
 

 

. COVER LETTER 

Title.- Fast Path Ethernet Switching: On-demand Efficient Transparent Bridges for 

Data Center and Campus Networks 
 

Abstract  
Ethernet bridging in campus networks offers advantages like zero configuration, no need of IP addresses administration in 

subnets, high performance and low costs. But Ethernet bridging does not scale. Current proposals under standardization, like 

Shortest Path Bridges and Routing Bridges use a link-state routing protocol to compute shortest paths. As a simpler alternative, 

we propose an evolution of the transparent bridges learning mechanism, that provides loop-free, full infrastructure utilization for 

campus and datacenter networks. Fast Path Ethernet Switches double use the standard ARP Request and Reply packets to set up 

fast on-demand paths between hosts when needed. This architecture uses standard Ethernet frame format, is fully transparent to 

hosts and compatible with 802.1D bridges in core-island mode. A proof of concept has been implemented in Linux. Preliminary 

simulations in metropolitan and campus newtork topologies show clearly superior to spanning tree and even shortest path 

routers, at a fraction of the complexity. 

 

Index Terms— Routing bridges, Ethernet, Spanning Tree 

— Computer networks, routing, protocols, switching 

 

Authors:  
 

Guillermo Ibáñez 
Departamento de Automática. Universidad de Alcalá de Henares (Madrid). Escuela Politécnica 

Superior. Campus Universitario, N-II Km 33,6. Alcalá de Henares, 28871, España. Edificio 

ESTE, Despacho E-244. 

guillermo.ibanez@uah.es 

 

Juan A. Carral 
Departamento de Automática 

Universidad de Alcalá de Henares (Madrid). Escuela Politécnica Superior. Campus 

Universitario, N-II Km 33,6. Alcalá de Henares, 28871, España. Edificio ESTE. 

jac@aut.uah.es 

 

Alberto García-Martínez 
Dpto de Ingeniería Telemática. Universidad Carlos III de Madrid 

Avda de la Universidad, 30, Leganés, 28911 Madrid 

alberto@it.uc3m.es 

 

José Manuel Arco 
Departamento de Automática 

Universidad de Alcalá de Henares (Madrid). Escuela Politécnica Superior. Campus 

Universitario, N-II Km 33,6. Alcalá de Henares, 28871, España. Edificio ESTE 

 josem.arco@uah.es 

 

Diego Rivera Pinto 
Departamento de Automática 

Universidad de Alcalá de Henares (Madrid). Escuela Politécnica Superior. Campus 

Universitario, N-II Km 33,6. Alcalá de Henares, 28871, España. Edificio ESTE 

diego.rivera.pinto@gmail.com 

 

Arturo Azcorra 
Dpto de Ingeniería Telemática. Universidad Carlos III de Madrid 

Avda de la Universidad, 30, Leganés, 28911 Madrid azcorra@imdea.org 

 

Corresponding author: 

Guillermo Ibáñez.  guillermo.ibanez@uah.es phone. 34-91 8956927  



 

 

Guillermo Ibáñez, Member, IEEE, Juan A. Carral, Alberto García-Martínez, José M. Arco, Diego Rivera, Arturo 

Azcorra, Member IEEE   

Abstract— In this paper we propose Fast Path Ethernet, an 

evolution of the transparent bridges learning mechanisms to 

increase infrastructure utilization for campus and datacenter 

networks in a simple way. Fast Path Ethernet Switches reuse 

standard ARP Request and Reply packets to set up fast on-

demand paths between hosts. This architecture uses the 

standard Ethernet frame format, so it is fully transparent to 

hosts and compatible with 802.1D bridging in core-island 
mode. A proof of concept has been implemented in Linux. 

Preliminary simulations in metropolitan and campus network 

topologies show superior performance to spanning tree and 
even to shortest path forwarding, at a fraction of the their 

complexity. 

 
Index Terms—Ethernet, Routing bridges, Spanning Tree 

I. INTRODUCTION 

Ethernet switched networks offer important advantages in 

terms of price/performance ratio, compatibility and auto 

configuration. The use of the Spanning Tree Protocol (STP) 

[1] enables loop-free operation of bridged networks without 

the need to configure complex routing information, and 

without costly and error prone administration of IP 

addresses and segments. However STP severely limits the 

performance of Ethernet networks because it blocks all 

links exceeding the number of network bridges minus one.  

