

. COVER LETTER

Title.- Fast Path Ethernet Switching: On-demand Efficient Transparent Bridges for

Data Center and Campus Networks

Abstract
Ethernet bridging in campus networks offers advantages like zero configuration, no need of IP addresses administration in

subnets, high performance and low costs. But Ethernet bridging does not scale. Current proposals under standardization, like

Shortest Path Bridges and Routing Bridges use a link-state routing protocol to compute shortest paths. As a simpler alternative,

we propose an evolution of the transparent bridges learning mechanism, that provides loop-free, full infrastructure utilization for

campus and datacenter networks. Fast Path Ethernet Switches double use the standard ARP Request and Reply packets to set up

fast on-demand paths between hosts when needed. This architecture uses standard Ethernet frame format, is fully transparent to

hosts and compatible with 802.1D bridges in core-island mode. A proof of concept has been implemented in Linux. Preliminary

simulations in metropolitan and campus newtork topologies show clearly superior to spanning tree and even shortest path

routers, at a fraction of the complexity.

Index Terms— Routing bridges, Ethernet, Spanning Tree

— Computer networks, routing, protocols, switching

Authors:

Guillermo Ibáñez
Departamento de Automática. Universidad de Alcalá de Henares (Madrid). Escuela Politécnica

Superior. Campus Universitario, N-II Km 33,6. Alcalá de Henares, 28871, España. Edificio

ESTE, Despacho E-244.

guillermo.ibanez@uah.es

Juan A. Carral
Departamento de Automática

Universidad de Alcalá de Henares (Madrid). Escuela Politécnica Superior. Campus

Universitario, N-II Km 33,6. Alcalá de Henares, 28871, España. Edificio ESTE.

jac@aut.uah.es

Alberto García-Martínez
Dpto de Ingeniería Telemática. Universidad Carlos III de Madrid

Avda de la Universidad, 30, Leganés, 28911 Madrid

alberto@it.uc3m.es

José Manuel Arco
Departamento de Automática

Universidad de Alcalá de Henares (Madrid). Escuela Politécnica Superior. Campus

Universitario, N-II Km 33,6. Alcalá de Henares, 28871, España. Edificio ESTE

 josem.arco@uah.es

Diego Rivera Pinto
Departamento de Automática

Universidad de Alcalá de Henares (Madrid). Escuela Politécnica Superior. Campus

Universitario, N-II Km 33,6. Alcalá de Henares, 28871, España. Edificio ESTE

diego.rivera.pinto@gmail.com

Arturo Azcorra
Dpto de Ingeniería Telemática. Universidad Carlos III de Madrid

Avda de la Universidad, 30, Leganés, 28911 Madrid azcorra@imdea.org

Corresponding author:

Guillermo Ibáñez. guillermo.ibanez@uah.es phone. 34-91 8956927

Guillermo Ibáñez, Member, IEEE, Juan A. Carral, Alberto García-Martínez, José M. Arco, Diego Rivera, Arturo

Azcorra, Member IEEE

Abstract— In this paper we propose Fast Path Ethernet, an

evolution of the transparent bridges learning mechanisms to

increase infrastructure utilization for campus and datacenter

networks in a simple way. Fast Path Ethernet Switches reuse

standard ARP Request and Reply packets to set up fast on-

demand paths between hosts. This architecture uses the

standard Ethernet frame format, so it is fully transparent to

hosts and compatible with 802.1D bridging in core-island
mode. A proof of concept has been implemented in Linux.

Preliminary simulations in metropolitan and campus network

topologies show superior performance to spanning tree and
even to shortest path forwarding, at a fraction of the their

complexity.

Index Terms—Ethernet, Routing bridges, Spanning Tree

I. INTRODUCTION

Ethernet switched networks offer important advantages in

terms of price/performance ratio, compatibility and auto

configuration. The use of the Spanning Tree Protocol (STP)

[1] enables loop-free operation of bridged networks without

the need to configure complex routing information, and

without costly and error prone administration of IP

addresses and segments. However STP severely limits the

performance of Ethernet networks because it blocks all

links exceeding the number of network bridges minus one.

Current proposals under standardization like Shortest Path

Bridges (SPB) [2] and Routing Bridges [3] rely on a link-

state routing protocol which operates at layer two to obtain

shortest path routes between bridges. However, link state

protocols have significant complexity both in terms of

computation and control message exchange.

