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Energy communities play a key role in the transition to sustainable energy, helping to inform and engage 
end-users so that they can become active energy consumers. In practice, trials and pilots often risk failure 
due to misplaced expectations and unforeseen behaviours when it comes to achieving flexible energy demand 
resources. In order to tackle these challenges, residential electricity load profile datasets and consumer survey 
results emerge as powerful tools for identifying controllable loads, energy consumption models, and tailored 
understanding of communities’ energy contexts. This paper first outlines and analyses these datasets’ capabilities 
to leverage data-driven decision-making for more efficient deployments of demand-side management (DSM) 
systems. A number of appliance behaviour patterns are extracted, based on high and flexible loads for shifting, 
being validated over three different use cases to support turn-key DSM in the presence and absence of renewable 
supply and bill saving. A genetic algorithm optimization is applied to underpin flexible demand reallocation 
and optimal community load profiles by combining time-variable tariff of use. Experiments demonstrate that 
controllable and shiftable appliances can reduce average peak load by up to 29% by increasing renewable self-
consumption, leading to a valuable energy bill saving of 9%. Our findings also point to the current limitations 
of existing load/consumption datasets, which are hindering more efficient DSM design of flexibility and demand 
response programmes in energy communities.

1. Introduction

Smart energy communities have attracted considerable attention, 
with new options and services available for consumers, such as renew-
able energy self-consumption, Demand-Side Management (DSM) and 
energy efficiency [1,2]. They open up new frontiers in energy market 
decentralization and modifies the role that individuals, communities 
and stakeholders will play in the new societal energy landscape. Their 
development has widespread social implications due to new trends in 
people-centred energy production and distribution, with the successful 
and innovative combination of new technologies representing a new 
cooperation-based paradigm [3]. The challenge is to adopt a multi-
directional process that seeks to modify people’s behaviour with a view 
to boosting sustainability.

However, sustainable practices and community-based models have 
not yet been widely implemented, with current DSM systems being de-
ployed to improve energy efficiency based mainly on smart metering 
[4] or novel non-invasive technologies to control smart home devices 
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automatically [5]. DSM can be defined as an optimal model providing 
energy management services to efficiently monitor and manage electric-
ity generation, storage, and consumption in smart households [6]. Some 
of these energy models are characterized by a strong emphasis on partic-
ipation and awareness [7], encouraging community energy consumers 
to play a more active role, for example by installing micro-generation, 
battery storage energy resources, or automatic appliances [8]. Further-
more, specific factors, such as socio-economic aspects, the ecological 
footprint, use of natural resources, and information and communica-
tion development, should be emphasized when evaluating the impact 
of policies on diverse resources. For instance, uncovering typical en-
ergy consumption patterns through empirical case studies or making 
decisions on incentives may hold the potential to foster advancements 
in DSM systems [9]. Existing studies rarely touch upon the optimal 
scheduling patterns mainly based on flexible controllable loads, and 
targeted analysis and optimization methods in this regard are still lack-
ing.
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Nomenclature

𝑢𝑖/ui Switch on/off mark transition of a controllable appliance i 
(1 = off-on/on-off).

𝜇𝑖 Operation time slots of the controllable appliance i
𝜋 Cost of energy (€/kWh)
abbreviation explanation for the abbreviation
𝑎𝑡 Time slot of automatic appliance operation
𝐵𝑇 𝑈 Unit of heat energy
𝐷𝐴𝐻𝑈𝐶𝑂𝐿 Air handlers for cooling
𝐷𝐴𝐻𝑈𝐻𝐸𝐴𝑇 Air handlers for heating
𝐷𝐶𝐷𝑅 Clothes dryers
𝐷𝐶𝑂𝐾 Stoves, cook-tops, and ovens
𝐷𝐶𝑂𝐿 Air conditioning
𝐷𝐶𝑊 Clothes washers
𝐷𝐷𝐻𝑈𝑀 Dehumidifiers
𝐷𝐷𝑊 𝐻 Dishwashers
𝐷𝐸𝑉 𝐴𝑃𝐶𝑂𝐿 Evaporative coolers
𝐷𝐹𝐴𝑁𝑆 Fans
𝐷𝐹𝑅𝑍 Freezers
𝐷𝐻𝑇 𝐵𝐻𝐸𝐴𝑇 Hot tub heaters
𝐷𝐻𝑇 𝐵𝑃𝑀𝑃 Hot tub pumps
𝐷𝐻𝑈𝑀 Humidifiers
𝐷𝐾𝑊 𝐻 Total site electricity usage
𝐷𝐿𝐺𝑇 Lighting
𝐷𝑀𝐼𝐶𝑅𝑂 Microwaves
𝐷𝑃𝐿𝐻𝐸𝐴𝑇 Pool heaters
𝐷𝑃𝐿𝑃𝑀𝑃 Pool pumps
𝐷𝑅𝐹𝐺 Refrigerators
𝐷𝑆𝐶𝐻𝐸𝐷 Appliance demand scheduling
𝐷𝑆𝑃𝐻 Space heating
𝐷𝑇 𝑉 𝑅𝐸𝐿 Television
𝐷𝑊 𝑇 𝐻 Water heating
𝐷𝐶𝐴