Current proposals under standardization like Shortest Path 

Bridges (SPB) [2] and Routing Bridges [3] rely on a link-

state routing protocol which operates at layer two to obtain 

shortest path routes between bridges. However, link state 

protocols have significant complexity both in terms of 

computation and control message exchange. 

In this paper we propose Fast Path Ethernet Switching (or 

Fast Path, for short), a zero-configuration protocol for data 

center and campus networks to enable the use of the whole 

available toplogy. Fast path directly evolves from the 

transparent learning bridge paradigm 

Fast paths are set up as a result of the controlled flooding of 

an ARP Request, which is encapsulated into a broadcast 

frame. The mechanism assures that the ARP Reply frame 

follows the same path back to the source, so this frame is 

used to confirm the set up of the path. In order to assure that 

the fastest path is chosen, the first arriving copy of the ARP 

Request locks at every bridge the corresponding port for the 

path. Further (late) copies arriving to other ports of the 

bridge are discarded.  

Although flooding of packets to find the shortest path is not 

a new concept, it has never been applied to transparent 

learning bridges, mainly due to the problem of broadcast 

frame loops . The use of flooding to obtain shortest routes 

has been proposed at layer three and wireless applications, 

but not for standard bridged Ethernet networks, where 

either the spanning tree protocol is used to prevent loops, 

loop free topologies are used, or routing in layer two is 

performed and specific loop prevention mechanisms are in 

use [2].  

The Fast Path protocol uses the standard Ethernet frame 

format, it is fully transparent to hosts and routers and may 

coexist with standard bridges in core-island mode. As most 

of high performance IEEE 802.1 protocols, Fast path 

bridging requires point to point links between bridges. The 

performance of Fast Path both in terms of infrastructure 

utilization and path length is similar to shortest path routing 

protocols, but with lower complexity.  

II. FAST PATH PROTOCOL 

There are three basic differences between Fast Path bridges 

and standard spanning tree transparent bridges: first, Fast 

Path increases the number of usable links, limited to a tree 

for transparent bridges; second, it modifies the address 

learning mechanism at ports, introducing the concept of 

locking of the address learned to the first port receiving the 

frame; and third, it prevents the replication of frames with 

an unknown unicast destination address by means of a 

mechanism which rebuilds a damaged path.  

A. Fastpath set up  

1) Path discovery (ARP Request) 

The mechanism to set up fast paths is partially inspired by 

the Reverse Path Forwarding [4]. A fast path is the fastest 

(and so, unique) path created by the first copy of an ARP 

Request frame reaching its destination host. The process, 

described in Fig.1, works as follows: 

Host S sends an ARP Request encapsulated into a broadcast 

frame B to resolve the IP address of a given destination host 

D. The ingress bridge 2 receives the frame from S and 

associates the global MAC address of S to the port through 

which it has received the message, temporarily locking the 

learning of S address to this port and blocking all other 

ports of bridge 2 from learning and forwarding further 
received broadcast frames from source address S. Thus, 

frames with source address S, arriving to other ports of 

bridge 2, are discarded as late frames. Then, bridge 2 

forwards B to all ports except the one through which it was 

received. Bridges 3 and 1 behave as bridge 2, locking 
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address S to the port that first receives the frame. 

Afterwards, bridges 3 and 1 broadcast the frame through all 

other ports except the port where it was first received, so 

that duplicate copies of B arrive to 3 and 1, sent by each 

other. However these frames arrive at a port different from 

the port temporarily locked to S, so they are discarded. 
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c) Bridges 1 and 3 also associate S address to its input 

port, forward the frame through all other ports and 

block learning of S address in other ports  

 

d) The same happens in Bridges 4 and 5. Finally, the 

ARP Request arrives at destination host D 
 

Figure 1. Path discovery from source host S to destination host D 

 

 The same happens at bridges 4 and 5. Hence, the temporary 

association (locking) of address S to a port at every bridge 

is propagated across the network as a tree rooted at host S, 

until the network edge bridges and their hosts are reached, 

including the host D, destination of the ARP Request. A 

chain of bridges with an input port locked to S is now active 

between S and D.  