In this paper we propose Fast Path Ethernet Switching (or

Fast Path, for short), a zero-configuration protocol for data

center and campus networks to enable the use of the whole

available toplogy. Fast path directly evolves from the

transparent learning bridge paradigm

Fast paths are set up as a result of the controlled flooding of

an ARP Request, which is encapsulated into a broadcast

frame. The mechanism assures that the ARP Reply frame

follows the same path back to the source, so this frame is

used to confirm the set up of the path. In order to assure that

the fastest path is chosen, the first arriving copy of the ARP

Request locks at every bridge the corresponding port for the

path. Further (late) copies arriving to other ports of the

bridge are discarded.

Although flooding of packets to find the shortest path is not

a new concept, it has never been applied to transparent

learning bridges, mainly due to the problem of broadcast

frame loops . The use of flooding to obtain shortest routes

has been proposed at layer three and wireless applications,

but not for standard bridged Ethernet networks, where

either the spanning tree protocol is used to prevent loops,

loop free topologies are used, or routing in layer two is

performed and specific loop prevention mechanisms are in

use [2].

The Fast Path protocol uses the standard Ethernet frame

format, it is fully transparent to hosts and routers and may

coexist with standard bridges in core-island mode. As most

of high performance IEEE 802.1 protocols, Fast path

bridging requires point to point links between bridges. The

performance of Fast Path both in terms of infrastructure

utilization and path length is similar to shortest path routing

protocols, but with lower complexity.

II. FAST PATH PROTOCOL

There are three basic differences between Fast Path bridges

and standard spanning tree transparent bridges: first, Fast

Path increases the number of usable links, limited to a tree

for transparent bridges; second, it modifies the address

learning mechanism at ports, introducing the concept of

locking of the address learned to the first port receiving the

frame; and third, it prevents the replication of frames with

an unknown unicast destination address by means of a

mechanism which rebuilds a damaged path.

A. Fastpath set up

1) Path discovery (ARP Request)

The mechanism to set up fast paths is partially inspired by

the Reverse Path Forwarding [4]. A fast path is the fastest

(and so, unique) path created by the first copy of an ARP

Request frame reaching its destination host. The process,

described in Fig.1, works as follows:

Host S sends an ARP Request encapsulated into a broadcast

frame B to resolve the IP address of a given destination host

D. The ingress bridge 2 receives the frame from S and

associates the global MAC address of S to the port through

which it has received the message, temporarily locking the

learning of S address to this port and blocking all other

ports of bridge 2 from learning and forwarding further
received broadcast frames from source address S. Thus,

frames with source address S, arriving to other ports of

bridge 2, are discarded as late frames. Then, bridge 2

forwards B to all ports except the one through which it was

received. Bridges 3 and 1 behave as bridge 2, locking

 Fast Path Ethernet Switching: On-demand,

Efficient Transparent Bridges for Data Center

and Campus Networks

address S to the port that first receives the frame.

Afterwards, bridges 3 and 1 broadcast the frame through all

other ports except the port where it was first received, so

that duplicate copies of B arrive to 3 and 1, sent by each

other. However these frames arrive at a port different from

the port temporarily locked to S, so they are discarded.

2S 3 5

1 4

D

a) Source host S sends an ARP request

2S 3 5

1 4

D
S

Address os S associated and

learning locked to port
ARP (path) Request

(broadcasted)

ARP (path) reply (confirm) (unicast)D

S

Address of D locked to port

and learning locked to port
b) Bridge 2 associates S address to the input port, blocks

learning of S address in other ports and forwards the

frame through all other ports

2S 3 5

4

D
S S

S

1

c) Bridges 1 and 3 also associate S address to its input

port, forward the frame through all other ports and

block learning of S address in other ports

d) The same happens in Bridges 4 and 5. Finally, the

ARP Request arrives at destination host D

Figure 1. Path discovery from source host S to destination host D

 The same happens at bridges 4 and 5. Hence, the temporary

association (locking) of address S to a port at every bridge

is propagated across the network as a tree rooted at host S,

until the network edge bridges and their hosts are reached,

including the host D, destination of the ARP Request. A

chain of bridges with an input port locked to S is now active

between S and D.

2) Path confirmation (ARP Reply)

The mechanism for path confirmation in the opposite

direction is described in Fig. 2.

