas neutralizase el de las otras. Pero los pequeños brazos puntiagudos han de encorvarse de tal manera que la reacción, en cada caso, no se oponga, sino que se agregue á los otros.

Los experimentos que siguen suministrarán datos importantes con respecto á la acción de las puntas. Colóquese uno, como anteriormente se ha repetido con tanta frecuencia, sobre una tabla sostenida por cuatro vasos calientes. Manténgase una pequeña aguja de coser con su punta cubierta por el dedo índice de la mano derecha, junto al electróscopo de metal holandés. Colóquese la mano izquierda en el conductor principal de la máquina, y que un amigo ó ayudante dé vueltas al manubrio: las hojas del electróscopo divergen un poco. Descúbrase la punta de la aguja retirando de ella el dedo: las hojas al momento se apartan con violencia.

Móntese un alambre grueso perpendicualrmente sobre el conductor C, fig. 30, de la máquina, ó fíjese el alambre por medio de lacre guta-percha ó cristal á cierta distancia del conductor y pónganse en comunicación por medio de un alambre fino. Encórvese el alambre grueso en forma de anzuelo y euél-
guese de él una borla, T, compuesta de muchas tiras de papel de seda muy fino. Dése vueltas á la máquina. La electricidad fluye desde el conductor hácia la borla y las tiras divergen (1). Acérquese el puño cerrado hacia la borla: las tiras de papel se extienden hácia él. Acérquesele después la aguja cubierta con el dedo: también tiene lugar la atracción. Descúbrase la aguja sin mover la mano; las tiras se apartan como impulsadas por el viento. Manteniendo la aguja, N, fig. 31, perpendicularmente por bajo de la borla, las tiras de ésta se descargan y se cierran por completo.

Y ahora repítase el experimento de Du Fay, que llevó al descubrimiento de dos electricidades. Excítese un tubo de cristal y téngase dispuesto mientras un amigo ó un ayudante abandona en el aire un pan de oro, ó de plata. Aproxímesele el tubo: el pan de oro se precipita en dirección á él; se pára repentinamente y después se aparta. Puede seguirse por toda la habitacion durante algunas horas sin permitirle llegar al suelo. El cristal actúa primero inductivamente sobre el pan de oro, que es poderosamente atraído por un momento y se dirige hácia el tubo; pero la electricidad negativa se escapa por los

(1) Así tiene lugar siempre en Londres. Si bien también aquí están algunos días tan secos, que hacen dificultoso el electrizar la borla.
delgados márgenes y ángulos del pan de oro dejándolo electrizado positivamente. Establécese entonces la repulsión, como indica la fig. 32, porque el tubo y el pan de oro se encuentran electrizados del mismo modo. La separación de la borla en el último experimento es debida a una causa análoga.

Hay también una descarga de electricidad positiva en el aire por las porciones más distantes del pan de oro, a las cuales es repelida aquella electricidad. Ambas descargas van acompañadas por un viento eléctrico. Puede darse al pan de oro una figura tal, que le permita flotar con seguridad en el aire por la reacción de los dos vientos que se originan en sus extremos opuestos. Este es el experimento del pez de oro de Franklin. Se hizo primero con el conductor cargado de una máquina eléctrica. M. Srtsczek la renovó en una forma más conveniente usando en vez del conductor el botón de una botella de Leyden cargada. Puede uno dar vueltas por una habitación entera con la botella en la mano, y el «pez» seguirá obedientemente en el aire a una pulgada, ó dos, ó aún tres pulgadas distante del botón. Véase AB, fig. 33. Ni tampoco un movimiento precipitado de la botella le hará vacilar ó perder su posición.

Cuando una nube de tempestad actúa sobre pa-
rarayos bien puntiagudos, reciben éstos su electricidad inducida contra la nube. Franklin percibió esto con gran claridad y lo explicó con extrema precisión. Observó que la parte inferior de una nube tempestuosa, vista horizontalmente estaba rasgada, compuesta en realidad de fragmentos unos debajo de otros que a veces llegaban hasta cerca de la tierra. Á estos fragmentos los consideró como otros tantos escalones que servían para conducir el choque de descarga de la nube. Para representarlos por medio de experimentos tomó dos ó tres copos ó vedijas de algodón fino muy flojas, las reunió formando una fila y las colgó de su conductor principal. Cuando éste era excitado las vedijas se estiraban hacia abajo en dirección á la tierra, pero al presentar una punta aguda dirigida hacia arriba, por bajo de la vedija de algodón más inferior, se contraía ésta aproximándose á la que estaba sobre ella, y no cesaba la contracción hasta que todas las vedijas se habían retirado hasta el mismo conductor principal.

«No pueden» dice Franklin, «las pequeñas nubes electrizadas cuyo equilibrio con la tierra se restituyen tan momentáneamente por medio de la punta, levantarse hasta el cuerpo principal y de este modo ocasionar un vacío tan extenso que la nube grande no pueda saltar en aquel sitio.»
§ XIX.—Historia de la botella de Leyden.
Batería de Leyden.

El descubrimiento que sigue, del cual hemos de hacernos poseedores, arroja en la sombra todos los anteriores. Fué anunciado por primera vez en una carta dirigida en 4 de Noviembre, 1745, al Dr. Lieberkühn, de Berlin, por Kleist, un clérigo de Cammin, en Pomerania. Por medio de un tapón de corcho C, fig. 34, fijó un clavo, N, en un bote ó fiola, G, en la cual había echado un poco de mercurio, líquidos espirituosos, ó agua W. Electrizando el clavo podía pasar de una habitación á otra con el bote en su mano y poner en ignición con él líquidos alcohólicos. «Si mientras está electrizándose,» dice, «pongo mi dedo, ó una pieza de oro que cojo en mi mano, sobre el clavo, recibo un choque que deja insensibles mis brazos y hombros.»

Al año siguiente, Cunæus, de Leyden, hizo sustancialmente el mismo descubrimiento, que causó gran admiración y pánico, originado principalmente de la imaginación excitada. Musschenbroek sintió la conmoción y declaró en una carta á un amigo, que no recibiría una segunda por la corona de Francia. El arrojar sangre por la nariz, la fiebre ardiente,
una pesadez de cabeza que duraba por algunos días; todo esto se atribuía al choque. Boze deseaba poder morir de él para gozar el honor de que se registrase su muerte en los anales de la «Academia de Ciencias» de París. Kleist equivocó la explicación del fenómeno, mientras que los físicos de Leyden señalaron correctamente las condiciones necesarias para el éxito del experimento. Por eso el bote recibió el nombre de fiola de Leyden, ó botella de Leyden.

El descubrimiento de Kleist y Cunæus excitó el más profundo interés, y el asunto fue explorado en todas direcciones. Wilson, en 1746, llenó una botella parcialmente con agua, y la sumergió en agua hasta que las dos superficies de líquido, en el interior de la botella y en el exterior, alcanzaron el mismo nivel. Cargando esta botella, se encontró que la fuerza del choque ó conmoción era mayor que la observada anteriormente.

Dos años después, el Dr. Watson y el Dr. Bevis, observaron cómo la carga se hacía más fuerte á medida que se aumentaba el área del conductor en contacto con la superficie exterior de la botella. En vez de agua pusieron perdigones en el interior de la botella, y obtuvieron sustancialmente el mismo efecto. El Dr. Bevis, entonces, cubrió una lámina de cristal
por ambos lados con papel de plata, hasta una pulgada de distancia de las orillas pròximamente, y obtuvo con ella descargas tan fuertes como las obtenidas de una botella que contuviese media pinta (=0,284 de litro) de agua. Por último, el Dr. Watson vistió su botella en el interior y por fuera con papel de plata. Por estos pasos, la botella de Leyden vino á tomar la forma que posee hoy día.

Es fácil repetir el experimento del Dr. Bevis. Procúrese una lámina de cristal de nueve pulgadas en cuadro; cúbrase por ambos lados, como él hizo, con papel de estaño de siete pulgadas en cuadro, dejando descubiertas las orillas; póngase en comunicación un lado con la tierra y el otro con la máquina. Carguese y descarguese; se obtendrá una brillante chispa.

En nuestro experimento con el pez de oro (fig. 33) hemos empleado una forma común de la botella de Leyden, sólo con la diferencia de que el botón estaba colocado más alto de lo usual para mantenerlo á una suficiente distancia del cristal con objeto de evitar la atracción del pez por la botella misma. Pero con un buen vaso de flint-glass una pieza de papel de estaño y un pedazo de alambre grueso puede el lector construir para sí una botella. Recuérdese que el cristal malo se presenta con fre-
cuencia (1). En la fig. 35 tenemos una botella de esta clase. T es la cubierta exterior, T' la interior, llegando hasta una pulgada del borde del vaso G. W es el alambre sostenido en su parte inferior con lacre y terminado en la superior con una bola, que puede ser de metal, o de lacre ó madera cubierta con papel de estaño. Para cargar la botella se comunica la cubierta exterior con la tierra (por ejemplo, con una cañería de gas ó de agua) y se presenta la bola al conductor de la máquina. Algunas vueltas la cargarán. Se descarga colocando la bola de un «descargador» sobre la cubierta exterior y haciendo aproximarse la otra bola á la de la botella. Antes del contacto la electricidad salta de una bola á la otra en forma de una chispa.