𝑖
Controllable appliances

𝐷𝑀𝐼𝑆𝐶
𝑖

Non-controllable appliances
𝐸𝐼𝐴 Energy Information Administration
𝐿𝐵𝑖 Lower band of allowable operation time slot of the con-

trollable 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑖

𝑅𝐸𝐶𝑆 Residential Energy Consumption Survey
𝑆𝑃𝑉 Storage Photovoltaic system
𝑢𝑖 Commitment status of an appliance i (1 = on, 0 = off).
𝑈𝐵𝑖 Upper band of allowable operation time slot of the con-

trollable 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑖

CUFEETNG Natural gas usage non clfd loads
DOEID Identification number
KWHAHUCOL Electricity usage for air handlers used for cooling
KWHAHUHEAT Electricity usage for air handlers and boiler pumps 

used for heating
KWHCDR Electricity usage for clothes dryers
KWHCFAN Electricity usage for ceiling fans
KWHCOK Electricity usage for cooking (stoves, cook-tops, and 

ovens)
KWHCOL Electricity usage for air conditioning
KWHCW Electricity usage for clothes washers
KWHDHUM Electricity usage for dehumidifiers
KWHDWH Electricity usage for dishwashers
KWHFRZ Electricity usage for freezers
KWHHUM Electricity usage for humidifiers
KWHMICRO Electricity usage for microwaves
KWHNEC Electricity usage for other devices and purposes not else-

where classified
KWHPLPMP Electricity usage for pool pumps
KWHRFG Electricity usage for refrigerators
KWHRFG2 Electricity usage for second refrigerators
KWHSPH Electricity usage for space heating
KWHTBHEAT Electricity usage for hot tub heaters
KWHTBPMP Electricity usage for hot tub pumps
KWHTVREL Electricity usage for all televisions and related periph-

erals
KWHWTH Electricity usage for water heating
MILP Mixed-Integer Linear Programming
R2 Coefficient of determination
RMSE Root Mean Square Error
XGB Xtreme Gradient Boosting

1.1. Demand-side management context

The future deployment of DSM systems will allow consumers to par-
ticipate in the energy market individually or collectively [10]. From the 
consumer–household point of view, research is focused mainly on DSM, 
based on controlling appliances to minimize energy costs (see Fig. 1a). 
DSM development is based on smart meters, whether distributed or cen-
tralized smart appliances, providing scheduling and optimizing energy 
decisions [11]. The presence of sensors or a metering infrastructure is 
also a valuable component of the latest energy communities, as it gives 
the controller access to information and it enables real-time monitor-
ing of energy supplies. A wide variety of techniques is deployed aimed 
at adapting consumption profiles [12] or setting energy demand pref-
erences according to specific priorities and time intervals [13]. Many 
companies involved in management and efficiency (e.g. Belkin, GE, 
IBM, Intel, Siemens) are making progress in developing smart sensors 
and algorithms in order to make decisions about consumers’ energy use. 
However, the platforms that are used do not really facilitate accessibil-
ity for control and development.

From the community perspective, an important role is played by co-
operative systems, which ensure sustainable energy through residential 
consumers and systems based on demand aggregation [15]. A sustain-
able community energy system is an integrated approach to meeting 
the energy requirements of a local community from renewable energy 
sources [16,17]. In practice, smart energy communities provide exper-

tise in promoting renewable energy and managing energy consumption, 
while empowering end-users and increasing their energy awareness. 
The microgrid context and smart grid mechanisms also improve en-
ergy efficiency and reduce costs through renewable energy technologies 
[18,19].

Table 1 lists key projects focusing on DSM for consumer communi-
ties and smart device use. These pilot projects and test beds are helpful 
tools to validate and encourage the introduction and acceptance of DSM 
technology at European Union (EU) level. Furthermore, a new inter-
active map has been launched by the European Commission’s energy 
communities repository [20], where the number of communities and 
additional information is provided via web (type of community, num-
ber of members, energy production, etc.).

Reliable internal communications and proper smart appliance inter-
operability are key issues to be addressed in relation to future large-
scale deployment. For instance, pilot implementations [21–23] have 
analysed smart meter flexibility, feedback on electricity consumption 
and price incentives, as well as implementing pattern recognition. The 
research work presented Karatasou and Santamouris [24] highlighted 
household size and number of appliances as positive associations with 
regard to residential energy consumption. Results for a Belgian study 
focused on 418 programmable appliances in 186 households, showing 
the positive impact of incentive payments for those participants who 
offer flexibility every 40 hours [25]; furthermore, great variation was 
observed amongst 240 Belgian families in terms of reducing energy 
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Fig. 1. Publications in areas of DSM development since 2015 (a); Machine Learning (ML) techniques deployed by DSM applications (b). Source Scopus search engine 
[14]. Results carefully filtered for specific energy sector applications. (For interpretation of the colours in the figure(s), the reader is referred to the web version of 
this article.)

Table 1

Main projects focusing on energy communities featuring residential consumers and/or prosumers. Key functionality of 
aggregating energy and flexibility, optimizing energy or managing storage systems, and smart devices use.

Project name Country Smart 
devices 
use

Project 
start 
year

Weblink (Last accessed: November 24, 2023)

Voltalis France ✓ 2019 https://corporate.voltalis.com

Viure de l’aire Cooperative Spain - 2017 https://www.viuredelaire.cat

Smart Åland Energy project Finland - 2022 https://smartenergy.ax

Bambooenergy Spain ✓ 2021 https://bambooenergy.tech/es

Som Energia Cooperative Spain - 2014 https://www.somenergia.coop

Schoonschip Energie Cooperatie Residential Netherlands - 2019 https://schoonschipamsterdam.org