2 3 5

1 4

D
S S

S

S

S

DDD

IIIIIIIIIIIIIIIV
I. Host D sends a unicast ARP Reply towards host S

II. Bridge 5 associates address D to the input port and

blocks learning of D address in other ports. Then it

forwards the frame via the port associated to S.

Bridge 5 has now confirmed routes to S and D.

Cache timers are activated for both S and D

III. Bridge 3 associates address D to the input port and

blocks learning of D in other ports. Then it forwards

the frame through the port associated to S,

confirming the path and activating cache timers for

S and D

IV. Bridge 2 associates D address to the input port and

blocks learning of D address in other ports. Then it

forwards the frame through the port associated to S,

confirming the path and activating cache timers for

S and D

Figure 2. The ARP Reply packet confirms at every traversed bridge the

existing association (temporary lock) of S address to a port. It also sets up

a confirmed association of D address to its input port.

The confirmation mechanism ensures that the path is

symmetric (i.e. it coincides in both directions S-D and D-S).

The path in S->D direction (address S learnt at ports of

bridges) is confirmed backwards by the unicast reply from

the destination over the same path D->S. This is required to

keep the backward learning mechanism safe and to prevent

oscillations in port to address associations. Specific priority

mechanisms are used to prevent the setting of parallel paths

by two simultaneous ARPs sent in opposite directions.

3) Path restoration

Established Fast Paths (i.e. chains of learnt addresses at

bridge ports) may get broken at some point either by the

expiration of an address timer or by a link failure.

The failure of a link connecting two Fast Path bridges

provokes the flushing of all MAC addresses associated to

the two ports of that link. The same happens at all ports of a

node, when it is the node which it reinitializes.

Whenever a bridge receives a frame with an unknown

destination address (i.e. the address is not associated to any

port), the path may be rebuilt from the source bridge or

from the bridge detecting the missing the path.

If the path is rebuilt from the source bridge (i.e. the bridge

closest to the source host), the bridge that received the

unknown destination unicast frame encapsulates it inside a

Path_Fail message and returns it in the backward direction

towards the source host. This message is processed at each

bridge in the backward path, which forwards it via the port

associated to the source host till it reaches the source edge

bridge. The Path_Fail message is addressed to the

All_Fastpath_Bridges MAC multicast group and delivers

the the unicast frame rejected as payload. Frames sent to

the multicast group are (only) processed by Fast Path

Bridges. Every bridge in the path checks if it is the source

2 S 3 5

1 4

D
S S

S

S

S

edge bridge of the source host of the rejected unicast frame

(i.e. if the host is directly connected to it). In this case the

bridge broadcasts a new ARP Request on behalf of the

source host of the unicast frame and the path is recreated in

the normal way.

Alternatively, the path may be rebuilt directly from the

affected bridge onwards by issuing, either a standard ARP

Request on behalf of the source host, or a Path_Request

message addressed to the All_Fastpath_Bridges multicast

address. In the former case the ARP Request is replied by

the destination host with an ARP Reply that selects the path

towards the failed bridge, which intercepts the ARP Reply.

In the latter case, a Path_Request message containing the

source and destination MACs and IP addresses is

broadcasted in the forward direction and processed and

forwarded by all the bridges traversed till the bridge

attached to the destination host. The pseudo code in Fig. 3

summarizes the frame processing in a Fast Path bridge.

If the path is rebuilt from an affected bridge onwards and

the next nodes in the forward path have a port already

locked to the source address, the request will be rejected at

all ports not locked but will be accepted, even if received

later, at the port that was already locked. If a link

corresponding to a previously locked port is broken the link

failure is detected at port and locking to all MAC addresses

cancelled.

Figure 3. Fast Path protocol frame processing pseudo code

B. Address- to- port association state machine

Fast Path switches replace the standard learning mechanism

by a new mechanism for associating learned addresses to

bridge ports. Fig. 4 shows the Finite State Machine model.

The ellipses show address states and the transitions show in

the upper line the event (type of packet received in italics)

and in the lower line (in bold) the action performed. A

MAC is in released state when it is not associated to any

port of the bridge (i.e. it is unknown to the bridge). When

an ARP Request (or a Path Request) packet, sourced at

MAC address A, is received at a Fast Path Bridge via its

port x, the MAC address A changes its state to locked for

the duration of the bridge’s lock_To timer or until the

corresponding ARP Reply (or Path_Reply) is received,

whatever happens first. If the Reply packet is received

before lock_To expiration, the state changes to

learned/confirmed, so the association of A address to port x

is now firm, else the association is discarded and the state

falls back to released. The learned/confirmed state is

maintained at least for a learned/confirmed_To period. This

timer is similar to bridge cache expiration timers (300 s.)

and gets refreshed upon reception of new unicast frames

originated at A address received via port x. A B address in

the released state (unknown to the bridge) may directly

transit to learned/confirmed state when a reply packet, sent

from B to A, is received (via port y) and triggers the transit

of A address state from locked to learned/confirmed. B

address gets associated to port y.