Un descargador conveniente para nuestro objeto se manifiesta en la fig. 36. H es una barra de lacre, ó mejor todavía, de ebonito. W W un alambre grueso encorvado como indica la figura y terminado en los botones ó bolas B B', que pueden ser de lacre cubiertos con papel de estaño. Como es natural, cualquier otro boton conductor y ligero podría ser

(1) Al preparar estas lecciones hemos construido varias botellas que reusaban el ser cargadas à causa de la mala calidad de su cristal, y que ponían en claro su imperfecto aislamiento descargando nuestro electróscopo.
apropiado. El mango aislador H protege al experimentador eficazmente del choque.

El lector debe familiarizarse en el uso del descargador. El modo de usarlo se indica en la fig. 37.

Aumentando el tamaño de la botella de Leyden la hacemos capaz de aceptar una carga mayor de electricidad. Pero hay un límite para el tamaño de la botella. Por lo tanto, cuando se requieren cargas mayores de la que puede suministrar una sola botella hacemos uso de cierto número de ellas. En la fig. 38 se representan nueve de las mismas. Todas sus cubiertas interiores están unidas por varillas de latón, mientras todas las exteriores descansan sobre una superficie metálica en comunicación libre con la tierra.

Esta combinación de botellas de Leyden constituye la batería de Leyden, cuyo efecto es igual al de una sola botella de nueve veces el tamaño de una de las usadas.

§ XX. EXPLANACION DE LA BOTELLA DE LEYDEN

Los principios de inducción eléctrica con los que tan familiarizados estamos yá, nos permitirán llegar al completo análisis e inteligencia de la acción
de Leyden. Al cargar ésta la cubierta exterior se comunica con la tierra y la interior con la máquina eléctrica. Supongamos que la máquina, como sucede por lo general, sea de cristal y produzca electricidad positiva. Cuando se pone en acción, la electricidad arrojada á la botella actúa inductivamente á través del cristal sobre la cubierta exterior, atrayendo su electricidad negativa y repeliendo hacia la tierra la positiva. Dos capas eléctricas mútuamente atractivas están de este modo en presencia una de otra encontrándose separadas meramente por el cristal. Cuando la máquina está en buen órden, y el cristal de la botella es delgado, la atracción puede llegar á ser lo bastante fuerte para perforar la botella. Por medio del descargador las electricidades opuestas se encuentran en disposición de unirse en forma de una chispa.

Franklin percibió y dió á conocer con claridad el escape de la electricidad desde la cubierta exterior de la botella. Su afirmación es que cualquiera que sea la cantidad del «fuego eléctrico» arrojado en la botella, una cantidad igual era desalojada de su exterior. Ahora tenemos que demostrar por un experimento actual que esta explicación es correcta.

Colóquese la botella de Leyden sobre una mesa y comuníquese la cubierta exterior con el electrós-
copo. No tiene lugar divergencia alguna cuando la electricidad es arrojada á la botella.

Pero aquí la cubierta externa se comunica con la tierra á través de la mesa. Impidamos esta comunicación por medio de un aislador. Colóquese la botella sobre una tabla mantenida por vasos calientes, ó sobre una pieza de tela de goma elástica volcánizada, y póngase de nuevo en comunicación la cubierta externa con el electróscopo. Al momento que la electricidad se comunica á la bola de la botella divergen las hojas de metal holandes. Quítese el alambre sirviéndose del descargador y examínese la clase de la electricidad—es positiva como la teoría declara que debe ser.

Considérese ahora el experimento de Kleist y Cunæus (fig. 34). Los lectores, no dudo, penetrarán su significado. Verán que en aquel caso la mano formaba la cubierta externa de la botella. La electricidad, cuando era comunicada por medio del clavo al agua contenida en el interior, actuaba al través del cristal inductivamente sobre la mano, atrayendo uno de los fluidos y repeliendo hacia la tierra el otro.

Repito de nuevo: pruébense todas las cosas; y esto que afirmamos aquí puede probarse por el precioso y conclusivo experimento que sigue:—Coló-
quese el lector sobre la tabla, II', fig. 39, aislada por sus respectivos cuatro vasos; ó sobre una lámina de guta-percha ó cauchuc volcanizado. Coja la antigua botella de Leyden, J, en la mano izquierda y presente la coyuntura de la mano derecha á la regla balanceada L'L. Cuando se comunica la electricidad al clavo, la regla es inmediatamente atraída por la coyuntura. Ó toque el electróscopo con la mano derecha; cuando se carga la botella divergen inmediatamente las hojas por la electricidad impelida desde la mano izquierda al electróscopo.

Aquí el clavo puede electrizarse, bien comunicándolo con el conductor principal de la máquina, ó bien frotándolo con un tubo de cristal excitado. Yo ciertamente preferiría que los lectores, al hacer estos experimentos, recurriesen á los medios más simples y más económicos.

§ XXI.—BATERÍA EN CASCADA DE FRANKLIN

Como pensadores y reflexivos, me figuro que los jóvenes lectores, ó jóvenes lectoras, no podrán maravillarse demasiado del poder que su completo dominio de los principios de inducción les da sobre estos
admirables y complicados fenómenos. Por medio de estos principios los varios hechos de nuestra ciencia se encuentran reunidos formando un todo orgánico. Pero aún no hemos agotado la fertilidad de este principio.

Considérese el problema siguiente. Por lo regular dejamos escapar hacia la tierra la electricidad de la cubierta externa. Supóngase que nos proponemos utilizarla. Colóquese entonces la botella A B, fig. 40, sobre caucho volcanizado y comuníquese por medio de un alambre BC su cubierta externa con el botón ó cubierta interna de una segunda botella CD. ¿Qué debe ocurrir cuando se cargue la primera botella? La segunda se cargará también por la electricidad que ha escapado de la cubierta exterior de la primera. Y supongamos que se pone en comunicación la cubierta exterior de la segunda botella aislada con la interior de una tercera EF: ¿qué ocurre? Claro es que la tercera botella se cargará con la electricidad repelida de la cubierta exterior de la segunda. Naturalmente no tenemos necesidad de parar aquí. Podemos tener una larga serie de botellas aisladas, reunida la cubierta exterior de cada una con la interior de la inmediata siguiente. Comuníquese la cubierta externa de la última botella IK por un alambre e con la tierra, y
cárguese la primera botella. Con esto se carga la serie entera. De esta sencilla manera se domina prácticamente y se comprende la teoría de la celeb rada batería de cascada de Franklin.

Podemos ver que, antes de llevar á cabo este importante experimento, podia realmente haberse predicho lo que ocurriría. Este poder de prevision es uno de los caracteres más sorprendentes de la ciencia.

§ XXII.—Nuevas botellas de Leyden de la más simple forma

Poseidos de sus principios podemos reducir la botella de Leyden á formas mucho más simples que todas las de que hasta ahora hemos tratado. Extiéndase una hoja de papel de estaño con igualdad sobre una mesa y colóquese sobre la hoja un pedazo cuadrado de cristal. Recuérdese que el cristal, como de costumbre, debe estar seco. Fíjense sobre el cristal por medio de lacre dos presillas de cinta estrecha de seda, por las cuales pueda levantarse el cuadro; y después extiéndase uniformemente sobre el cristal una segunda hoja de papel de estaño, más pequeña que él, y que deje por todo su contorno un
borde descubierto de cristal. Llévese un alambre fino desde la hoja superior de papel de estaño hasta el electróscopo. Un pequeño peso conservará el extremo del alambre unido al papel.

Frótese este peso con el tubo de cristal excitado, dos ó tres veces si es necesario, hasta que se observe una ligera divergencia en las hojas de metal holandes. Ó comunicando el peso con el conductor de la máquina dése vueltas á ésta con cuidado hasta observar la pequeña divergencia. ¿Cuál es aquí la condición de las cosas? Se ha llevado electricidad positiva, por ejemplo, sobre la hoja de metal superior. Esta actúa inductivamente á través del cristal sobre la hoja inferior, cuyo fluido positivo se escapa hacia la tierra, dejando tras sí el negativo. Vemos, pues, en nuestra mente, dos capas que se mantienen mutuamente en cautiverio. Agárrense ahora las presillas y levántese la lámina de cristal, de modo que se separe la hoja de estaño superior de la inferior. ¿Qué esperaremos que va á ocurrir? Libre de la atracción de la capa inferior la electricidad de la superior se difundirá por el electróscopo, tan pronto y poderosamente, que, al no tener cuidado, se destruirá el instrumento por la mútua repulsión de sus hojas.

Practíquese este experimento, que es uno de los
muy antiguos mios, bajando y levantando la lámina de cristal y observando la correspondiente acción ritmica de las hojas del electróscopo.

Puede usarse en este experimento la hojalata ordinaria en vez del papel de estaño, y una lámina de cauchuc volcanizado, en vez del cuadro de cristal. Ó, más simple todavía, en vez del papel de estaño puede emplearse un pliego de papel frio (véase § V). Vamos á satisfacernos de esto. Extiéndase un pliego de dicho papel sobre una mesa, sobre él colóquese la lámina de cristal, y extiéndase sobre esta última una hoja de papel de tamaño inferior á ella. Comúñíquese la hoja con el electróscopo y cárguese exactamente como se hizo con el papel de estaño. Al levantar el cristal, con su hoja de papel, las hojas del electróscopo divergen inmediatamente; al bajar el cristal vuelven á caer y reunirse. Abandónese por completo el pliego inferior, y que la mesa sirva de cubierta exterior; si no es de madera muy seca, ó cubierta con un barniz aislador, se conseguirán con ella los resultados obtenidos con el estaño, hojalata y papel. Así, con los más sencillos medios ilustramos grandes principios.