 

2) Path confirmation (ARP Reply) 

The mechanism for path confirmation in the opposite 

direction is described in Fig. 2.  
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I. Host D sends a unicast ARP Reply towards host S 

II. Bridge 5 associates address D to the input port and 

blocks learning of D address in other ports. Then it 

forwards the frame via the port associated to S. 

Bridge 5 has now confirmed routes to S and D. 

Cache timers are activated for both S and D 

III. Bridge 3 associates address D to the input port and 

blocks learning of D in other ports. Then it forwards 

the frame through the port associated to S, 

confirming the path and activating cache timers for 

S and D 

IV. Bridge 2 associates D address to the input port and 

blocks learning of D address in other ports. Then it 

forwards the frame through the port associated to S, 

confirming the path and activating cache timers for 

S and D  
 

Figure 2. The ARP Reply packet confirms at every traversed bridge the 

existing association (temporary lock) of S address to a port. It also sets up 

a confirmed association of D address to its input port. 

 

The confirmation mechanism ensures that the path is 

symmetric (i.e. it coincides in both directions S-D and D-S). 

The path in S->D direction (address S learnt at ports of 

bridges) is confirmed backwards by the unicast reply from 

the destination over the same path D->S. This is required to 

keep the backward learning mechanism safe and to prevent 

oscillations in port to address associations. Specific priority 

mechanisms are used to prevent the setting of parallel paths 

by two simultaneous ARPs sent in opposite directions. 

3) Path restoration 

Established Fast Paths (i.e. chains of learnt addresses at 

bridge ports) may get broken at some point either by the 

expiration of an address timer or by a link failure.  

The failure of a link connecting two Fast Path bridges 

provokes the flushing of all MAC addresses associated to 

the two ports of that link. The same happens at all ports of a 

node, when it is the node which it reinitializes.  

Whenever a bridge receives a frame with an unknown 

destination address (i.e. the address is not associated to any 

port), the path may be rebuilt from the source bridge or 

from the bridge detecting the missing the path.  

If the path is rebuilt from the source bridge (i.e. the bridge 

closest to the source host), the bridge that received the 

unknown destination unicast frame encapsulates it inside a 

Path_Fail message and returns it in the backward direction 

towards the source host. This message is processed at each 

bridge in the backward path, which forwards it via the port 

associated to the source host till it reaches the source edge 

bridge. The Path_Fail message is addressed to the 

All_Fastpath_Bridges MAC multicast group and delivers 

the  the unicast frame rejected as payload. Frames sent to 

the multicast group are (only) processed by Fast Path 

Bridges. Every bridge in the path checks if it is the source 
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edge bridge of the source host of the rejected unicast frame 

(i.e. if the host is directly connected to it). In this case the 

bridge broadcasts a new ARP Request on behalf of the 

source host of the unicast frame and the path is recreated in 

the normal way.  

Alternatively, the path may be rebuilt directly from the 

affected bridge onwards by issuing, either a standard ARP 

Request on behalf of the source host, or a Path_Request 

message addressed to the All_Fastpath_Bridges multicast 

address. In the former case the ARP Request is replied by 

the destination host with an ARP Reply that selects the path 

towards the failed bridge, which intercepts the ARP Reply. 

In the latter case, a Path_Request message containing the 

source and destination MACs and IP addresses is 

broadcasted in the forward direction and processed and 

forwarded by all the bridges traversed till the bridge 

attached to the destination host. The pseudo code in Fig. 3 

summarizes the frame processing in a Fast Path bridge. 

If the path is rebuilt from an affected bridge onwards and 

the next nodes in the forward path have a port already 

locked to the source address, the request will be rejected at 

all ports not locked but will be accepted, even if  received 

later, at the port that was already locked. If a link 

corresponding to a previously locked port is broken the link 

failure is detected at port and locking to all MAC addresses 

cancelled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3. Fast Path protocol frame processing pseudo code 

B. Address- to- port association state machine 

Fast Path switches replace the standard learning mechanism 

by a new mechanism for associating learned addresses to 

bridge ports. Fig. 4 shows the Finite State Machine model. 