ARP Request (A,B, x)

Forward

Refresh

lock timer

ARP Request (source, destination, input port)

or any other broadcast frame

B = broadcast address A= host MAC address

MAC A

locked

to port x

MAC A

released

MAC A

Learned

(confirmed)

to port x

Lock timer

expired

ARP reply (A,Z, ≠x)

Learn (confirm)

timer Texpired

ARP Request (A,B, ≠x)

Discard

Unicast (A, * , x)

Forward

Unicast (A, * , x)

Forward

Unicast (A, * , x)

Forward

Refresh lock timer

Figure 4. Basic state machine of address-to-port association (locking and

confirmation)

C. Reconfiguration

We now describe how Fast Path handles network

reconfiguration after a link or a bridge failure. The failure

of a bridge could be detected by the physical layer at the

input ports of neighboring nodes as a link failure.

Optionally, Continuity Check Messages could be used to

detect node or link failures as defined by specifications

Y.1731 [5] and 802.1ag [6].

When the failure of a link connecting two bridges is

detected at the respective ports, it provokes the flushing of

all MAC addresses associated to these ports. The same

happens, at all ports of a node, when a node reinitializes.

The paths are no longer valid and will be rebuilt, but only

when needed, by the path restoration procedure, as

described above.

The dynamics of learned MAC addresses in Fast Path

bridges after reconfiguration is similar to standard bridges,

although in standard bridges the topology is restricted by

the spanning tree protocol. When a port is no longer part of

the active topology due to failure or after being disable by

the operator, hosts are no longer reachable through that

port, so their MAC addresses are removed from the cache.

Frame processing at bridge

-Destination address is broadcast or multicast

 - Destination address is multicast Fast Path: process as control

frame:

 - Is Path Fail message: resend ARP Request with frame data)

 - Else if:

 - source address is unknown

 -Lock temporarily source address to input port

 - source address is known (a Fast Path exists)

 -Discard frame if input port is not the associated port

 -Forward frame through all ports except prohibited turns and refresh

persistency timer of source address

-Destination address is unicast

 - Destination address is known

 -Frame is ARP Reply to a pending ARP Request:

 - Confirm locked address (frame destination address to

 output port). Activate persistence timer.

 - Associate source address of unicast frame to input

 port. Start refresh timer.

 - Else if Source address is known

 -Forward to associated output port. Refresh timers at

 ports for source and destination addresses

 - Else: associate source address of unicast frame to input

 port. Start refresh timer

 - Destination address is unknown

 -Send Path Fail in backward direction, encapsulating packet

header in multicast frame

When a link deactivates, the addresses associated to the

corresponding port are flushed. Contrary to standard

bridges using the spanning tree protocol, Fast Path bridges

do not need to propagate Topology Change Notification

Messages to the whole network. Paths are rebuilt (addresses

are relearned) only when needed (after a path failure

reported from a reconfigured bridge), as described above.

D. Load distribution

Fast Path bridges set up paths on an on-demand basis; this

means that automatic adaptation of paths to load conditions

comes for free. By design, when a new path is requested,

the fastest path reaching to the destination host will be

selected. This means that new paths selected from hosts

(distinct from existing active communicating hosts) will

follow the fastest path at the moment of request, thus the

paths with higher load (delay) will not be selected. Switches

with shorter latency will tend to be selected. Due to the high

number of hosts, traffic will be balanced over the whole

infrastructure, thus offering shortest latencies.

E. Compatibility with standard bridges and routers

Fast Path switches may cooperate connected to standard

bridges in core-island mode, as shown in Fig. 5. A core of

Fast Path bridges may interconnect islands of standard

bridges running the spanning tree protocol. Self

configuration of islands of standard bridges operates as

follows: Fast Path bridges connected to standard bridges

receive standard BPDUs on the ports connecting to the

standard bridge islands. As a consequence they run the

standard STP protocol on those ports, emitting BPDUs to

announce the Fast Path bridge as having a direct connection

to a virtual root bridge with maximum priority. Hence, Fast

Path bridges are automatically selected as root bridges by

the standard bridges and a number of separate trees are built

rooted at the fast path core. Note that no frame

encapsulation is needed to traverse the core.