El acto de retirarse la electricidad del electróscopo, cuando hacemos descender la lámina de cristal á fin de llevar la electricidad de la cubierta superior
dentro de la esfera de acción de la inferior, se llama a veces «condensación.» La electricidad sobre una de las láminas ú hojas era imaginada como comprimida fuertemente, ó condensada, por la atracción de la otra. Los fabricantes de instrumentos construyen uno especial, llamado condensador, para ilustrar la acción aquí explanada.

El lector puede fácilmente hacer uno para sí. Tómense dos círculos, PP', fig. 41, de hojalata ó de zinc laminado, y manténgase el uno, P', por una barra de lacre ó de cristal, G, el otro, P, por un vástago metálico puesto en comunicación con la tierra. La placa aislada, P', se llama lámina colectora, la no aislada, P, lámina condensadora. Comuníquese la lámina colectora con el electróscopo por medio del alambre w, y póngase cerca de ella la lámina condensadora, dejando, sin embargo, un pequeño espacio de aire entre ellas. Cárquese el colector, P', ó el alambre, w, con el tubo de cristal hasta que las hojas del electróscopo principien á divergir. Retírese la lámina condensadora, las hojas se separan al momento, acérquese la lámina condensadora y vuelven á reunirse de nuevo.

Ó varíese la construcción, y hágase el condensador de este modo. Empleando la mesa, ó una lámina de papel, si la mesa fuese un aislador,
como lámina del condensador, extiéndase sobre ella la lámina de goma elástica, P, fig. 42, y colóquese sobre ésta la chapa de hojalata gruesa AB. Póngase en comunicación esta chapa con el electróscopo, T, por medio del alambre, w, y comuníquese electricidad al pequeño peso A hasta que las hojas, L, empiecen á divergir; entonces levántese la chapa de hojalata por sus dos presillas de seda: las hojas se apartan inmediatamente.

Por último, el lector hará ver su conocimiento completo de la botella de Leyden, y lo libre que está de la rutina de los constructores de instrumentos, haciendo una botella del modo novísimo siguiente. Colóquese él sobre una tabla sostenida por vasos calientes. Tome en su mano derecha una lámina de cauchuc volcanizado, y coja la mano izquierda de un amigo en comunicación con la tierra, de manera que la expresada lámina quede entre las dos manos. Coloque su mano izquierda sobre el conductor de la máquina, y que pongan en acción a ésta. El lector y su amigo sienten pronto un crujimiento y un hormigueo de las manos, debido á la atracción progresiva de las electricidades opuestas á través de la goma elástica. La «mano-botella» se encuentra entonces cargada. Para descargarla no tienen más que acercarse las otras manos: entonces
se siente el choque ó connmocion de la botella de Leyden y se ve y oye la chispa.

Por medio de la descarga de la mano-botella se puede prender fuego á la pólwora. Pero esto se referirá más particularmente en otro lugar. (Véase § XXV.)

§ XXIII.—Situación de la carga en la botella de Leyden

Franklin procuró determinar cómo estaba disimulada la carga en la botella de Leyden. Cargó con electricidad un frasco medio lleno de agua y forrado por la parte externa con papel de estaño; sumergiendo el dedo de una mano en el agua y tocando la cubierta exterior con la otra recibía un choque. De esto fué llevado á investigar si la electricidad estaba en el agua. Para ello vertió ésta en un segundo frasco, la examinó y encontró que no había llevado consigo electricidad alguna.

Su conclusion fué «que el fuego eléctrico ó debe haberse perdido, al vaciar el líquido, ó debe haber permanecido en el frasco. Encontró ser cierto lo último, pues llenando el frasco cargado con nueva agua obtuvo la connmocion, y quedó por tanto satis-
fecho de que el poder de comunicarla residía en el cristal mismo\(^1\).

(Franklin dió una explanación de sus descubrimientos en una serie de cartas dirigidas á Peter Collinson, Esq., F. R. S., de 1747 á 1754.)

Hasta aquí sobre historia; pero ésta debe comprobarse repitiendo los experimentos de Franklin. Póngase agua en un vaso grande de cristal; colóquese un segundo vaso dentro del primero y llénese hasta la misma altura con agua. Póngase en comunicación el agua exterior con la tierra por medio de un alambre, y con otro el agua interior con la máquina eléctrica. Una vuelta ó dos suministran una carga suficiente. Retirando el alambre interior y sumergiendo un dedo en el agua exterior y otro en la interior se siente un fuerte choque. Este fué el primer experimento de Franklin.

Pasemos al segundo. Cubrasé una botella de cristal con papel de estaño (no demasiado alto); llénese hasta la misma altura con agua y colóquese sobre tela de goma elástica. Cárguese poniendo en comunicación la cubierta externa con la tierra, y el agua del interior (por medio de un vástago fijado al fondo de la botella y que termine en una bola.

\(^{1}\) Priestley, Historia de la electricidad, tercera edición, página 149.
por su parte superior) con una máquina eléctrica. Se obtiene al descargarla una brillante chispa. Esto prueba que está en buen órden el aparato.

Vuélvase á cargar. Agárrese la botella cargada con la goma elástica y viértase en una segunda botella semejante. Ninguna carga sensible es comunicada á esta última. Échese nueva agua no-eléctrizada en la primera botella y descárguese. La retención de la carga se manifiesta por una brillante chispa. Póngase cuidado en estos experimentos ó fracasarán, como me sucedió á mí por primera vez. El borde de la botella por el cual se vacía el agua ha de rodearse con una tira de papel esponjoso para retener la gota final que, al deslizarse hacia abajo, descargaría la botella.

Experimentos como los de Franklin se hacen ahora construyendo movibles las cubiertas de la botella de Leyden. Cargada una botella de esta clase se puede levantar la cubierta interior y comprobar su estado no-eléctrico. El cristal puede entonces retirarse de la cubierta exterior, cuyo estado neutro también se comprueba. Reuniendo de nuevo la botella y cubiertas, al ponerse éstas en comunicación pasa la descarga con una brillante chispa.

Hágase una botella con cubiertas movibles de este modo:—Enróllese papel de cartuchos alrededor
de un buen vaso de flint-glass, G, fig. 43, hasta una pulgada pròximamente del borde. Prepárese para pegarlo el extremo inferior de papel, y fíjese en él un fondo, también de papel, correspondiente al del cristal. Vístase el papel, T, por dentro y por fuera con papel de estaño. Construyase una cubierta semejante, T', para el interior del vaso, asegurando en ella un alambre vertical, W, que termine en gancho. Con esto se tiene una botella de Leyden dispuesta para todo lo que se quiera.

Pónganse las piezas reunidas y cárguese la botella. Por medio de un tubo de cristal, de lacre ó de guta-percha, levántese y retiérase la cubierta interior. Llevará consigo alguna electricidad. Colóquese sobre una mesa y descárguese por completo. Después sáquese con la mano el vaso de su cubierta exterior. Ninguna de ambas cubiertas da señales ahora del más ligero síntoma de electricidad. Restitúyase el vaso á su cubierta exterior y por medio del gancho y tubo aislador póngase también en su sitio la cubierta interna. Descárguese la botella: se obtiene una brillante chispa. La electricidad que produce esta chispa debe haber permanecido en el interior y superficie del cristal.

Aquí, como en todos los demás casos, se puede cargar la botella con un tubo de cristal frotado,
aunque una máquina que actúe en buen orden lo hará más rápidamente. Con el «frotador de Cottrell,» descrito en la sección inmediata, puede aumentarse en alto grado la acción del tubo de cristal.

§ XXIV.—Ignición por la chispa eléctrica.
Frotador de Cottrell.—El tubo-máquina

Nollet y otros habían hecho, sin obtener resultado, varias tentativas para incendiar sustancias inflamables con la chispa eléctrica. Por primera vez lo efectuó Ludolf, en la apertura de la Academia de Ciencias por Federico el Grande, en Berlín el 23 de Enero de 1744. Con una chispa obtenida de la espada de uno de los caballeros de la Córte, presentes en aquella ocasión, incendió Ludolf el éter sulfúrico.

El Dr. Watson verificó también numerosos experimentos sobre la ignición de los cuerpos por la chispa eléctrica. Prendía fuego á la pólvora y descargaba armas de fuego. Además haciendo que una persona electrificada agarrase una cuchara que contenía éter, prendió fuego á este con el dedo de otra persona sin electrizar. También observó que la
chispa variaba de color cuando las sustancias entre las cuales pasaba eran diferentes.

Estos y otros numerosos experimentos pueden hacerse por medio de una «maquina» más simple con mucho que todas las descritas hasta ahora, y que Mr. Cottrell ha inventado en beneficio nuestro. En la máquina eléctrica, según yá hemos aprendido, el conductor principal se llena de electricidad positiva por medio de la descarga de la negativa desde las puntas hacia el cristal excitado. Nuestro tubo de cristal y frotador pueden, de un modo análogo, hacerse servir para esto. Una tira de lámina de latón ó de cobre, P, fig. 44, se cose en el borde de la almohadilla de seda, R, usada como frotador. A través de aberturas de la tira metálica se introducen unas veinte puntas de alfileres, que se sueldan al metal. Cuando el tubo es abrazado por el frotador, la tira de metal y las puntas rodean por completo al cristal.