The ellipses show address states and the transitions show in 

the upper line the event (type of packet received in italics) 

and in the lower line (in bold) the action performed. A 

MAC is in released state when it is not associated to any 

port of the bridge (i.e. it is unknown to the bridge). When 

an ARP Request (or a Path Request) packet, sourced at 

MAC address A, is received at a Fast Path Bridge via its 

port x, the MAC address A changes its state to locked for 

the duration of the bridge’s lock_To timer or until the 

corresponding ARP Reply (or Path_Reply) is received, 

whatever happens first. If the Reply packet is received 

before lock_To expiration, the state changes to 

learned/confirmed, so the association of A address to port x 

is now firm, else the association is discarded and the state 

falls back to released. The learned/confirmed state is 

maintained at least for a learned/confirmed_To period. This 

timer is similar to bridge cache expiration timers (300 s.) 

and gets refreshed upon reception of new unicast frames 

originated at A address received via port x. A B address in 

the released state (unknown to the bridge) may directly 

transit to learned/confirmed state when a reply packet, sent 

from B to A, is received (via port y) and triggers the transit 

of A address state from locked to learned/confirmed. B 

address gets associated to port y. 

ARP Request (A,B, x)

Forward

Refresh

lock timer

ARP Request (source, destination, input port) 

or any other broadcast frame

B = broadcast address A= host  MAC address

MAC A
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Forward
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Forward
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Figure 4. Basic state machine of address-to-port association (locking and 

confirmation) 

C. Reconfiguration 

We now describe how Fast Path handles network 

reconfiguration after a link or a bridge failure. The failure 

of a bridge could be detected by the physical layer at the 

input ports of neighboring nodes as a link failure. 

Optionally, Continuity Check Messages could be used to 

detect node or link failures as defined by specifications 

Y.1731 [5] and 802.1ag [6].  

When the failure of a link connecting two bridges is 

detected at the respective ports, it provokes the flushing of 

all MAC addresses associated to these ports. The same 

happens, at all ports of a node, when a node reinitializes. 

The paths are no longer valid and will be rebuilt, but only 

when needed, by the path restoration procedure, as 

described above. 

The dynamics of learned MAC addresses in Fast Path 

bridges after reconfiguration is similar to standard bridges, 

although in standard bridges the topology is restricted by 

the spanning tree protocol. When a port is no longer part of 

the active topology due to failure or after being disable by 

the operator, hosts are no longer reachable through that 

port, so their MAC addresses are removed from the cache. 

Frame processing at bridge 

-Destination address is broadcast or multicast 

    - Destination address is multicast Fast Path: process as control 

frame: 

 -  Is Path Fail message: resend ARP Request with frame data) 

    - Else if: 

           - source address is unknown 

               -Lock  temporarily source address to input port 

           - source address is known (a Fast Path exists) 

               -Discard frame if input port is not the associated port 

 -Forward frame through all ports except prohibited turns and refresh 

persistency timer of source address 

-Destination address is unicast  

     - Destination address is known 

         -Frame is ARP Reply to a pending ARP Request:  

             - Confirm locked address (frame destination address  to  

                output port). Activate persistence timer.  

             -  Associate source address of unicast frame to input  

                 port. Start refresh timer. 

        -  Else if Source address is known 

                   -Forward to associated output port. Refresh timers at   

                    ports for source and destination  addresses 

        - Else:  associate source address of unicast frame to input  

            port. Start refresh timer 

   - Destination address  is unknown  

           -Send Path Fail  in backward direction, encapsulating packet           

header in multicast frame 



 

 

 

When a link deactivates, the addresses associated to the 

corresponding port are flushed. Contrary to standard 

bridges using the spanning tree protocol, Fast Path bridges 

do not need to propagate Topology Change Notification 

Messages to the whole network. Paths are rebuilt (addresses 

are relearned) only when needed (after a path failure 

reported from a reconfigured bridge), as described above.  