Núcleo

Fast Path Switches

Core

StandardFigur

e 5 bridges

StandardFigur

e 5 bridges

Figure 5. Hybrid network of Fast Path bridges and standard bridges in

core-island mode with virtual root activated at the edge Fast Path bridges.

F. Using Etherproxy for Scalability:

There are two main problems to solve in Ethernet

scalability: efficient layer two routing over Ethernet

(replacing spanning tree protocol to overcome its

limitations in active links and size), and broadcast

reduction, to prevent host load processing excessive

broadcasts. Fast Path focuses on the routing and Etherproxy

[7] in the reduction of broadcast. Two aspects of broadcast

are of interest: broadcast between bridges and broadcast

processing at hosts

Etherproxy is a recent proposal which can be combined

with Fast Path because it is focused on minimizing

broadcasts to improve Ethernet scalability to higher limits

(e.g. 50K hosts) that would impose significant load in hosts

for processing all flooded ARP Requests.

Etherproxy minimizes broadcast traffic in the network by

caching IP-MAC address pairs learned from ARP Reply

packets, responding directly to ARP Requests that hit its

ARP cache. The recommended location of Etherproxy

devices is at the edge of the network, with one Etherproxy

per up to 500 hosts (which is the broadcast domain size

recommended by Cisco). Etherproxy can be implemented

either as a separate device or inside the switches. Adding

the Etherproxy functionality to Fast Path switches has

significant advantages: first, reusing of the address learning

resources of the Fast Path switch by the Etherproxy

functionality, a close to 100% hit rate of ARP cache by

using automatic refresh of the ARP cache addresses by

unicast frames of user traffic traversing the switch and the

perfect location at network edge. Among the costs are:

increased processing at switches of the ARP Requests by

sending ARP Reply to requesters. Etherproxy is self

configuring, like Fast Path, so the combination of both stays

self configuring.

III. RELATED WORK

The need of scaling Ethernet campus networks and

datacenters to a single IP subnet is today accepted as the

best way to simplify IP address management [3]. Two main

obstacles have been identified as roots of the Ethernet

scalability problem: the excessive broadcast traffic

processing at hosts and forwarded by bridges, and the

spanning tree protocol limitations. Solving the excessive

broadcast problem requires alternative mechanisms to ARP

for host address and location resolution and the spanning

tree needs to be replaced by mechanisms for efficient

routing and forwarding without restrictions.

The three main proposals in this area use link state routing

(IS-IS or OSPF) protocol on layer two to build routes or

shortest path trees between bridges. These are Shortest Path

Bridges [2], RBridges (TRILL) [3] and SEATTLE [11].

 The first two focus on the routing problem and do not pay

special attention to the broadcast problem. Their routing

complexity, performing shortest path computation between

all bridges, exceeds the simplicity and network stability of

Fast Path address learning.

SEATTLE pays special attention to the broadcast problem.

It uses a one-hop distributed hash table to cache ARP table

entries in a distributed form, reducing cache sizes at

switches. Hosts are registered by its parent switch at its

resolver switch obtained by hashing its MAC address.

SEATTLE uses additional encapsulation to carry packets

between switches. Failure or recovery of a resolver seems

to be the worst case condition, taking several seconds due to

the dead interval detection of OSPF and host re-registration.

 There is no procedure defined for SEATTLE switches to

interoperate with regular Ethernet switches.

Rbridges provide optimal pair-wise forwarding and support

for multipathing of both unicast and multicast traffic. They

achieve these goals using IS-IS routing and encapsulation

of traffic with a header that includes a hop count to prevent

loops and specific RBridge identifiers. Rbridges do not

fully address the scalability problem due to broadcast but

can limit host processing of broadcasts by performing ARP

proxying for their attached hosts. RBridges are fully

miscible with standard IEEE 802.1 bridges and end nodes at

the cost of complexity: at each RBridge hop the destination

address of the next RBridge must be inserted in the outer

header.

Shortest Path Bridging (SPB) was initially proposed as an

alternative of the complexities for configuration and

optimization of Multiple Spanning Tree Protocol (MSTP).