EDEMA Germany ✓ 2022 https://openei.org/

Green Energy Cooperative Croatia - 2022 https://www.zez.coop/en/

Next Kraftwerke Germany - 2009 https://www.next-kraftwerke.com

Vibeco Energy production Aggregator Finland - 2020 https://vibeco.fi/en

Your Energy Moment Netherlands - 2019 https://www.rvo.nl

Energy Cooperative Spain - 2023 https://comunidadesenergeticas.org

Smartly Energy Solution Provider Norway ✓ 2022 https://www.smartly.no

Collective Energy Cooperative Greece ✓ 2021 https://coen.coop/en

LINEAL Finland - 2013 https://cordis.europa.eu/project/id/608860

EirGrid Ireland ✓ 2006 http://www.eirgridgroup.com

NCEI Cooperative Ireland ✓ 2012 https://www.ncei.ie

CommonEn/Electra Energy Cooperative Greece - 2020 http://electraenergy.coop

Rising.eco REC Facilitator Hungary ✓ 2022 https://rising.eco/en/home

EPV CEC Facilitator France ✓ 2019 https://www.enr-citoyennes.fr

EmasP S.Coopeative Urroz Spain - 2023 https://comunidadesenergeticas.org/urroz

Lasierra Cooperative Spain - 2023 https://comunidadesenergeticas.org/lasierra

Flexnet Norway - 2015 https://www.sintef.no/en/projects/flexnett

MegaWattPuur Cooperative Belgium - 2017 https://www.megawattpuur.be

Denderstroom Cooperative Belgium - 2016 https://denderstroom.be/projecten

DB Strom Retailer Germany ✓ 2018 https://www.dbstrom.de

Energie Steiermark Retailer Austria - 2020 https://www.e-steiermark.com

HEG Cooperative Germany - 2012 https://heg.solar/

consumption by offering flexibility [26]. More than three thousand Nor-
wegian households also reduced their electricity demand by improving 
power system operation and planning through incentives for demand 
flexibility capabilities (e.g. variable electricity prices or grid tariffs) 
[27]. The introduction of electric vehicle charging or photovoltaic self-
consumption entailed a significant impact on domestic load scheduling 
and can be performed by DSM in order to incentivize and/or increase 
self-consumption [28,29]. However, the heterogeneity of the household 

sector is not reflected in a single profile, and its use may lead to a mis-
leading assessment of demand behaviour.

The policy implications of sustainable urban communities accessing 
markets varies across the European Union, this being another challenge 
to be faced for DSM benefits and regulation. For instance, the Euro-
pean Citizens’ Energy Federation includes a wide community of 1,500 
European energy cooperatives and approximately one million citizens 
active in the energy transition [30]. Portugal, Spain, Italy and Croatia 
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Table 2

Main datasets focusing on energy community featuring residential consumers. Key attributes centred on duration, number of appliances 
and households.

Dataset Location Duration 
(days)

Num. of 
households

Num. of 
smart sensors

Resolution Weblink (Last accessed: December 2, 2023)

EMBED California 27 3 - 2 Hz http://embed-dataset.org

REDD USA 19 6 10 15 kHz http://redd.csail.mit.edu

BLUED USA 8 1 43 12 kHz https://tokhub.github.io/dbecd/links/Blued.html

Tracebase Germany 1 - 122 1 Hz https://github.com/areinhardt/tracebase

BERDS USA 365 1 4 20 sec https://tokhub.github.io/dbecd/links/berds.html

AMPds Canada 365 1 19 60 sec http://ampds.org

iAWE India 73 1 33 60 sec https://iawe.github.io

GREEND Italy 365 9 - 1 Hz http://www.andreatonello.com

PLAID USA - - 1074 30 kHz https://energy.duke.edu

COMBED India 30 6 200 1 Hz https://combed.github.io

DRED Netherlands 180 1 12 1 Hz https://www.st.ewi.tudelft.nl/~akshay/dred

Dataport USA 1460 1200 84000 1 min https://www.pecanstreet.org/dataport

UK-DALE UK 912 5 25 16 kHz https://paperswithcode.com/dataset/uk-dale

REFIT UK 730 20 250 8 sec https://paperswithcode.com/dataset/refit

ENERTALK Korea 30 22 - 15 Hz https://github.com/ch-shin/ENERTALK-dataset

RECS USA 365 18500 - - https://www.eia.gov/consumption/residential

Smart* USA 90 3 21 1 Hz https://traces.cs.umass.edu/index.php/smart

Fresh Energy Germany 365 200 - 60 sec https://zenodo.org/record/3855575

CLNRPD UK 365 12000 - - http://www.networkrevolution.co.uk

BLEM Germany 365 200 - 3 min https://github.com/QuantLet/BLEM

ECO Switzerland 365 6 - 1 sec http://www.vs.inf.ethz.ch

Borealis Pakistan 426 365 - 1 sec https://web.lums.edu.pk/~eig/index.html

Dataport USA - 365 - 1 sec https://www.pecanstreet.org/dataport

have not, as yet, actively implemented policies to integrate demand-side 
resources in their energy markets, have not adapted their energy infras-
tructures to allow participation by unified communities, and have not 
defined the role to be played by independent DSM. Denmark, Finland 
and Sweden, in contrast, have enabled DSM systems through energy 
retailers, offering demand-side solutions as a package with electricity 
bills. As demonstrated by pilots in Norway and Denmark, economic in-
centives, under certain conditions, can influence the way energy is con-
sumed [31]. In Germany, aggregators (mediating entities between the 
system operator and residential customer) currently require agreement 
with a supplier before they can access consumer flexibility, whilst grid 
services in the Netherlands are provided through a network of house-
hold meters. In contrast, default agreements in France allow aggregators 
to access all markets without negotiation. Active management through 
mechanisms aimed at increasing consumer participation has been most 
widely exploited in the UK. Companies aggregate the consumption of all 
their customers and operate as a single entity vis-à-vis the network op-
erator. Consumers thus participate in markets where they can balance 
the system by instantaneous consumption management.