Al poner en comunicación por medio de un alambre fino, w, la tira de metal con la bola de una botella de Leyden, á cada golpe hacia abajo del frotador el tubo de cristal es poderosamente excitado, encontrándose inmediatamente siguiendo al frotador excitante el círculo de puntas. Desde éstas se descarga la electricidad negativa hacia el tubo,
escapándose la electricidad libre positiva a través del alambre hacia la botella, que de este modo se carga rápidamente.

La ignición del gas se efectúa con rapidez por medio del frotador de Cottrell. Poniendo en comunicación la tira de metal, R, fig. 45, con un botón metálico aislado, B, colocado como una cuarta parte, ó una octava de pulgada de un mechero de Argaud en comunicación con la tierra, a cada golpe hacia abajo del frotador pasa una corriente de chispas entre el botón y el mechero. Si se hace salir el gas se inflama inmediatamente por la corriente de chispas. Apagando la llama y repitiendo el experimento se inflama el gas infaliblemente a cada golpe del frotador.

De este modo se inflama el éter sulfúrico en una cuchara que haya sido previamente calentada; pero el éter pronto se enfria por la evaporación, su vapor se disminuye por el frío y entonces es menos fácil de inflamar. El bisulfuro de carbono puede ser sustituido en vez del éter con la certeza de que cada golpe del frotador la pondrá en ignición (1). La chispa así obtenida inflama también una mezcla de oxígeno y hidrógeno. Los dos gases se unen con

(1) Soy deudor al Dr. Debus de haberme sugerido la sustitución del éter por el bisulfuro.
explosión, para formar el agua, cuando pasa á través de ellos una chispa eléctrica.

Mr. Cottrell ha montado tambien su tubo de cristal de modo que se consigue utilizar la friccion en ambas direcciones. El tubo-máquina está representado en la fig. 46. AB es el tubo de cristal abrazado por el frotador R. PP' son dos tiras de metal provistas con hileras de puntas. Desde PP' parten alambres hácia la bola C, que está aislada por el vástago horizontal G. Este vástago aislador puede suprimirse con ventaja haciendo que los alambres P y P' sean lo bastante fuertes para sostener la bola C. En C pueden sacarse chispas, puede cargarse una botella de Leyden, darse vueltas al molino eléctrico, mientras que los alambres que procedan de allí pueden emplearse en experimentos de ignicion. Yo, sin embargo, recomiendo eficazmente á la atencion de los lectores el frotador más simple representado en la fig. 44.

«Raras veces,» dice Riess, «ha contribuido un experimento á desenvolver la ciencia á que pertenece más que éste de la ignicion de los cuerpos por la chispa eléctrica.» Excitó interés universal y fue repetido en todas las casas reales. El dinero estaba pronto para la prosecucion ulterior de las investigaciones eléctricas. El experimento despues se ex-
tendió entre el pueblo, y Riess considera probable que el interés general así excitado llevó al descubrimiento de la botella de Leyden, que tuvo lugar poco tiempo después.

Klingénstierna dejó atónito al rey Federico de Suecia inflamando una cuchara de alcohol por medio de un pedazo de hielo. Con el frotado de Cottrell y el bisulfuro de carbono se hace con facilidad este sorprendente experimento, y los lectores deben completar sus conocimientos repitiéndolo. A cada golpe del frotador la chispa del extremo de una varilla puntiaguda de hielo pone en ignición infaliblemente al bisulfuro.

Cadogan Morgan, en 1785, procuró producir la chispa eléctrica en el interior de cuerpos sólidos. Insertó dos alambres en madera é hizo pasar entre ellos la chispa; la madera era iluminada con una luz de color rojo de sangre, ó amarilla, según era mayor ó menor la profundidad á que la luz se producía. La chispa de la botella de Leyden producida en el interior de una bola de marfil, de una naranja, de una manzana, ó bajo el dedo pulgar ilumina estos cuerpos por completo. Un limón es especialmente apropiado para este experimento, despidiendo instantáneamente á cada chispa como un esferoide de brillante luz dorada. La fig. 47 ma-
nifiesta el modo de montar el limon sobre el vástago de laton B. La chispa aparece en s, en el intervalo entre los vástagos A y B. Una fila de huevos colocado en un cilindro de cristal se ilumina también brillantemente al pasaje de cada chispa de una botella de Leyden.

§ XXV.—Duración de la Chispa Eléctrica

La duración de la chispa eléctrica es muy breve: en un caso especial encontró Sir Charles Wheatstone que era de \(\frac{1}{74000} \) de segundo. Este, sin embargo, era el máximo de duración, pues en otros casos fue menor que una millonésima de segundo.

Cuando un cuerpo es iluminado por un instante, su imagen permanece sobre la retina del ojo por espacio de un quinto de segundo prósicamente. Si, pues, un cuerpo en movimiento muy rápido es iluminado por una llamada instantánea, se le verá permanecer sin movimiento, por una quinta parte de segundo, en el mismo punto en que la luz caiga sobre él. Una pequeña bala de carabina pasando a través del aire es iluminada por una llamada eléctrica, se veía sin movimiento; un círculo como el DD', fig. 48, dividido en sectores negros y blancos y dando vueltas tan rápidamente como para
hacer que los sectores se confundan en un gris uniforme, aparece perfectamente sin movimiento cuando es iluminado por la chispa de una botella de Leyden, distinguiéndose todos sus sectores. Un surtidor descendiente de agua, que aparece continuo, se resuelve por la llamarada eléctrica en sus gotas constituyentes. El rayo, como ha hecho ver el profesor Dove, tiene una rapidez análoga en su descarga.

Durante largo tiempo se encontró casi imposible el inflamar la pólvora con la chispa eléctrica. Su duración es tan breve que la pólvora, cuando la descarga tenía lugar en medio de ella, era simplemente rociada con violencia alrededor. En 1787 Wolff introdujo en el circuito, a través del cual pasaba la descarga, un tubo de cristal mojado por su parte interior. De este modo hizo segura la ignición. Esto se debía al retardo de la chispa por el conductor imperfecto. El algodon-pólvora, el fósforo, la yesca, que son separados fuertemente por la chispa no-retardada, se incendian cuando se retarda la descarga con un tubo de agua. Un cordon humedecido es el medio usual que se aplica para conseguir este retardo siempre que se tiene que descargar la pólvora.

El instrumento usualmente empleado para la
ignición de la pólvora es el descargador universal. Nosotros haremos el nuestro de este modo:—I é I’ (fig. 49) son varillas aisladoras de cristal ó lacre que sirven de soportes á dos brazos de metal, cuyos extremos pueden hacerse descender sobre la pequeña mesa central S. Estando uno de los brazos metálicos del descargador en comunicación con la tierra, por medio del alambre e, los extremos separados de los dos brazos se rodean con pólvora en S. Enviando á través de ella la carga no-retardada, la pólvora es rociada mecánicamente. Introduciendo en el circuito el cordon mojado w, la ignición tiene lugar infaliblemente al pasar la chispa.

Este es el lugar de cumplir nuestra promesa de inflamar la pólvora con la «mano-botella.» La figura 50 explica la disposición para ello. H H’ son las manos de la persona aislada, F la mano del amigo no-aislado, I la goma elástica que se encuentra entre las manos. La bala de plomo B está suspendida por un cordon húmedo. Sobre el pequeño soporte P, que comunica con la tierra, está colocada la pólvora. La manera de cargar la mano-botella se ha descrito en el § 22. Una vez cargada, sólo es necesario hacer descender la bola B sobre la pólvora para causar la explosión de ésta.
§ XXVI—La luz eléctrica en el vacío

La luz eléctrica en el vacío fue observada primero por Picard en 1673. Al conducir un barómetro desde el observatorio a la Porte St. Michel, en París, vio luz en la parte superior del tubo. Sebastien y Cassini lo observaron después en otros barómetros. Juan Bernouilli, agitando mercurio en un tubo que había sido apurado por una máquina neumática, forjó un «fósforo mercurial» que fue llevado al Rey de Prusia—Federico I—el cual concedió por ello una medalla de valor de cuarenta ducados. El gran matemático escribió un poema en honor de esto.

Bernouilli no dio la explicación de este resultado. Esta quedó reservada a Hauksbee, el cual, en 1705 siguió las investigaciones sobre este asunto y lo experimentó ante la sociedad Real. Sobre la platina de una máquina neumática colocó dos campanas de cristal, la una sobre la otra. La exterior y más grande estaba abierta en su parte superior. En la abertura fijó Hauksbee herméticamente un embudo, que cerró con un tapon de madera y llenó de mercurio. Apuró el aire del espacio que resultaba entre
las dos campanas, y retirando el tapon de madera hizo fluir el mercurio contra la superficie externa de la campana interior. De esta manera obtuvo una lluvia de fuego. Este es un experimento verdaderamente precioso cuando el observador lo presencia desde muy cerca.

Una copia de la misma figura de Hauksbee, ilustrativa de este experimento, es adjunta, fig. 51. M, es el embudo que contiene el mercurio, P, el tapon de madera, S, la campana externa y S' la interna. En vez del tapon P puede emplearse con ventaja, para poner en comunicación el embudo con la campana privada de aire, un tubo de goma elástica ceñido por una abrazadera. Aflojando ésta gradualmente puede hacerse caer el mercurio en la proporción que corresponde al máximo de efecto luminoso. Las corrientes de luz producidas son muy bellas, pero son más continuas de lo que indica Hauksbee.