SPB provides logical Ethernet networks on native Ethernet

infrastructure using a link state protocol to advertise

topology and logical network (VLAN) membership.

Packets are encapsulated at the edge either in mac-in-mac

802.1ah or q-in-q 802.1ad frames and transported only to

other members of the logical network. Unicast and

multicast are supported and all routing is performed on

symmetric shortest paths. SPB bridges are compatible with

standard bridges in core-island mode and do not limit

broadcast.

IV. EVALUATION

We describe here the evaluation we have carried out

regarding complexity, amount of stored state information

needed and infrastructure utilization. We also provide some

performance measures obtained from a proof-of-concept

Linux implementation and via software simulations.

A. Complexity

We now compare the message, state and computational

complexities of Fast Path bridges with those of transparent

bridges using the spanning tree protocol. Both the spanning

tree protocol and routing protocols like IS-IS are proactive:

in the spanning tree protocol, every node periodically emits

its best BPDU (lowest cost route to root bridge) to its

neighbours, processes the d (d being the average node

degree) BPDUs received from them, to select the neighbour

offering the shortest distance to the root bridge as its parent

bridge; this means that message complexity is Ѳ(d).

Shortest path bridges using link state protocols (Djikstra

shortest path algorithm) have, for a network with N bridges,

N
2
 (minimum N·logN) complexity. Besides this, they need

an additional synchronizing mechanism to prevent loops

caused by temporary route inconsistencies. Although N may

not be too big, each bridge must keep informed the others

of the hosts associated to him. This means that forwarding

tables may grow big and the amount of control traffic

significant to keep updated the list of active hosts.

Fast Path is a reactive protocol; fast path bridges do not

exchange routing information periodically. The standard

ARP Request and Reply message exchange between hosts

that bridges use to set up on demand paths has no additional

cost in messages, with the exception of frames arriving to a

bridge with an expired route, typically after a failure of a

link or node. When this happens, extra messages (path

request/path reply or standard ARP Request/Reply) are

generated to rebuild the path.

Regarding to stored state, fast path bridges store an amount

of state information similar to standard bridges. Standard

bridges learn MAC addresses of active hosts by associating

each address to a certain bridge port and maintaining a

cache expiration timer per learned address. Fast Path

bridges store the same association of MAC addresses to

each port, but use two different timers for locked (short

duration) and learning states (long duration) respectively, of

the association of a MAC address to a port. So, only an

additional and shorter timer is used during the path

establishment phase. Handling the expiration of addresses

for the shorter locking period requires some additional

computational in the bridge. For the second timer, the

computational effort for handling expiration of addresses at

ports in learned locked state is equal to standard bridges

(with the same timeout period, default 300 seconds), but the

number of learned addresses with timers to handle is much

lower. Note that there is no flooding of unknown unicast

destination address frames, as this effort of learning the

path is performed in the locking state.

B. Infrastructure utilization

In this section we compare the number of active links when

using Fast Path and the Spanning Tree Protocol.

Fast Path does not block any link, so all the L links in the

topology are active (although a link may not be used at a
given time). STP only activates N-1 links. The ratio of

active links with Fast Path versus STP is then:

U = L/(N-1) (1)

Substituting L = N*d/2 in (1):

U = N*d/((N-1)*2) ≈ d/2 (2)

Table I shows the infrastructure utilization ratio range for

network degrees of 4, 6 and 8. Highest (leftmost) range

values correspond to 16 node networks while lowest

(rightmost) range values correspond to increasing values of

N (up to 256). The improvement in the ratio of active links

for Fast Path ranges from 2 to 4,3 times for average

network node degrees of 4 to 8 respectively.

TABLE I. FASTPATH TO STP RATIO OF ACTIVE LINKS

Average node degree D 4 6 8

Active links ratio

range
U 2,1-2,0 3,2-3,0 4,3-4,0

A more detailed evaluation of the instantaneous utilization

of active links is performed in the throughput section,

where the most loaded link at every situation is found and

used to determine maximum network throughput.

C. Linux Implementation

A proof-of-concept of the Fast Path bridge protocol has

been implemented on Linux kernel 2.6, working on user

space. This implementation is oriented to functional

verification and not to maximize or demonstrate

performance, which would require an implementation at

kernel space.