1.2. Energy demand behaviour and tools for data analysis

Understanding consumer behaviour, the energy capacity provided 
to participants and the necessary infrastructure that allows energy de-
mand usage recording [32,33] are all areas of great interest for DSM 
advances. Several factors would affect residential energy consumption, 
which can be defined as variables including type of household, appli-
ance use, degree of consumption and age of devices [34], or location, 
climatic characteristics, demographic factors, among others [35]. More 
specifically, smaller room sizes, older buildings without environmental 
efficiency measures, middle-income households, less educated heads of 
households, or households with older adults are some of the targets as-
sociated with significant demand patterns [36], [37]. In-depth analyses 
have been carried out on the behavioural and socioeconomic dimen-

sions of energy consumption capacity [38,39]. Other proposals [40–44]
posit efficient DSM based on smart appliances and Machine Learning 
(ML) models aimed at facilitating demand classification and forecast-
ing according to groups of households, energy communities or similar 
energy-demand clusters. In this context, time-series or demand-quantity 
analyses determine patterns of energy consumption, such as time of 
use and duration, as well as appliance-appliance associations1 in house-
holds, which are also key factors in analysing the energy consumption 
behaviour of consumers [45,46].

Analysis of surveys also helps to identify the characteristics and 
potential driving-forces behind residential energy consumption and to 
analyze residential demand response acceptance according to appliance 
use [47]. For instance, a survey was conducted to identify flexible load 
pattern in Luo et al. [48], and Foteinaki et al. [49] modelled household 
electricity load profiles based on Danish time-use survey data. This is a 
challenge, as it is no trivial matter to validate survey acceptance or to 
determine the multiple relationships between the use of different appli-
ances from concurrent numerical data streams or categorical values.

Energy consumption datasets constitute another valuable instrument 
for energy demand behaviour analysis. Table 2 shows a series of avail-
able datasets focused on residential energy demand. While the majority 
of these datasets are open-access, certain sources require a provisional 
subscription (e.g., Dataport) or their availability is limited (e.g., EM-
BED). These datasets are not only based on the location and number 
of households, but also on the temporal resolution of detection, as 
well as the duration of the data collection. Electricity consumption is 
commonly provided at household level and the analysis is not usu-
ally focused on appliance disaggregation. In this respect, non-invasive 

1 Agreement on home appliance efficiency standards will preserve consumer 
features and deliver remarkable energy savings. IEEE plays a significant role in 
the development of standards and technologies related to electrical and elec-
tronic devices, including appliances.
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https://energy.duke.edu
https://combed.github.io
https://www.st.ewi.tudelft.nl/~akshay/dred
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Table 3

Detailed comparison of this study with related work.

Reference Classification 
of energy use 
pattern

Objectives 
Cost/Comfort/ 
Efficient

Demand 
optimization

Survey Dataset Appliance type: 
Controllable/ 
Non-Controllable

Categorical 
variables

Pricing 
scheme

Zhang et al. [58] ✓ X / X / X ✓ X X X / X ✓ X

Luo et al. [48] ✓ ✓/ ✓/ X X X X ✓/ ✓ ✓ ✓
Wang et al. [23] ✓ ✓/✓/ X ✓ X ✓ X / X X X

Thorve et al. [59] ✓ ✓/ ✓/ X ✓ X ✓ ✓/ ✓ X X

Iraganaboina and Eluru [34] ✓ ✓/✓/X X X ✓ X / X X X

Ghofrani et al. [39] ✓ ✓/X /X ✓ ✓ X X / X ✓ ✓
Al-Kababji et al. [38] ✓ X / X / X X ✓ X X / X ✓ X

Antonopoulos et al. [33] ✓ ✓/ ✓/ X ✓ ✓ ✓ ✓/ ✓ ✓ ✓
Rhodes et al. [43] ✓ ✓/ ✓/ X ✓ X ✓ ✓/ ✓ ✓ X

Foteinaki et al. [49] ✓ ✓/ ✓/ X ✓ X ✓ ✓/ ✓ ✓ X

Zhu et al. [36] X ✓/ ✓/ X ✓ X ✓ X / X X X

Hao et al. [37] ✓ ✓/ ✓/ X ✓ X ✓ ✓/ ✓ X ✓
Cruz et al. [60] ✓ X / X / ✓ ✓ ✓ ✓ ✓/ ✓ ✓ X

This study ✓ ✓/ ✓/ ✓ ✓ ✓ ✓ ✓/ ✓ ✓ ✓

demand monitoring is a recognized demand tool that has been devel-
oped for non-intrusive demand visualization, monitoring or prediction. 
However, equipment cost, which hampers scalability and disaggrega-
tion accuracy, is the main challenge to be faced.

As stated in Fig. 1b, a fundamental aspect of DSM development is re-
lated to demand optimization. Appliance scheduling usually considers 
time intervals and consumer preferences, as well as types of consump-
tion profile, aiming to minimize peak demand [50] or to reduce energy 
cost [51]. DSM formulation can be performed by heuristic [52] or de-
terministic algorithms [53]. Heuristic optimization is commonly based 
on nature-inspired [54], Mixed-Integer Linear Programming (MILP) 
[55,56], or linear/non-linear optimization [57].