D. Load distribution 

Fast Path bridges set up paths on an on-demand basis; this 

means that automatic adaptation of paths to load conditions 

comes for free. By design, when a new path is requested, 

the fastest path reaching to the destination host will be 

selected. This means that new paths selected from hosts 

(distinct from existing active communicating hosts) will 

follow the fastest path at the moment of request, thus the 

paths with higher load (delay) will not be selected. Switches 

with shorter latency will tend to be selected. Due to the high 

number of hosts, traffic will be balanced over the whole 

infrastructure, thus offering shortest latencies. 

E. Compatibility with standard bridges and routers 

Fast Path switches may cooperate connected to standard 

bridges in core-island mode, as shown in Fig. 5. A core of 

Fast Path bridges may interconnect islands of standard 

bridges running the spanning tree protocol. Self 

configuration of islands of standard bridges operates as 

follows: Fast Path bridges connected to standard bridges 

receive standard BPDUs on the ports connecting to the 

standard bridge islands. As a consequence they run the 

standard STP protocol on those ports, emitting BPDUs to 

announce the Fast Path bridge as having a direct connection 

to a virtual root bridge with maximum priority. Hence, Fast 

Path bridges are automatically selected as root bridges by 

the standard bridges and a number of separate trees are built 

rooted at the fast path core. Note that no frame 

encapsulation is needed to traverse the core. 
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Figure 5. Hybrid network of Fast Path bridges and standard bridges in 

core-island mode with virtual root activated at the edge Fast Path bridges. 

 

F. Using Etherproxy for Scalability:  

There are two main problems to solve in Ethernet 

scalability: efficient layer two routing over Ethernet 

(replacing spanning tree protocol to overcome its 

limitations in active links and size), and broadcast 

reduction, to prevent host load processing excessive 

broadcasts. Fast Path focuses on the routing and Etherproxy 

[7] in the reduction of broadcast. Two aspects of broadcast 

are of interest: broadcast between bridges and broadcast 

processing at hosts 

Etherproxy is a recent proposal which can be combined 

with Fast Path because it is focused on minimizing 

broadcasts to improve Ethernet scalability to higher limits 

(e.g. 50K hosts) that would impose significant load in hosts 

for processing all flooded ARP Requests. 

Etherproxy minimizes broadcast traffic in the network by 

caching IP-MAC address pairs learned from ARP Reply 

packets, responding directly to ARP Requests that hit its 

ARP cache. The recommended location of Etherproxy 

devices is at the edge of the network, with one Etherproxy 

per up to 500 hosts (which is the broadcast domain size 

recommended by Cisco). Etherproxy can be implemented 

either as a separate device or inside the switches. Adding 

the Etherproxy functionality to Fast Path switches has 

significant advantages: first, reusing of the address learning 

resources of the Fast Path switch by the Etherproxy 

functionality, a close to 100% hit rate of ARP cache by 

using automatic refresh of the ARP cache addresses by 

unicast frames of user traffic traversing the switch and the 

perfect location at network edge. Among the costs are: 

increased processing at switches of the ARP Requests by 

sending ARP Reply to requesters. Etherproxy is self 

configuring, like Fast Path, so the combination of both stays 

self configuring. 

III. RELATED WORK 

The need of scaling Ethernet campus networks and 

datacenters to a single IP subnet is today accepted as the 

best way to simplify IP address management [3]. Two main 

obstacles have been identified as roots of the Ethernet 

scalability problem: the excessive broadcast traffic 

processing at hosts and forwarded by bridges, and the 

spanning tree protocol limitations. Solving the excessive 

broadcast problem requires alternative mechanisms to ARP 

for host address and location resolution and the spanning 

tree needs to be replaced by mechanisms for efficient 

routing and forwarding without restrictions.  

The three main proposals in this area use link state routing  

(IS-IS or OSPF) protocol on layer two to build routes or 

shortest path trees between bridges. These are Shortest Path 

Bridges [2], RBridges (TRILL) [3] and SEATTLE  [11].  

 The first two focus on the routing problem and do not pay 

special attention to the broadcast problem. Their routing 

complexity, performing shortest path computation between 

all bridges, exceeds the simplicity and network stability of 

Fast Path address learning. 

SEATTLE pays special attention to the broadcast problem. 