To verify compatibility with standard services like DHCP

two hosts were connected to the campus network via a

triangle composed of three Fast Path Switches implemented

on standard PCs running Linux with the modified bridge

functionality. The test network is shown in Fig. 6.

FPS

Campus

network

InternetCampus

servers

FPS

FPS

 Figure 6. Fast Path Switches Proof-of Concept validation network

Our results show that hosts get their addresses via DHCP

normally. And its access to Web services, file transfer and

video playing operates normally. Broadcast loops do not

occur even when connecting two ports of the same bridge.

However, loops appear when the standard campus edge

switch is connected via two or more links to the Fast Path

network. It is worth noting that the network scenario for

interoperation of Fast Path and standard bridges is the core-

island mode described in section II.C and fig. 5, where the

enhanced switches create a mesh at the network core and

the standard bridges create trees attached to it. With this

configuration, if each Fast Path bridge emits standard

BPDUs announcing a virtual root bridge with maximum

priority, fully separated trees are created at the bridge

islands and loops are prevented.

We measured and compared ping delays between two hosts

separated by a Linux-based Fast Path switch with those of a

standard D-link 10/100 Mbps Ethernet switch with the same

connectivity. Auto negotiation mode was set in both cases.

When the host does not have the MAC of the destination

host in its cache, it issues an ARP. The first ping may take

up to 48 ms in the Linux Fast Path and only 2.43 ms in the

standard hardware switch because a transfer between kernel

and user space is involved to set up the path in Linux. Once

the path is set up with the first ARP Request/Reply, the

response to the ping only takes 238 microseconds on

average for Linux Fast Path bridge and 200 microseconds

for the standard hardware bridge. The reason for the high

switching speed of the Linux when an address has been

learnt, is because in this case forwarding is performed

directly by the kernel.

D. Simulations

A Fast Path simulator has been implemented in Omnet

(INET framework) [8] by modifying the Ethernet switch

implementation. We compared the performance of the Fast

Path protocol, shortest path routing, and spanning tree

protocol, focussing on the data flow performance resulting

from each forwarding mechanism, not in the dynamics of

the establishment of the paths. We used two network

topologies: a generic two-level enterprise network (fig.7)

and a pan european reference network [10].

1) Enterprise network

To obtain the resulting latency, we simulated TCP sessions

of different data sizes (2 K, 100 K and 100 Mbytes)

repeated 100 times with exponential probability between 3

sender hosts and 3 receiver hosts (labeled 1, 2, 3 and 4, 5, 6

respectively at Fig. 7). All network links have a propagation

delay of 1 microsecond and a transmission rate of 100

Mbps. When the network is lightly loaded, network frame

latency from host to destination (measured from Ethernet

layer of source to Ethernet layer of destination) equals to

275 microseconds on average for all three protocols with

small variations.

With low to medium loads (100K sessions), the network

latency reaches 370 microseconds, on average, for all three

protocols. With high loads (100 MB sessions), latency stays

moderate for routers and Fast Path bridges but grows to

1645 microseconds for the spanning tree, due to congestion

at the links shared by many flows (links around the root).

We conclude that Fast Path latency is equivalent to that of

shortest path routing and both are superior to spanning tree

with high network loads due to congestion at spanning tree

links.

1 2 3 8 10

4 5 6 7 9

Figure 7. Enterprise network. Active topology for shortest path routers and

Fast Path switches.
To compare the throughput of the Data Center network with

the three protocols, we simulated traffic from the hosts

located in the lower part of figure 7 to the hosts depicted in

the upper part, generating the same traffic for all

communications. Traffic was generated from host 1 to 9, 2

to 7, 3 to 5 and 8 to 4. UDP traffic of increasing intensity

was generated (from 1 to 60 KB sent per exponential

average time of 150 milliseconds, 3 second simulations), in

order to force saturation at the most loaded link of the

network, and the load at that link was registered. Fig. 8

shows the saturation process till reaching near 100% of load

at the most loaded link for the three protocols.

Shortest path and spanning tree networks saturate at 16% of

the maximum host link capacity while Fast Path saturates at

32 % approximately. In this particular case, and contrary to

the usual behaviour, shortest path routing saturates slightly

before spanning tree. This is specific of the enterprise

topology (where spanning tree paths are often also shortest

paths). Fast Path saturates at significant higher loads than

spanning tree and slightly higher than shortest path routers

because it achieves path diversity because each path is set

up asynchronously for each host upon ARP. Some paths go

through the left vertical link of the core and some through

diagonal link.