The advantages of population-based and nature-inspired methods 
are the ability to efficiently modify appliance scheduling based on solu-
tion set. These algorithms find promising solutions due to their explo-
ration capabilities based on a large number of decision variables (e.g. 
on/off transition of a controllable appliance, commitment status of an 
appliance, selection of specific tariff hour). For instance, Genetic Algo-
rithm (GA) or Artificial Neural Network (ANN) heuristics are usually 
deployed to optimize consumption peaks, or to tariff-choosing decision 
process, helping users to minimize their demand costs [61–63]. How-
ever, certain algorithms do not offer the guarantee of finding an optimal 
solution when compared to deterministic programming methods [64] or 
unless problem-specific information is deployed.

1.3. Research gaps and motivations

Our study stems from the review of selected literature (projects, 
datasets and surveys) with a view to analysing and understanding the 
current limitations preventing DSM systems and developments from 
being more widely adopted. For instance, the added value of DSM 
strategies has been extensively simulated and studied in recent years 
and their implementation approached by a variety of models and con-
stantly evolving rules. Table 3 summarizes the dimensions addressed 
by our study in comparison with the revised literature. Therefore, the 
following objectives are highlighted:

• To select the most critical appliances for electricity consumption 
from validated surveys

• To explore the set of appliances with strong statistical associations
• To study the impact of demand optimization on a building-wide 
scale.

Our analysis focuses on the extraction of consumption patterns at 
the appliance level, aiming to identify and evaluate the appliances with 
the greatest impact on energy demand and its aggregated scheduling. 
Our findings stress the inefficiency of applying common parameters 
such as electricity consumption profiles, social conditioning factors, or 
household size when it comes to measuring energy demand at the ap-
pliance level. Moreover, our experiments show that traditional energy 
consumption has a limited potential market for residential communities 
without an understanding of cooperation. Hence, strong statistical as-
sociations are sought amongst types of appliance loads in cooperative 
consumer settings and behavioural patterns. Additionally, forecasting 
applications are explored involving controllable loads to optimize their 
performance and impact at the community level. A data-driven time-
of-use tariffs load model is proposed featuring the influence of the 
controllable appliances’ patterns over the DSM performance, seeking 
its optimization through the integration of renewable energy supply. 
Our model is validated by means of a case study and benchmark.

The novelty lies in the following three aspects: 1) considering users’ 
consumption behaviour, a correlation and forecast-based descriptive 
analysis is performed to determine the relationship between a build-
ing’s electrical appliances and energy demand; 2) taking into account 
the operating load profiles and electricity consumption datasets, house-
hold appliances are classified into those with the greatest impact on 
energy consumption. This profile will allow us to perform an auto-
matic scheduling procedure of the household appliances; and 3) taking 
into account their related activity, an optimization process is applied to 
continuously loaded appliances to enhance energy DSM programs, thus 
contributing to energy savings and peak load reduction.

The remainder of this paper is structured as follows: The method-
ology and the analysis of the data is included in Section 2. Section 3
shows the simulation results and the validation of the model with the 
optimized demand profiles. Finally, Section 4 draws the main conclu-
sions and future research directions.

2. Methods

Household energy consumption attributed to the use of controllable 
appliance accounts is set up for approximately 70% of total consump-
tion [65]. This consumption derives from household tasks, such as, 
running the dishwasher, charging electronic devices (e.g. electric cars) 
or any other appliance that consumes electricity without human con-
trol.

The flowchart of the study is presented in Fig. 2. First, the results 
of the survey analysis in terms of appliance behaviour are presented 
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Fig. 2. Methodology and workstream.

and analyzed. Loads’ correlation and frequency of use for appliances 
through numerical and categorical variables are applied. For instance, 
a standardized measure of linear association between sets of scores (e.g., 
Pearson correlation) provides insights regarding variables with a higher 
impact on total energy demand. Energy forecasting techniques (e.g., 
Gradient Boosting), which focused on the numerical relationships of 
controllable appliances, allow us to reduce numerical errors in the re-
sults. Second, a DSM simulation of an automatic scheduling of control-
lable appliances, based on both, the analyzed survey and the appliance 
pattern of the previous studies, is presented. More specifically, the par-
ticipants’ load profile survey is therefore simulated and then compared 
with a non-optimization-based DSM.

2.1. Description of household appliances and their controllability

Fig. 3 shows the main elements and energy control flows of a DSM 
paradigm. As can be seen, it is considered that energy can be directly 
consumed by a set of smart sensors and/or load appliances. A smart 
appliance can be defined as a device providing information and com-
munication capabilities through a controllable system. Appliance usage 
is characterized by the operating mode, the duration, the energy con-
sumption and the limit of occurrence of daily events.

The operational mode of appliances describes the appliances’ op-
eration and the related behaviour, which can be classified into two 
categories according to their ability to be controlled: non-controllable 
and controllable loads. While the operation of non-controllable loads is 
governed by consumer decisions, controllable loads can be programmed 
automatically for different times of the day (independent appliance use 
irrespective of the consumer). Controllable loads can also be switched 
on by a household member, but are switched off automatically. For 
instance, manual loads include cooking or lighting, while controllable 
loads include the dishwasher or air conditioning. In this regard, de-
mand optimization can be performed through an automatic scheduling 
of appliances, fossil-renewable sources and their cost as input variables.

2.2. Survey data exploration for appliance use

The 2015 and 2020 Residential Energy Consumption Surveys (RECS) 
provided by Energy Information Administrators (EIA) are explored 
[66]. The RECS collect data on energy-related characteristics and us-
age patterns from a representative sample of approximately 20,000 
households. This dataset-survey was selected to provide reliable energy-
use estimation from energy suppliers on how much site electricity is 

consumed during the reference year.2 The analysis presented brings to-
gether energy characteristics data on the housing unit, appliance usage 
patterns and household demographics. One of the improvements to the 
end-use model for the RECS surveys was to allow energy to depend 
on the outside climate. More specifically, RECS provides energy-related 
data for housing units, consisting of 5,686 observations, 755 numeri-
cal features (i.e. electricity use of appliances, number of smart sensors, 
etc.) and four categorical features (i.e. climate, state name, etc.) for the 
RECS survey of 2015; and it presents 18,496 observations, 781 numeri-
cal features and seven categorical features for the RECS survey of 2020.