El 1706 Hauksbee refirió el fenómeno á su verdadera causa, á saber: la fricción entre el mercurio y el cristal en el aire altamente enrarecido. Juan Bernouilli ridiculizó esta explicación; pero la verdad sobrevive al ridículo y hoy se admite universalmente que Hauksbee tenía razón.

Hauksbee también hizo el siguiente experimen-
to, que, como manifiesta Riess, es explanado con referencia al principio de inducción. Montó un globo hueco de cristal de modo que podía imprimirsele una rápida rotación. Después de hacer el vacío, y, mientras estaba en rotación, apoyaba en él la mano en la oscuridad, con la cual el globo se electrizaba positivamente. La electricidad positiva actuaba por inducción sobre el cristal mismo, atrayendo su fluido negativo, pero descargando el positivo como una incandescencia luminosa a través del aire enrarecido del interior. Hauksbee pudo leer con la luz así producida.

Por medio de tales experimentos se demostró que el aire enrarecido favorecía el pasaje de la electricidad. El aire seco es realmente un aislador que hay que vencer para producir la chispa eléctrica. A través de un tubo de cristal enrarecido de seis pies de largo, pasa libremente una descarga que no podría saltar sobre la quinta parte de este intervalo en el aire. Pero mientras la chispa en el aire es densa y brillante, la descarga en el vacío llena el tubo enrarecido con una luz difusa.

(Es aquí digno de notarse, que en un período relativamente muy anterior, Grummert, un polaco, propuso el empleo de esta luz eléctrica difusa para...
iluminar las minas de carbon, idea que ha sido reanimada en nuestros días. La luz en esta forma no puede inflamar los gases explosivos que tan terribles desastres producen en las minas.)

Priestley, en su «Historia de la Electricidad» describe la luz en el vacío de este modo: «Tómese un recipiente grande, muy seco, y en su parte superior insértese con cemento un alambre con punta no muy aguzada; después hágase el vacío en el recipiente y preséntese al conductor la parte roma del alambre, y cada chispa pasará á través del vacío en una corriente ancha de luz, visible en toda la longitud del recipiente por grande que sea éste. Esta corriente ó río de luz se divide muchas veces en una variedad de pequeños riachuelos que continuamente cambian su curso, uniéndose y dividiéndose de nuevo de la manera más agradable. Si se descarga una botella á través de este vacío, presenta la apariencia de un cuerpo de fuego muy denso que salta directamente por el centro del espacio vacío sin tocar nunca los lados.»

Cavendish empleaba un doble tubo barométrico encorvado en forma de herradura, con su parte curva vacía, para demostrar el pasaje de la electricidad á través del vacío. En realidad no es el vacío el que conduce la electricidad, sino el aire altamen-
te enraecido y el vapor que llenan el espacio existentes sobre las columnas barométricas. Cuando el mercurio que se emplea ha sido cuidadosamente privado de aire y de humedad mediante ebullición anterior, el espacio que hay sobre él, según han demostrado Walsch, De Luc, Morgan, y Davy, es completamente incapaz de conducir la electricidad. Experimentos análogos han sido hechos en el laboratorio de Mr. Gassiot, á quien tantas preciosas experiencias eléctricas debemos. También el Profesor Dewar ha conseguido aplicar con éxito su destreza experimental en este asunto.

La electricidad, por lo tanto, no pasa á través de un verdadero vacío; requiere para su tránsito materia ponderable. Si un electróscopo de panes de oro se mantiene á cierta distancia de todo cuerpo conductor, puede conservarse cargado, durante un período casi indefinido, en el vacío obtenido con una buena máquina neumática.

La materia hecha luminosa de este modo por la descarga eléctrica es atraída y repelida como cualquiera otra materia electrizada. «Un dedo,» dice Priestley, «puesto en la parte exterior del cristal lo atraerá (á la corriente luminosa) á cualquier sitio que la persona quiera. Si se abraza la vasija con ambas manos, se siente cada una de las chispas
como la pulsación de una gran arteria, y todo el fuego ó corriente luminosa se dirige hácia las manos. Esta pulsación se percibe á cierta distancia del recipiente y en la oscuridad se ve una luz entre las manos y el cristal.»

«Todo esto,» continúa el historiador de la electricidad, «mientras el alambre puntiagudo se supone electrizado positivamente; si lo está negativamente, la apariencia es distinta de una manera notable. En vez de corrientes de fuego, nada se ve, sino una apariencia luminosa uniforme, semejante á una nube blanca, ó á la vía láctea en una noche clara y estrellada. Raras veces alcanza toda la longitud de la vasija, sino que por lo general es sólo semejante á una bala lúcida en el extremo del alambre.»

De las dos apariciones aquí descritas, la primera se conoce con el nombre de plumero eléctrico y la otra con el de resplandor eléctrico. Ambos pueden producirse en el aire libre. El resplandor se ve con frecuencia sobre los palos de los buques y lo mencionan los antiguos como apareciendo en las puntas de las lanzas. Se llama fuego de St. Ermo, ó San Telmo, según el santo de los marineros, Erasmo, que sufrió el martirio en Gaeta, á principios del siglo cuarto.

El color de púrpura de la luz difusa en el aire
enrarecido fué observado por Hauksbee, y depende del resíduo de gas atenuado, ó vapor, á través del cual pasa la descarga. Si el resíduo es de oxígeno, la luz es blanquecina: si es de hidrógeno, roja; si de nitrógeno, la luz es purpúrea, asemejándose exactamente á la desenvuelta á veces por la aurora boreal —color debido sin duda á la descarga de la electricidad á través del nitrógeno enrarecido del aire.

La luz eléctrica en el vacío se produce fácilmente por la fricción de un frotador amalgamado contra el exterior de un tubo enrarecido. La luz es también producida por la fricción del mercurio dentro del vacío barométrico. Las descargas á través de tubos de muchos pies de longitud, en los que se ha hecho el vacío con una máquina neumática, son muy bellas. El doble tubo barométrico de Cavendish también presenta un arco de luz verdaderamente maravilloso cuando se hace pasar á través de él una fuerte descarga eléctrica. La fig. 52 manifiesta la mejor disposición para este experimento. P, es el conductor principal de una máquina eléctrica; I, una bala de metal aislada, puesta en comunicación mediante un alambre con el vaso de mercurio A. El vaso B se comunica por medio de un alambre con la tierra. C y C' marcan la altura de las columnas
de mercurio. Cuando se pone en acción la máquina pasan chispas de P á I, extendiéndose á cada pasaje desde C á C' un vivo arco de luz. Haciendo que I se aproxime á P, las descargas se hacen mas frecuentes pero más débiles; aumentando la distancia P I, las chispas vienen á ser más raras, pero más fuertes. Cuando son muy fuertes, cada una de ellas es acompañada por un arco de sorprendente brillantez (1).

Los pequeños tubos para estos experimentos se obtienen del mejor modo de los constructores de instrumentos de Física.

§ XXVII.—Figuras de Lichtenberg.

Lichtenberg inventó un medio de descubrir la condición de una superficie electrizada rociándola con polvo. El óxido rojo de plomo, pasando á través de muselina, se electriza positivamente; la flor de azufre, negativamente. Frotando vivamente un plumero de zorra sobre una torta de resina, y llevando sobre la superficie de ésta el botón de una botella de Leyden, cargada positivamente, la resina se vuelve en parte

(1) Es conveniente situar el intervalo P I á cierta distancia del arco, de modo que la luz de la chispa no debilite el efecto de la descarga sobre el ojo.
negativa y en parte positiva. Rocinando sobre su superficie el polvo mezclado, se coloca el azufre sobre los lugares positivos y el plomo rojo sobre los negativos, resultando un modelo muy bello.

Este experimento de Lichtenberg vino a ser el gérmen de las importantes investigaciones acústicas de Chladni. Las «figuras de Chladni» descendieron directamente de las «figuras de Lichtenberg.»

§ XXVIII.—LA SUPERFICIE COMPARADA CON LA MASA.—DISTRIBUCION DE LA ELECTRICIDAD EN CONDUCTORES VACÍOS.

Monnier demostró que la carga de un conductor dependía de su superficie y no de su contenido sólido. Un yunque de 200 libras de peso dió una chispa más pequeña que una trompeta acústica que pesaba diez libras. Una bala sólida de plomo dió una chispa sólo de la misma fuerza que la obtenida de una pieza delgada de plomo de la misma superficie encorvada en forma de aro. Por último, Monnier obtuvo una fuerte chispa de una larga tira de lámina de plomo, pero la consiguió muy pequeña cuando estaba enrollada formando una masa informe.

Le Roy y D’Arey demostraron que una esfera hueca aceptaba la misma carga cuando vacía que
cuando estaba llena de mercurio, lo cual aumentaba 60 veces su peso. Todo esto prueba la distinción entre la influencia de la superficie y la de la masa.

La manera en que actúan los cuerpos huecos aclara y hace ver perfectamente la distribución de la electricidad. Comuníquense por medio del portador (fig. 15) medidas sucesivas de electricidad al interior de una cuba para hielo aislada, ó de una vasija de peltre. Al ensayar el interior de la vasija con el portador y un electróscopo no se encuentra allí electricidad alguna, pero sí sobre la superficie externa. Un sombrero suspendido por cordones de seda es tan apropiado como la cuba para la experiencia.