10

20

30

40

50

60

70

80

90

100

0, 10, 20, 30, 40,

P
e
rc

e
n
ta

g
e
 o

f
lo

a
d

%

 o
f

lin
k
 c

a
p

a
c
it
y

Traf f ic injected per host as percentage of host link capacity

fastpath

tree

routers

Figure 8 . Throughput comparison of Fast Path, spanning tree and shortest

path routers for enterprise network. Percent of maximum load at bottleneck

link versus injected traffic as a percentage of maximum capacity of source

host link.

Spanning tree concentrate routes over the links close to root

bridge, congesting those links.The core vertical link on the

left becomes the bottleneck link.

2) Pan European network

We also simulated a pan-European core network, a flat

mesh of 16 nodes [10]. UDP traffic with message lengths of

1 to 60 KB is sent with exponential distribution of average

75 ms. Link delays are according to map distance, between

1 and more than 3 msec. All links have the same capacity.

Traffic is originated at hosts at west nodes and directed

toward east nodes to facilitate saturation of links. Activation

of traffic at nodes is sequenced randomly with an average

delay of 0.5 seconds between activations. Links saturate

slightly later with Fast Path than with shortest path routers

and much later than with spanning tree. When no there is no

sequencing of traffic, the results for Fast Path are equal than

for shortest path (not shown in figure).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

fastpath

routers

Tree

Figure 9. Throughput comparison of pan european network in % of most

loaded link versus % of average traffic load applied at the sending host link

V. CONCLUSIONS

We have presented Fast Path, a variant of the transparent

bridge paradigm. Fast Path Switches use standard ARP

frames to set up fastest paths between hosts. Preliminary

performance evaluations show superior performance to

spanning tree and similar to shortest path routing in delay

and better than both in terms of throughput and protocol

complexity. A working proof-of-concept has been

implemented on Linux. Throughput simulation results show

an interesting potential for traffic load distribution that

should be further investigated. Next planned steps are

hardware implementations on NetFPGA with Openflow.

The combination of Fast Path protocol with Etherproxy in

edge switches will likely enhance protocol scalability

through radical reduction of broadcasts, although it could

impact the load distribution capability.

VI. ACKNOWLEDGMENT

This work was supported in part by grants from Comunidad

de Madrid through Project MEDIANET-CM (S-2009/TIC-

1468) and from Comunidad de Castilla la Mancha through

Project EMARECE (PII1I09-0204-4319). Thanks to Bart de

Schuymer, who implemented Fast Path Ethernet in Linux,

and to Aaron Montalvo for the router simulations.

REFERENCES

[1] IEEE 802.1D-2004 IEEE standard for local and

metropolitan area networks-Media access control

(MAC) Bridges. http://standards. ieee.org/getieee802

/802.1.html.

[2] M. Seaman. Shortest Path Bridging.

http://www.ieee802.org/ 1/files/public/docs2005/new -

seaman-shortestpath-par -0405-02.htm.

[3] Transparent interconnection of lots of links (TRILL)

WG. Available on line at:

http://www.ietf.org/html.charters/trill-charter.html

[4] Dalal, S., Metcalfe, R. Reverse path forwarding of

broadcast packets. Communications of the ACM Vol.

21, No. 12 pp. 1040-1048, December 1978.

[5] ITU-T Recommendation Y.1731 - OAM functions and

mechanisms for Ethernet based networks, Feb. 2008.

[6] IEEE 802.1ag - Connectivity Fault Management,

http://www.ieee802.org/1/pages/802.1ag.html, 2007.

[7] Elmeleegy, Khaled and Cox, Alan L. EtherProxy:

Scaling The Ethernet By Suppressing Broadcast

Traffic. Proceedings of IEEE INFOCOM 2009, Rio de

Janeiro, Brazil.

[8] Omnet simulator. Available online:

http://www.omnetpp.org

[9] G. Ibáñez et al. Fast Path Bridges. http://ww.ieee802.

org/1/ files/public/ docs2009/fyi-ibanez-fast path-0909-

02.pdf

[10] NRS Reference Networks http://www.ibcn.intec.

ugent. be/INTERNAL/NRS/index.html

[11] C. Kim, M. Caesar, and J. Rexford. Floodless in

SEATTLE: A Scalable Ethernet Architecture for Large

Enterprises. In ACM SIGCOMM 2008, Aug. 2008