Household appliances vary according to end use, in general, as well 
as appliance and household age, equipment type and size of the ap-
pliances, which also correlate with the corresponding energy consump-
tion. Different methods have been showcased to select the most critical 
appliances for electricity consumption. For instance, the Pearson corre-
lation data selection/extraction method has been used as a bi-variate 
analysis for measuring the strength of the association between appli-
ances’ use and their relationship. It was conducted as a standardized 
measure of linear association between two sets of scores to select the 
variables with a higher impact on total energy demand. More specif-
ically, a set of appliance features with strong statistical associations is 
compared with annual electricity usage (in kWh).3 Fig. 4 shows the cor-
relation between the total consumption target variable (𝐷𝐾𝑊 𝐻 ) and 
the most used appliances, indicating a lack of association between vari-
ables. Red and purple represent strong positive correlation, whereas 
grey represents very weak positive or negative correlation. Many ap-
pliances provide a high correlation with each other, such as clothes 
dryers and washing machines (𝐷𝐷𝐾𝑊 𝐻𝐶𝐷𝑅

𝑖
, 𝐷𝐷𝐾𝑊 𝐻𝐶𝑊

𝑖
), thus indicat-

ing the presence of multicollinearity among appliance features. 𝐷𝐾𝑊 𝐻

also shows moderate to strong positive correlation (>0.3) with all the 
top 32 most important appliances. Some variables belonging to non-
controllable appliances presented correlation coefficients of over 0.2, 
as they are not able to explain the energy consumption for cook-tops.

Fig. 5a checks how different non-controllable appliances (i.e., mi-
crowaves, portable heating, ovens and televisions) relate to 𝐷𝐾𝑊 𝐻 . 
The scatter plots are quite informative and do not provide a clear fixed 
linear relationship, which are in line with the results obtained from cor-
relation analysis. The lighting appliances cannot be disaggregated per 
individual appliance and this target presents a clear contribution to the 
overall consumption. Non-controllable loads such as air handlers for 
heating and cooling and evaporative coolers experience both, a soft lin-
eal tendency and poor consumption when compared to the total energy 
demand. Fig. 5b shows the electricity usage of controllable loads when 
compared to total energy consumption. There is no fixed linear relation-
ship across the controllable loads. For instance, refrigerators, heating, 
clothes washers, freezers and pool pumps have a great impact on over-
all consumption (up to 1000 kWh). On the contrary, air handlers, boiler 
pumps and dryers and dishwashers do not present a clear contribution.

The total number of household appliances, the frequency of use and 
age are all available variables of RECS surveys. Frequency use of con-
trollable loads (i.e., clothes dryer use and dishwasher use) were also 
analyzed.4 In general, the more these appliances are used, the older they 
are or the larger their size, the more energy they consume. For instance, 
Fig. 6 shows the analysis obtained for three types of non-controllable 
appliance usage pattern features relating to total 𝐷𝐾𝑊 𝐻 . The appli-
ance frequency use of microwaves, oven and the cook-top part of stoves 
does not provide a clear tendency when compared with the total en-
ergy consumption. Most of the households also use controllable loads 

2 RECS surveys provide details on the consumption estimation of household 
end uses.
3 The target variable 𝐷𝐾𝑊 𝐻 stands for kilowatt-hour throughout the corre-
sponding year.
4 All features falling under housing characteristic and usage patterns are dis-
crete numerical variables (i.e., the variables whose values exist in a particular 
range or are countable in a finite amount of time).
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Fig. 3. Design representation of the main consumer elements and types of appliances.

Fig. 4. Correlation values obtained between the total 𝐷𝐾𝑊 𝐻 energy use and the consumption of the most important appliances in RECS 2015 Survey.

every time, as exemplified in Fig. 7. For instance, dishwasher use is set 
at “2 or 3 times a week”. The median kWh outcomes are in line with 
boxplot results, indicating that the more frequent the household use 
of the controllable appliance (e.g., dishwasher), the greater the global 
energy consumption, which provides valuable information about the 
scheduling performance. Thus, feature pattern has a direct relationship 
with the 𝐷𝐾𝑊 𝐻 target variable. In general, the energy consumption of 
controllable loads for space heating or space cooling is affected most 
by housing characteristics, whereas appliance characteristics determine 
energy consumption. Fig. 8 compares the influence of end-appliance 
with regard to total consumption. As a result, 28 target variables were 
found to be of low importance. Electricity usage for space and water 
heating, central air conditioning, individual units, evaporative coolers, 
and other purposes not elsewhere classified, entailed a higher impact 
on appliance energy consumption.

From the correlation results, appliance variables are selected to train 
a preliminary energy consumption model. The result is recursively fitted 
by eliminating variables with a low significance in energy consumption. 
Therefore, a regression model was implemented aimed at upgrading 
the forecasting performance for the higher load importance of energy 
consumption. The analysis was carried out by reducing error between 
current and predicted values through the bias-variance trade-off (i.e., 
Gradient Boosting Regressor and Xtreme Gradient Boosting - XGB). The 
objective of the analysis was to find the non-controllable loads that pro-
vide a low importance when compared to the total consumption. Fig. 9a 
shows the main features obtained after averaging over 10 training ses-
sions to reduce variance. The tree-based models provide an optimal 
Root Mean Square Error (RMSE) value. The XGB model has the low-
est RMSE as XGB is a more regularized form of Gradient Boosting. 
XGB provides very fast training that can be parallelized across clus-
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Fig. 5. Scatter plots of non-controllable (a); and controllable loads (b) and their comparison with total energy consumption 𝐷𝐾𝑊 𝐻 in RECS 2015 Survey.