Este experimento con el sombrero es muy instructivo. El sombrero puede cargarse con el frotador de Cottrell ó con un tubo de cristal frotado.

 Nótese, al ensayar, que las cargas más fuertes se obtienen de los bordes, y no de la superficie redondeada ó plana del sombrero. La carga más fuerte de todas es comunicada al portador por el ala del sombrero.

Las cargas sucesivas pueden comunicarse al sombrero con una bola de metal suspendida por medio de seda. La bola cargada, al tocar la super-

BUAH
fície interior, se transforma por completo en no-
eléctrica.

Franklin colocó una larga cadena en una tetera de plata que electrizó. Poniendo esta última en co-
municación con un electróscopo de bola de médula, produjo una divergencia. Levantando entonces la ca-
dena por medio de un cordón de seda encontró que la electricidad se difundía sobre la porción exterior de la tetera; anunciándose está retirada de la electrici-
cidad desde el electróscopo por la unión parcial de las bolas divergentes de médula.

La fig. 53 indica el modo de repetir este expe-
rimento: T, es la tetera mantenida por un buen vaso de cristal, G, y puesta en comunicación por el alambre w con el electróscopo E. El efecto es peque-
ño, pero distinguible.

El mayor experimento con conductores huecos fué hecho por Faraday, que se colocó en una cáma-
ra cúbica construida de listones y cubierta con papel y tela fina de alambre. Estaba suspendida por medio de cuerdas de seda. En la parte interna de esta cámara no podía descubrir el más ligero signo de electricidad, no obstante lo delicado de su electróscopo y por fuertemente electrizados que estuviesen los costados de la cámara.
§ XXIX.—Efectos fisiológicos de la descarga eléctrica.

El efecto fisiológico del choque eléctrico ha sido estudiado de varios modos. Graham hizo á cierto número de personas coger una misma lámina de metal que estaba en comunicación con la cubierta exterior de una botella de Leyden cargada, y cojer también una varilla por la que se descargaba la botella. El choque se dividió igualmente entre todos.

El abate Nollet formó una línea de ciento ochenta guardias y envió la descarga á través de todos ellos. También mató gorriones y peces con el choque. La analogía de estos efectos con los producidos por el trueno y el rayo no podía pasar desapercibida, ni dejar de ser un estímulo para las investigaciones.

En efecto, á medida que aumentaban los conocimientos experimentales, las ideas de los hombres se hacían más definidas y exactas en lo que toca á la relación de los efectos eléctricos con el trueno y el rayo. El abate Nollet se expresa singularmente de esta manera: «Si cualquiera se propusiese demostrar, partiendo de una comparación bien conexiónda de fenómenos, que el trueno es en manos de la naturaleza lo que la electricidad en las nuestras, y que las maravillas que nosotros ahora exhibimos á
nuestro placer son pequeñas imitaciones de esos grandes efectos que nos aterran; confieso que esta idea, si era bien sostenida, me causaría muchísimo placer. Después señala las analogías entre ambas clases de fenómenos y continúa de este modo: «Todos estos puntos de semejanza, que he estado meditando por algún tiempo, empiezan a hacerme creer que, tomando como modelo la electricidad, podía uno formarse, con respecto al trueno y al relámpago, ideas más perfectas y más probables que las que han sido presentadas hasta ahora (1).»

Estas opiniones prevalecían en la época a que nos referimos y de ellas procedió la prueba experimental, por el gran físico Franklin, de la identidad sustancial del relámpago con la chispa eléctrica.

Franklin quedó dos veces sin sentido por el choque eléctrico. Después hizo pasar la descarga de dos grandes botellas a través de seis hombres robustos, que cayeron al suelo y se levantaron otra vez sin darse cuenta de lo que había sucedido, pues no oyeron ni sintieron la descarga. Priestley, que hizo muchos valiosos trabajos en electricidad, recibió la carga de dos botellas, pero no la encontró dolorosa.

Esta experiencia concuerda con la mía. Hace algún tiempo me encontraba en este salón con una batería cargada de quince grandes botellas de Leyden delante de mí. A consecuencia de alguna torpeza por mi parte, toqué el alambre que comunicaba con la batería y la descarga pasó á través de mí. La vida desapareció absolutamente por un sensible intervalo, pero no hubo traza alguna de dolor. Después de un corto tiempo recobré la conciencia de mí mismo; distinguí confusamente el auditorio y el aparato, y deduje de esto, y de mi propio estado, que había recibido la descarga. Para prevenir que se alarmase el auditorio hice la observación de que con frecuencia había deseado recibir accidentalmente un choque semejante, y que al cabo mi deseo se había cumplido. Pero aunque la conciencia intelectual de mi posición volvió con extrema rapidez, no sucedió así con la conciencia óptica; pues mientras hacia la observación anterior mi cuerpo presentaba á mis ojos la apariencia de un número de piezas separadas. Los brazos, por ejemplo, estaban separados del tronco y suspendidos en el aire. En realidad, la memoria y el poder de razonar aparecieron estar completos mucho antes de la restitución del nervio óptico á su acción ordinaria.

Esto puede considerarse como una prueba expe-
rimental de que las personas á quiénes mata el rayo no sufren dolor.

§ XXX.—Electricidad atmosférica

El aire en todo tiempo puede probarse que es un recipiente ó depósito de electricidad que sufre variación periódica. Hemos visto que hombres de ingenio empezaron pronto á vislumbrar un comun origen para el chasquido y luz de la chispa eléctrica y para el trueno y el relámpago. El más grande investigador en este terreno es el celebrado Dr. Franklin. Hizo una comparacion que nada deja que desear entre los efectos de la electricidad y los del rayo. Vió que la luz de éste era de la misma figura que una prolongada chispa eléctrica; semejante á la electricidad el rayo ataca los objetos puntiagudos con preferencia á los otros, sigue el camino de menor resistencia, quema, disuelve los metales, separa con violencia los cuerpos y deja sin vista á las personas. Franklin imitó todos estos efectos, dejando á un palomo sin vista y matando una gallina y un pavo con la chispa eléctrica. Á fin de que se compare con una descarga de rayo ahorquillado, presento á los lectores, en la fig. 54, la larga chispa obtenida de una pode-
rosa máquina de ebonito provista de un conductor de construcción especial que favorece la longitud de la chispa.

Habiendo satisfecho completamente su inteligencia, por medio de esta comparación, de la identidad de ambos agentes, proyectó Franklin sacar electricidad de las nubes con una varilla puntiaguda erigida sobre una elevada torre. Pero antes de que se edificase ésta llevó á cabo su objeto, con verdadero éxito, sirviéndose de un pandero ó cometa, en la que había fijado un alambre puntiagudo. La electricidad descendió por la guita de cáñamo que retenía la cometa hasta una llave colocada en su extremo, estando separada ésta del observador por medio de un cordon de seda que tenía en la mano. De este modo obtuvo Franklin chispas y cargó una botella de Leyden con electricidad atmosférica.

Pero un observador en Francia, estimulado por las investigaciones de Franklin, había demostrado previamente el carácter eléctrico del rayo. Una traducción de los escritos de Franklin sobre el asunto cayó en manos del naturalista Buffon que indicó á su amigo D'Alibard su deseo de que revisase la traducción. La lectura de ésta movió á D'Alibard á erigir una varilla de hierro de 40 pies de longitud mantenida por cordones de seda y terminando en
una garita. Era vigilada por un viejo dragón, llamado Coiffer, el cual en 10 de Mayo, 1752, oyó el ruido de un trueno e inmediatamente después sacó chispas del extremo de la barra de hierro.

El peligro de los experimentos con barras metálicas se conoció pronto por la práctica. El profesor Richmann, de S. Petersburgo, tenía una barra que se levantaba tres o cuatro pies por cima de los tejados de su casa, y que por medio de una cadena comunicaba con otra barra que tenía en su habitación, descansando esta última en una vasija de cristal, y estando, por lo tanto, aislada de la tierra. En 6 de Agosto, 1753, una nube tempestuosa se descargó contra la barra externa; la electricidad pasó abajo por la cadena; al llegar a la varilla inferior fue detenida por la vasija de cristal, saltó a la cabeza de Richmann, que estaba a un pie de distancia próximamente, y lo mató en el acto. Si hubiese habido una comunicación perfecta entre la varilla inferior y la tierra el rayo entonces se hubiera consumido sin causar daño alguno.

En 1749 propuso Franklin los conductores para el rayo, y repitió su recomendación en 1753; pero se opusieron a ello bajo dos causas fundamentales. El abate Nollet, y los que como él pensaban, consideraron tan impío el prevenirse contra el rayo del
cielo, como lo es para un niño defenderse de la vara de corrección de su padre. Otros pensaban que los conductores «invitarían» al rayo a descargarse sobre ellos. También se ocasione una larga discusión con respecto a si los conductores debían ser romos ó puntiagudos. Wilson defendía los primeros en contra de Franklin, Cavendish y Watson, y de tal manera influyó en el ánimo de Jorge III, insinuándole que las puntas eran una divisa republicana para injuriar á su Magestad, que los conductores puntiagudos colocados en Buckingham House se cambiaron por otros que terminaban en bola. Experiencias de la más variada naturaleza han justificado el empleo de los conductores puntiagudos. En 1769 fue protegida por primera vez la catedral de S. Pablo.