It uses a one-hop distributed hash table to cache ARP table 

entries in a distributed form, reducing cache sizes at 

switches. Hosts are registered by its parent switch at its 

resolver switch obtained by hashing its MAC address. 

SEATTLE uses additional encapsulation to carry packets 

between switches. Failure or recovery of a resolver seems 



 

 

 

to be the worst case condition, taking several seconds due to 

the dead interval detection of OSPF and host re-registration.  

 There is no procedure defined for SEATTLE switches to 

interoperate with regular Ethernet switches.  

Rbridges provide optimal pair-wise forwarding and support 

for multipathing of both unicast and multicast traffic. They 

achieve these goals using IS-IS routing and encapsulation 

of traffic with a header that includes a hop count to prevent 

loops and specific RBridge identifiers. Rbridges do not 

fully address the scalability problem due to broadcast but 

can limit host processing of broadcasts by performing ARP 

proxying for their attached hosts. RBridges are fully 

miscible with standard IEEE 802.1 bridges and end nodes at 

the cost of complexity: at each RBridge hop the destination 

address of the next RBridge must be inserted in the outer 

header.  

Shortest Path Bridging (SPB) was initially proposed as an 

alternative of the complexities for configuration and 

optimization of Multiple Spanning Tree Protocol (MSTP). 

SPB provides logical Ethernet networks on native Ethernet 

infrastructure using a link state protocol to advertise 

topology and logical network (VLAN) membership. 

Packets are encapsulated at the edge either in mac-in-mac 

802.1ah or q-in-q 802.1ad frames and transported only to 

other members of the logical network. Unicast and 

multicast are supported and all routing is performed on 

symmetric shortest paths. SPB bridges are compatible with 

standard bridges in core-island mode and do not limit 

broadcast. 

IV. EVALUATION  

We describe here the evaluation we have carried out 

regarding complexity, amount of stored state information 

needed and infrastructure utilization. We also provide some 

performance measures obtained from a proof-of-concept 

Linux implementation and via software simulations. 

A. Complexity 

We now compare the message, state and computational 

complexities of Fast Path bridges with those of transparent 

bridges using the spanning tree protocol. Both the spanning 

tree protocol and routing protocols like IS-IS are proactive: 

in the spanning tree protocol, every node periodically emits 

its best BPDU (lowest cost route to root bridge) to its 

neighbours, processes the d (d being the average node 

degree) BPDUs received from them, to select the neighbour 

offering the shortest distance to the root bridge as its parent 

bridge; this means that message complexity is Ѳ(d). 

Shortest path bridges using link state protocols (Djikstra 

shortest path algorithm) have, for a network with N bridges, 

N
2
 (minimum N·logN) complexity. Besides this, they need 

an additional synchronizing mechanism to prevent loops 

caused by temporary route inconsistencies. Although N may 

not be too big, each bridge must keep informed the others 

of the hosts associated to him. This means that forwarding 

tables may grow big and the amount of control traffic 

significant to keep updated the list of active hosts. 

Fast Path is a reactive protocol; fast path bridges do not 

exchange routing information periodically. The standard 

ARP Request and Reply message exchange between hosts 

that bridges use to set up on demand paths has no additional 

cost in messages, with the exception of frames arriving to a 

bridge with an expired route, typically after a failure of a 

link or node. When this happens, extra messages (path 

request/path reply or standard ARP Request/Reply) are 

generated to rebuild the path.  

Regarding to stored state, fast path bridges store an amount 

of state information similar to standard bridges. Standard 

bridges learn MAC addresses of active hosts by associating 

each address to a certain bridge port and maintaining a 

cache expiration timer per learned address. Fast Path 

bridges store the same association of MAC addresses to 

each port, but use two different timers for locked (short 

duration) and learning states (long duration) respectively, of 

the association of a MAC address to a port. So, only an 

additional and shorter timer is used during the path 

establishment phase. Handling the expiration of addresses 

for the shorter locking period requires some additional 

computational in the bridge. For the second timer, the 

computational effort for handling expiration of addresses at 

ports in learned locked state is equal to standard bridges 

(with the same timeout period, default 300 seconds), but the 

number of learned addresses with timers to handle is much 

lower. Note that there is no flooding of unknown unicast 

destination address frames, as this effort of learning the 

path is performed in the locking state.  