Fig. 6. Relationship between frequency of microwave use, cooktop use and oven use (number of uses) and energy consumption (kWh) in the RECS 2020 Survey.

Fig. 7. Relationship between frequency of oven use, dry use and dwash use (number of uses) and energy consumption (kWh) in the RECS 2015 Survey.
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Fig. 8. Variable importance scores of appliance energy consumption.

ters and improves model generalization capabilities, delivering a high 
performance when compared to Gradient Boosting. The model is also 
evaluated based on unseen data with the appliance variables that con-
tribute most to total energy consumption. Fig. 9b shows the energy 
consumption predictions by using the top cumulative features with an 
accuracy of 𝑅2 score of 0.92. Here, the actual labels follow the selecting 
variable of most important features of appliance energy consumption as 
exemplified in Fig. 8.

2.3. Demand optimization

Demand optimization is simulated according to appliance operat-
ing patterns at pre-determined time periods in order to optimize energy 
demand while maintaining fundamental constraints (i.e., consumer de-
cision, scheduling process). Several metaheuristic techniques can be 
deployed to find the optimal appliance scheduling. The function model 
is selected to balance between two objectives to be achieved, i.e., to 
reduce consumption peaks by taking advantage of available renewable 
sources or to reduce consumption peaks wherever possible at the min-
imum cost. The total appliance energy sum (𝐷𝑡𝑜𝑡𝑎𝑙

𝑖
) of a household ‘𝐴𝑖 ’ 

per appliance ‘𝑎𝑖𝑗 ’ is given by Eq. (1).

𝐷𝑡𝑜𝑡𝑎𝑙
𝑖

=
23∑

𝑡=0

∑

𝑎𝑖𝑗∈𝑖

(𝐷𝐶𝐴
𝑖

) (1)

𝐷𝑀𝐼𝑆𝐶
𝑖

= 𝐷𝑇 𝑉 𝑅𝐸𝐿
𝑖

+𝐷𝐿𝐺𝑇
𝑖

+𝐷𝐹𝐴𝑀
𝑖

+𝐷𝑊 𝑇 𝐻
𝑖

+𝐷𝐶𝑂𝐾
𝑖

(2)

𝐷𝐶𝐴
𝑖

= 𝐷𝐹𝑅𝑍
𝑖

+𝐷𝑅𝐹𝐺
𝑖

+𝐷𝑃𝐿𝐻𝐸𝐴𝑇
𝑖

+

𝐷𝐷𝐻𝑈𝑀
𝑖

+𝐷𝐻𝑈𝑀
𝑖

+𝐷𝑃𝐿𝑃𝑀𝑃
𝑖

+𝐷𝐷𝑊 𝐻
𝑖

+𝐷𝐶𝑊
𝑖

+

𝐷𝐶𝐷𝑅
𝑖

+𝐷𝐸𝑉 𝐴𝑃𝐶𝑂𝐿
𝑖

+𝐷𝐴𝐻𝑈𝐶𝑂𝐿
𝑖

+𝐷𝐴𝐻𝑈𝐻𝐸𝐴𝑇
𝑖

+

𝐷𝐶𝑂𝐿
𝑖

+𝐷𝐻𝑇 𝐵𝑃𝑀𝑃
𝑖

+𝐷𝐻𝑇 𝐵𝐻𝐸𝐴𝑇
𝑖

+𝐷𝑆𝑃𝐻
𝑖

(3)

𝐷𝑀𝐼𝑆𝐶
𝑖

is denoted by miscellaneous plug load (Eq. (2)) that is at-
tributed to cleaning activities (e.g. hoover), cooking (e.g. microwave), 
work appliances (e.g. computers), entertainment (e.g. television), and 
other smaller electronic devices that cannot be automatically con-
trolled. 𝐷𝐶𝐴

𝑖
corresponds to the sum of controllable loads (as stated in 

Eq. (3)) that is attributed to heating/cooling activities (e.g. water heat-
ing, air conditioning), cooling (e.g. refrigerator), cleaning (e.g. clothes 
dryers, washing machine) or entertainment activities (e.g. pool pumps).

The representation of the objective function can be denoted by 
Eq. (4)-(5)-(6). 𝑈𝐵𝑖 and 𝐿𝐵𝑖 are considered to be the upper and lower 
band of allowable operation time slot per controllable appliance ‘𝑎𝑖𝑗 ’. 
𝐷𝑆𝐶𝐻𝐸𝐷

𝑖
is denoted as the scheduled operation time of the appliance 

‘𝑎𝑖𝑗 ’ that should be within the [𝐿𝐵𝑖, 𝑈𝐵𝑖] interval. 𝐺𝑅𝑊 , 𝐺𝑃𝑉 , and 
𝜋𝑐𝑜𝑠𝑡 are denoted as renewable base and cost variables, respectively.