La evidencia más decisiva en favor de los conductores se obtuvo de las embarcaciones; y semejante evidencia fue necesaria para sobreponerse á los obstinados perjuicios de los hombres de mar. Sucediéronse los casos en que embarcaciones no protegidas por conductores fueron escogidas de entre varias que lo estaban, y hechas pedazos ó destruidas por el rayo. Los conductores se hicieron primero móviles, izándose á la aproximación de una nube tempestuosa; pero fueron abandonados finalmente por los pararayos y conductores fijos que inventó el
difunto Sir Snow Harris. Es incalculable el número de fortunas y de vidas salvadas por este evidente aumento excesivo de las investigaciones eléctricas.

§ XXXI.—El choque de retroceso

En el año 1779, Cárlos, Vizconde de Mahon, después Conde de Stanhope, publicó sus «Principios de Electricidad.» En la portada del libro encuéntrase la observación siguiente:—«Este tratado comprende una explicación de un choque de retroceso eléctrico, por el que pueden producirse efectos fatales, aún a una considerable distancia del sitio donde cae el rayo.»

Los experimentos de Lord Mahon, modelos de claridad y precisión científicas, serán comprendidos fácilmente refiriéndonos á los principios de inducción eléctrica, con los cuales están ya los lectores tan familiarizados. Falta sólo notar aquí, que siempre que él habla de un cuerpo como sumergido en una «atmósfera eléctrica,» quiere decir con esto que el cuerpo se encuentra expuesto á la acción inductiva de un segundo cuerpo electrizado, pues suponía rodeado á este último por una tal atmósfera.

Algunos extractos de su obra darán clara idea de
la naturaleza de su descubrimiento: — "Coloque un cilindro metálico aislado, A B, fig. 55, dentro de la atmósfera eléctrica del conductor principal (P C) cuando estaba cargado, pero más allá de la distancia en que saltaba la chispa. La distancia entre el extremo próximo, A, del cuerpo metálico aislado y el lado del conductor principal, era de 20 pulgadas. El cuerpo A B era de latón, de forma cilíndrica, 18 pulgadas de largo por 2 de diámetro. Después coloque otro cuerpo de latón aislado, E F, de 40 pulgadas de largo por unas 3 3/4 de diámetro, con su extremo E a la distancia de un décimo de pulgada próximamente del extremo B del otro cuerpo metálico AB. Electricé el conductor principal y durante todo el tiempo que estaba recibiendo su carga positiva de electricidad pasaban un gran número de chispas (rojas ó purpúreas) débiles desde el extremo B del cuerpo cercano AB al extremo E del cuerpo distante EF."

Procuren los lectores comprender con claridad el origen de esta corriente de débiles chispas rojas ó purpúreas. Evidentemente es debida a la acción inductiva del conductor principal PC sobre el cuerpo AB. Siendo repelida la electricidad positiva de AB por el conductor principal, pasaba como una corriente de chispas a EF.
«Cuando el conductor principal, habiendo recibido su carga completa, venía á descargar súbitamente y con explosión su electricidad superabundante sobre una bola grande de latón, L, que se había hecho comunicar con la tierra, sucedía siempre que el fluido eléctrico que había sido expulsado poco á poco del cuerpo AB. y arrojado hacia el EF, volvia súbitamente, desde el cuerpo EF hasta el AB en una fuerte y brillante chispa, en el momento mismo que tenía lugar la explosión sobre la bola L.

«Á esto llamo el choque de retroceso eléctrico.»

Por los dos conductores sustituyó después Lord Mahon su propio cuerpo y el de otra persona, ambos colocados sobre banquillos aisladores, y contínua del siguiente modo:

«Me coloque sobre un banquillo aislador E, figura 56, de modo que mi brazo derecho A quedase como á unas 20 pulgadas de distancia de un gran conductor principal; otra persona colocada sobre otro banquillo aislador, K, llevó su mano derecha F al alcance de un cuarto de pulgada de mi mano izquierda B.

«Cuando el conductor principal empezaba á recibir su carga positiva de electricidad, sentíamos el fluido eléctrico que corriera desde mi mano B hacia la suya F.»
«Cuando separábamos nuestras manos B y F un poco, la electricidad pasaba del uno al otro en pequeñas chispas, que aumentaban en intensidad mientras más separábamos nuestras manos B y F, hasta que los habíamos llevado a una distancia mayor de la en que podía saltar la chispa. El intervalo de estas chispas fugitivas aumentaba también mientras mayor era la distancia entre nuestras manos B y F, como debía suceder necesariamente.

Tan pronto como el conductor principal venía a descargar repentinamente su electricidad sobre la bola L, la superabundante que la otra persona había recibido de mi cuerpo, volvía entonces desde él hacia mi en una fuerte chispa, que saltaba de su mano F, en el instante mismo que tenía lugar la explosión del conductor principal sobre la bola L.

Yo continué todavía sobre el banquillo aislador E y manifesté a la otra persona mi deseo de que se colocara en el suelo. El choque de retroceso entre nosotros fue aún más fuerte que lo había sido hasta entonces. La razón de ello era esta: —No estando aislada yá la otra persona, trasmítia libremente a la tierra su electricidad superabundante. Yo, en consecuencia de esto, me electricé negativamente aún más que en el caso anterior.

En este caso, cuando vino a tener lugar el
choque de retroceso, no sólo la electricidad que había pasado desde mi cuerpo al de la otra persona, sino también la que había pasado desde mi cuerpo a la tierra (a través de la otra persona) volvieron sobre mi repentinamente desde su mano F á mi mano B, en el mismo instante en que tuvo lugar la descarga del conductor principal sobre la bola L. Esto hacia que el choque de retroceso fuese más fuerte que en el caso anterior.

Lord Mahon fundió metales y produjo efectos fisiológicos intensos por medio del choque de retroceso.

En la naturaleza puede este choque producir efectos desastrosos. La superficie de la tierra, y los animales ó las personas que en ella se encuentran, pueden ser poderosamente influidos por uno de los extremos de una nube electrizada. La descarga puede ocurrir en el otro extremo, posiblemente á algunas millas de distancia. La restitución del equilibrio eléctrico por el choque de retroceso puede ser tan violento que produzca la muerte.

Lord Mahon comprendió é ilustró esto claramente. La fig. 57 es una copia reducida de la suya. ABC es la nube electrizada, cuyos dos extremos A y C llegan hasta cerca de la tierra. La descarga ocurre en C. Un hombre en F es muerto por el
choque de retroceso, mientras las personas situadas en D, más cerca del lugar de la descarga, pero más distantes de la nube, quedan ilesas.

Con la mira de comprobar todavía más los conocimientos en inducción de los lectores, he copiado aquí una porción de este admirable ensayo; pero la memoria de Lord Mahon completa constituiría una lección de electricidad la más útil e interesante.

Para nuestra propia instrucción podemos ilustrar el choque de retroceso como sigue:—Póngase en comunicación uno de los brazos del descargador universal, fig. 49, con un conductor semejante á C, fig. 20, y el otro brazo con la tierra. Llévese C á una distancia como de algunas pulgadas del conductor principal, pero fuera de aquella en que salte la chispa; al poner en acción la máquina una corriente de débiles chispas pasará de una punta á otra del descargador. Hágase que una persona descargue de tiempo en tiempo el conductor principal: á cada descarga se anuncia el choque de retroceso por una llamadora entre las puntas del descargador en s. Si aquí se pone algodón-pólvora, con una pequeña cantidad de pólvora fulminante esparcida sobre él, o si se comunican ambas puntas por medio de un alambre fino de plata, el uno se dispara con estallido y el otro se incendia vivamente.
La corriente de chispas repelidas que se percibe primero, puede suprimirse por completo estableciendo una conexión *imperfecta* entre el conductor C y la tierra: una cadena puesta sobre la mesa seca en que se halla colocado el conductor servirá para esto. La cadena permite a las más débiles chispas pasar a su través con preferencia a cruzar el espacio s; pero el choque de retroceso es demasiado fuerte y repentino para encontrar camino abierto suficiente a través de la mesa y cadena, y al descargar el conductor principal se ve la chispa.

La acción del choque de retroceso sobre las extremidades de una rana muerta, observada en el laboratorio del profesor Galvani, fue lo que indujo a los experimentos de este profesor sobre la electricidad animal, y llevó más adelante al descubrimiento por Volta de la electricidad que lleva su nombre.

§ XXXII—*La Batería de Leyden, sus corrientes y algunos efectos de estas.*

En la batería de Leyden ordinaria descrita en el § 19, todas las cubiertas interiores están reunidas juntamente, así como también todas las cubiertas...
exteriores. Semejante batería actúa como una gran botella única de extraordinarias dimensiones.

Los alambres se calientan con una moderada descarga eléctrica; aumentando la carga se les hace incandescentes; con una carga reforzada el metal se rompe en pedazos; después sigue la fusión; y con cargas todavía mayores los alambres se reducen á polvo y vapor metálicos.

Para tales experimentos el alambre debe ser delgado. Sin resistencia no podemos tener calor alguno, y cuando el alambre es grueso tenemos poca resistencia. El mecanismo de la descarga, según manifiestan las figuras que se producen, es diferente en los diversos alambres. La fig. 58 representa la que se produce sobre papel blanco por el polvo de un alambre de plata inflamado.