B. Infrastructure utilization  

In this section we compare the number of active links when 

using Fast Path and the Spanning Tree Protocol. 

Fast Path does not block any link, so all the L links in the 

topology are active (although a link may not be used at a 
given time). STP only activates N-1 links. The ratio of 

active links with Fast Path versus STP is then: 

U = L/(N-1)               (1)   

Substituting L = N*d/2 in (1): 

U = N*d/((N-1)*2) ≈ d/2      (2) 

Table I shows the infrastructure utilization ratio range for 

network degrees of 4, 6 and 8. Highest (leftmost) range 

values correspond to 16 node networks while lowest 

(rightmost) range values correspond to increasing values of 

N (up to 256). The improvement in the ratio of active links 

for Fast Path ranges from 2 to 4,3 times for average 

network node degrees of 4 to 8 respectively. 

 
TABLE I. FASTPATH TO STP RATIO OF ACTIVE LINKS 

Average node degree D 4 6 8 

Active links ratio 

range 
U 2,1-2,0 3,2-3,0 4,3-4,0 

 

A more detailed evaluation of the instantaneous utilization 

of active links is performed in the throughput section, 

where the most loaded link at every situation is found and 

used to determine maximum network throughput.  

C. Linux Implementation  

A proof-of-concept of the Fast Path bridge protocol has 

been implemented on Linux kernel 2.6, working on user 



 

 

 

space. This implementation is oriented to functional 

verification and not to maximize or demonstrate 

performance, which would require an implementation at 

kernel space. 

To verify compatibility with standard services like DHCP 

two hosts were connected to the campus network via a 

triangle composed of three Fast Path Switches implemented 

on standard PCs running Linux with the modified bridge 

functionality. The test network is shown in Fig. 6. 

FPS

Campus

network

InternetCampus 

servers

FPS

FPS

 
 Figure 6. Fast Path Switches Proof-of Concept validation network 

 

Our results show that hosts get their addresses via DHCP 

normally. And its access to Web services, file transfer and 

video playing operates normally. Broadcast loops do not 

occur even when connecting two ports of the same bridge. 

However, loops appear when the standard campus edge 

switch is connected via two or more links to the Fast Path 

network. It is worth noting that the network scenario for 

interoperation of Fast Path and standard bridges is the core-

island mode described in section II.C and fig. 5, where the 

enhanced switches create a mesh at the network core and 

the standard bridges create trees attached to it. With this 

configuration, if each Fast Path bridge emits standard 

BPDUs announcing a virtual root bridge with maximum 

priority, fully separated trees are created at the bridge 

islands and loops are prevented. 

We measured and compared ping delays between two hosts 

separated by a Linux-based Fast Path switch with those of a 

standard D-link 10/100 Mbps Ethernet switch with the same 

connectivity. Auto negotiation mode was set in both cases. 

When the host does not have the MAC of the destination 

host in its cache, it issues an ARP. The first ping may take 

up to 48 ms in the Linux Fast Path and only 2.43 ms in the 

standard hardware switch because a transfer between kernel 

and user space is involved to set up the path in Linux. Once 

the path is set up with the first ARP Request/Reply, the 

response to the ping only takes 238 microseconds on 

average for Linux Fast Path bridge and 200 microseconds 

for the standard hardware bridge. The reason for the high 

switching speed of the Linux when an address has been 

learnt, is because in this case forwarding is performed 

directly by the kernel. 

D. Simulations 

A Fast Path simulator has been implemented in Omnet 

(INET framework) [8] by modifying the Ethernet switch 

implementation. We compared the performance of the Fast 

Path protocol, shortest path routing, and spanning tree 

protocol, focussing on the data flow performance resulting 

from each forwarding mechanism, not in the dynamics of 

the establishment of the paths. We used two network 

topologies: a generic two-level enterprise network (fig.7) 

and a pan european reference network [10]. 