Cuando la descarga de una poderosa batería se hace pasar a través de una larga cadena de acero con los extremos de sus eslabones sin soldar, las chispas que saltan entre los anillos no-soldados arrastra consigo las partículas incandescentes del acero, las cuales se consumen en el aire apareciendo en toda la cadena una llama momentánea. Grandes cadenas han sido fundidas por haber pasado a través de ellas una descarga del rayo.
Reteniendo nuestra concepción de un fluido eléctrico le agregamos naturalmente en este caso la concepción de una corriente. La corriente eléctrica es la que produce los efectos que acabamos de describir. En muchos de nuestros experimentos anteriores teníamos electricidad en reposo (electricidad estática), aquí tenemos electricidad en movimiento (electricidad dinámica).

Enviando la corriente de una batería a través de una espiral plana (la primitiva) formada de cincuenta ó sesenta pies de alambre de cobre, y colocando a una pequeña distancia de ella una segunda espiral semejante (la secundaria) con sus extremos reunidos, el pasaje de la corriente por la primera espiral excita en la segunda una corriente, que es capaz de inflamar alambres y de producir todos los demás efectos de la descarga eléctrica. Aún en el caso de que las espirales estén separadas algunos pies, el choque producido por la corriente secundaria es todavía visible.

La corriente de la espiral secundaria puede conducirse a una tercera, y a esta tercera espiral se le puede hacer actuar sobre una cuarta, exactamente del mismo modo que la primitiva actuó sobre la secundaria. Así la corriente secundaria excita en la cuarta espiral una corriente ternaria.
Llevando esta corriente ternaria a través de una quinta espiral, y haciéndola obrar inductivamente sobre una sexta, obtendremos en esta última una corriente de cuarto orden. Por este camino producimos una larga progenie de corrientes teniendo todas por común progenitor la enviada desde la batería a través de la primera espiral. Al Profesor Henry, de los Estados Unidos, y al Profesor Riess, de Berlín, somos deudores de la investigación de las leyes de estas corrientes. Estas investigaciones, sin embargo, fueron posteriores a experimentos de carácter análogo hechos previamente por Faraday con electricidad voltáica, y en realidad fueron sugeridas por estos experimentos.

Además de la electricidad de fricción e inducción tenemos las siguientes fuentes y formas de esta fuerza:

El contacto de metales heterogéneos produce electricidad.

El contacto de los metales con los líquidos produce electricidad.

Una simple variación en el modo peculiar del contacto de dos cuerpos produce electricidad.

La acción química produce una corriente continua de electricidad (electricidad voltáica).

El calor, aplicado convenientemente a metales
heterogéneos, produce una corriente contínua de electricidad (termo-electricidad).

La calefacción y enfriamiento de ciertos cristales producen electricidad (piro-electricidad).

El movimiento de imanes y de cuerpos que lleven en sí corrientes eléctricas, produce electricidad (magneto-electricidad).

La fricción de la arena contra una lámina metálica, produce electricidad.

La fricción de partículas condensadas de agua contra una válvula de seguridad, ó mejor todavía, contra una especie de cañón de fuelle, situado en una caja de madera, á través del cual es impelido el vapor, produce electricidad (máquina hidro-eléctrica de Armstrong).

Estas son diferentes manifestaciones de una é idéntica fuerza, y todas ellas se producen mediante un gasto equivalente de alguna otra fuerza.
CONCLUSION

Nuestras investigaciones experimentales terminan aquí. Ahora yo solicitaría por cinco minutos más la atención de los lectores. El costo excesivo de los aparatos es argumento presentado con frecuencia como obstáculo para la introducción de la ciencia en las escuelas. Confío en que queda demostrado que esto no es un obstáculo real, pues no contando con los pocos experimentos mayores, que no han contribuido sino muy poco a nuestro caudal de conocimientos es evidente que el gasto acertado de un par de guineas permitiría a cualquier profesor competente poner por completo al alcance de sus discípulos los hechos y principios capitales de la electricidad friccional, dándoles con ello muy valiosos conocimientos, y todavía más, una muy valiosa educación intelectual—educación que in-
voca la observación, la reflexión, la prevision por el ejercicio del raciocinio, y la verificación experimental,

Y aquí, si me fuera posible aventurarme á ello, yo objetaría eficazmente á los dedicados á la enseñanza en nuestras escuelas, tanto en las públicas como en las demás, que el porvenir inmediato de la ciencia como factor en la educación inglesa, depende principalmente de ellos. Yo dejaría respetuosamente á su buen juicio si el dirigir al presente su atención á colecciones de aparatos costosos sería ó no un error. Su principal deber en la actualidad es despertar amor al estudio científico, y lo mejor para esto es la presentación de los hechos y principios necesarios con recursos lo más simples posibles, y dando á sus discípulos algún conocimiento de los trabajos experimentales de nuestros días.

El mismo tiempo y trabajo intelectual invertidos en forjar tales sencillos aparatos darán al profesor mismo una posesión y maestria de su asunto, que no podría obtener de otra manera; pero los jefes de nuestras escuelas deben reconocer que se necesita tiempo, no sólo para forjar tales instrumentos, sino también para preparar las experiencias que con ellas han de llevarse á cabo después de construidos. Ningun profesor de ciencias se encuentra apto para
dar su clase sin esa distinta y especial preparación antes de cada conferencia. Sus experimentos forman parte de su lenguaje y deben ser tan estrictos en lógica y tan libres de vacilaciones o tartamudeos como su palabra hablada. El hacerlos así puede implicar una inversión de tiempo que pocos de los directores jefes consideran atentamente ahora, pero que es una inversión necesaria, y obrarian muy acertadamente al proporcionarla.

A ellos, además, en palabras de amistosa prevención, yo les diría: procurad espacio para la ciencia por vuestra propia acción, recta y expontánea, y no espereís á que se os obligue á ello por presión revolucionaria del exterior. La condición de las cosas; tal cual hoy se encuentran, no puede continuar. Su simple descripción es suficiente para hacer caer sobre ella el anatema de todo espíritu pensador. Con referencia al informe de una comisión nombrada el año anterior para investigar sobre el estado de la instrucción científica de este país, escribe Sir John Lubbock lo siguiente:—«Los comisionados han publicado relaciones numéricas de más de ciento veinte de las escuelas mejor dotadas. En más de la mitad de éstas no se enseña ciencia alguna, únicamente trece tienen laboratorio, y sólo diez y ocho poseen algunos aparatos científicos. Del
número total de ellas, menos de veinte dedican hasta cuatro horas por semana á la ciencia, y solamente trece conceden alguna importancia á las cuestiones científicas en los exámenes.

Bien pueden los comisionados pronunciar su opinión de que tal estado de cosas es nada menos que una calamidad nacional! Si se persiste en él se seguirá indudablemente una reacción, que los fidelísimos amigos de la cultura clásica en Inglaterra tendrán los mayores motivos para deplorar.
ÍNDICE

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introducción</td>
<td>9</td>
</tr>
<tr>
<td>II</td>
<td>Notas históricas</td>
<td>10</td>
</tr>
<tr>
<td>III</td>
<td>El arte del experimento</td>
<td>18</td>
</tr>
<tr>
<td>IV</td>
<td>Materiales para el experimento</td>
<td>15</td>
</tr>
<tr>
<td>V</td>
<td>Atracciones eléctricas</td>
<td>17</td>
</tr>
<tr>
<td>VI</td>
<td>Descubrimiento de la conductibilidad y del aislamiento</td>
<td>24</td>
</tr>
<tr>
<td>VII</td>
<td>El Electrón</td>
<td>27</td>
</tr>
<tr>
<td>VIII</td>
<td>Cuerpos eléctricos y no-eléctricos</td>
<td>33</td>
</tr>
<tr>
<td>IX</td>
<td>Repulsiones eléctricas — Descubrimiento de las dos electricidades</td>
<td>37</td>
</tr>
<tr>
<td>X</td>
<td>Ley fundamental de la atracción eléctrica</td>
<td>38</td>
</tr>
<tr>
<td>XI</td>
<td>Electricidad del frotador — Carácter doble o «polar» de la fuerza eléctrica</td>
<td>45</td>
</tr>
<tr>
<td>XII</td>
<td>¿Qué es electricidad?</td>
<td>50</td>
</tr>
<tr>
<td>XIII</td>
<td>Inducción eléctrica — Definición del término</td>
<td>54</td>
</tr>
</tbody>
</table>
XIV Investigaciones experimentales sobre la inducción eléctrica. 57
XV El Electróforo. 68
XVI Acción de las puntas y de las llamas. 71
XVII La Máquina eléctrica. 76
XVIII Experimentos adicionales sobre la acción de las puntas.—El Molino eléctrico.—El Pez de oro.—Pararrayos. 79
XIX Historia de la botella de Leyden.—Batería de Leyden. 86
XX Explanación de la botella de Leyden. 90
XXI Batería en cascada de Franklin. 93
XXII Nuevas botellas de Leyden de la más simple forma. 95
XXIII Situación de la carga en la botella de Leyden. 100
XXIV Ignición por la chispa eléctrica.—Frotador de Cottrell.—El tubo-máquina. 104
XXV Duración de la chispa eléctrica. 109
XXVI La luz eléctrica en el vacío. 112
XXVII Figuras de Lichtenber. 119
XXVIII La superficie comparada con la masa.—Distribución de la electricidad en conductores vacíos. 120
XXIX Efectos fisiológicos de la descarga eléctrica. 123
XXX Electricidad atmosférica. 126
XXXI El choque de retroceso. 130
XXXII Batería de Leyden, sus corrientes y algunos efectos de éstas. 136
Conclusion. 141