  
1) Enterprise network 

To obtain the resulting latency, we simulated TCP sessions 

of different data sizes (2 K, 100 K and 100 Mbytes) 

repeated 100 times with exponential probability between 3 

sender hosts and 3 receiver hosts (labeled 1, 2, 3 and 4, 5, 6 

respectively at Fig. 7). All network links have a propagation 

delay of 1 microsecond and a transmission rate of 100 

Mbps. When the network is lightly loaded, network frame 

latency from host to destination (measured from Ethernet 

layer of source to Ethernet layer of destination) equals to 

275 microseconds on average for all three protocols with 

small variations. 

With low to medium loads (100K sessions), the network 

latency reaches 370 microseconds, on average, for all three 

protocols. With high loads (100 MB sessions), latency stays 

moderate for routers and Fast Path bridges but grows to 

1645 microseconds for the spanning tree, due to congestion 

at the links shared by many flows (links around the root). 

We conclude that Fast Path latency is equivalent to that of 

shortest path routing and both are superior to spanning tree 

with high network loads due to congestion at spanning tree 

links. 

1 2                               3                         8                       10

4                          5                         6                         7                    9

 
Figure 7. Enterprise network. Active topology for shortest path routers and 

Fast Path switches. 
To compare the throughput of the Data Center network with 

the three protocols, we simulated traffic from the hosts 

located in the lower part of figure 7 to the hosts depicted in 

the upper part, generating the same traffic for all 

communications. Traffic was generated from host 1 to 9, 2 

to 7, 3 to 5 and 8 to 4. UDP traffic of increasing intensity 

was generated (from 1 to 60 KB sent per exponential 

average time of 150 milliseconds, 3 second simulations), in 

order to force saturation at the most loaded link of the 

network, and the load at that link was registered. Fig. 8 

shows the saturation process till reaching near 100% of load 

at the most loaded link for the three protocols. 

Shortest path and spanning tree networks saturate at 16% of 

the maximum host link capacity while Fast Path saturates at 

32 % approximately. In this particular case, and contrary to 

the usual behaviour, shortest path routing saturates slightly 

before spanning tree. This is specific of the enterprise 

topology (where spanning tree paths are often also shortest 



 

 

 

paths). Fast Path saturates at significant higher loads than 

spanning tree and slightly higher than shortest path routers 

because it achieves path diversity because each path is set 

up asynchronously for each host upon ARP. Some paths go 

through the left vertical link of the core and some through 

diagonal link.  
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Figure 8 . Throughput comparison of Fast Path, spanning tree and shortest 

path routers for enterprise network. Percent of maximum load at bottleneck 

link versus injected traffic as a percentage of maximum capacity of source 

host link.  

Spanning tree concentrate routes over the links close to root 

bridge, congesting those links.The core vertical link on the 

left becomes the bottleneck link. 

  

2) Pan European network 

We also simulated a pan-European core network, a flat 

mesh of 16 nodes [10]. UDP traffic with message lengths of 

1 to 60 KB is sent with exponential distribution of average 

75 ms. Link delays are according to map distance, between 

1 and more than 3 msec. All links have the same capacity. 

Traffic is originated at hosts at west nodes and directed 

toward east nodes to facilitate saturation of links. Activation 

of traffic at nodes is sequenced randomly with an average 

delay of 0.5 seconds between activations. Links saturate 

slightly later with Fast Path than with shortest path routers 

and much later than with spanning tree. When no there is no 

sequencing of traffic, the results for Fast Path are equal than 

for shortest path (not shown in figure). 
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Figure 9. Throughput comparison of pan european network in % of most 

loaded link versus % of average traffic load applied at the sending host link 

V. CONCLUSIONS 

We have presented Fast Path, a variant of the transparent 

bridge paradigm. Fast Path Switches use standard ARP 

frames to set up fastest paths between hosts. Preliminary 

performance evaluations show superior performance to 

spanning tree and similar to shortest path routing in delay 

and better than both in terms of throughput and protocol 

complexity. A working proof-of-concept has been 

implemented on Linux. Throughput simulation results show 

an interesting potential for traffic load distribution that 

should be further investigated. Next planned steps are 

hardware implementations on NetFPGA with Openflow. 

The combination of Fast Path protocol with Etherproxy in 

edge switches will likely enhance protocol scalability 

through radical reduction of broadcasts, although it could 

impact the load distribution capability.  
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