𝑚𝑖𝑛{𝐹 (𝐷𝑡
𝑖
,𝐺𝑡

𝑅𝑊
+𝐺𝑡

𝑃𝑉
, 𝜋𝑡

𝑐𝑜𝑠𝑡
)}; (4)

 (𝐷𝑡
𝐶𝐴

,𝐺𝑡
𝑅𝑊

+𝐺𝑡
𝑃𝑉

) = 𝑠𝑢𝑚[𝑟𝑚𝑠(𝐺𝑅𝑊 +𝐺𝑃𝑉 ) +𝑚𝑎𝑥(𝐷𝐶𝐴)] (5)

 (𝐷𝑡
𝐶𝐴

,𝜋𝑡
𝑐𝑜𝑠𝑡

) = 𝑟𝑚𝑠[(𝐷𝐶𝐴) ∗ 𝜋𝑐𝑜𝑠𝑡] (6)

subject to the following constraints:

𝑈𝐵𝑖 ≤ 𝐷𝑆𝐶𝐻𝐸𝐷
𝑖

≤ 𝐿𝐵𝑖,∀𝑖 ∈
{
𝐷𝑆𝐶𝐻𝐸𝐷

𝑖

}
(7)

23∑

𝑡=0
𝐷𝑆𝐶𝐻𝐸𝐷

𝑖
<

23∑

𝑡=0
𝐷𝑈𝐵

𝑖
;
23∑

𝑡=0
𝐷𝑆𝐶𝐻𝐸𝐷

𝑖

≥

23∑

𝑡=0
𝐷𝐿𝐵

𝑖
,∀𝑖 ∈

{
𝐷𝑆𝐶𝐻𝐸𝐷

𝑖

}
,∀𝑡 ∈ 𝑇 (8)

∑

𝑎𝑖𝑗∈𝐴𝑖

(𝐷𝑀𝐼𝑆𝐶
𝑖

+𝐷𝐶𝐴
𝑖

) ≤ 𝐺𝑅𝑊 +𝐺𝑃𝑉 ,∀𝑖 ∈
{
𝐷𝐶𝐴

𝑖

}
,∀𝑡 ∈ 𝑇 (9)

Appliances need to be switched off. Along the same lines, appliances 
also need to be switched on for a time between two predefined moments 
as stated by Eq. (7)-(8)-(9).
𝑡=𝑈𝐵𝑖∑

𝑡=𝐿𝐵𝑖

𝑢𝑎𝑡
𝑖
= 𝜇𝑖,∀𝑎𝑖𝑗 ∈ 𝐴𝑖,∀𝑖 ∈

{
𝐷𝐶𝐴

𝑖

}
,∀𝑡 ∈ 𝑇 (10)

�̄�𝑎𝑡
𝑖
− 𝑢−𝑎𝑡

𝑖
= 𝑢−𝑎𝑡

𝑖
− 𝑢−𝑎𝑡

𝑖−1,∀𝑎𝑖𝑗 ∈ 𝐴𝑖,∀𝑖 ∈
{
𝐷𝐶𝐴

𝑖

}
(11)

∑
�̄�𝑎𝑡
𝑖
= 1,∀𝑎𝑖𝑗 ∈ 𝐴𝑖,∀𝑖 ∈

{
𝐷𝐶𝐴

𝑖

}
(12)

Controllable appliances need to be operated a predefined number of 
hours within an allowable time windows, as forced by the constraint 
(10). In addition, controllable appliances just can be activated just once 
in a continuously operation over a time interval, as imposed by the 
constraints (11) and (12).

The optimization process follows a GA algorithm technique, allow-
ing us to find an optimal operating time per appliance. Each appliance 
comprises a set of features called chromosomes that can be mutated to 
reallocate better features than the initial features. GA5 finds a solution 
by starting with a random initial 𝐷𝑆𝐶𝐻𝐸𝐷 population. The number of 
evaluations is increased when the method finishes by calculating a 𝑃
generation with feasible solutions for appliance scheduling (𝐷𝑆𝐶𝐻𝐸𝐷

per appliance). The best 𝐷𝑆𝐶𝐻𝐸𝐷 solution is inserted into the best 
solution and the other solutions are discarded. Mutation or crossover 
operators can be used to generate the next evaluation of the current 
generation crossover-fraction = 0.9, and gaussian-mutation by default 
value). In this case, a mutation operator randomly modifies the sched-
uled start times (𝐷𝑆𝐶𝐻𝐸𝐷) of some appliances to generate new solu-
tions with a better outcome.

2.4. Input data analysis

In order to show the capabilities of the DSM, an automatic de-
mand scheduling of the most influenced controllable loads has been 
selected from Table 4. The customized benchmark highlights the usage 
behaviour per appliance in terms of mode and operation type, power 
and number of uses, among others. In addition, a case study based on 
the power company information has been used by providing three dif-
ferent tariffs from the Endesa Power Company [69]: 1) off-peak hours 
are the cheapest hours; 2) off-peak hours are the moderately priced 
hours in two hourly time intervals; and 3) peak hours are the most 
expensive hours and high electricity consumption should be avoided. 
Table 5 summarizes the energy price and the time interval considered 
according to the proposed tariffs.

The simulations were run over a one-week time horizon with a time 
step per appliance of one hour. To build scenarios based on energy ef-
ficiency, PV provision was taken from the figure [70] corresponding to 
an example of the daily load profile for solar PV production (𝐺𝑃𝑉 ). The 

5 The algorithm creates a set of possible optimal solutions and a starting value 
is not required.
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Fig. 9. Tuned mode RMSE and 𝑅2 comparison across three model for controllable loads (a); and predicted loads with higher importance in energy consumption (b).

Table 4

Appliance usage behaviour and related activity ([56,59,67,68]; This study).

Activity Appliance 𝐷𝑖 Mode Max occ. per 
household

𝐷𝑆𝐶𝐻𝐸𝐷
𝑖

Power (kW) 𝐿𝐵𝑖 𝑈𝐵𝑖 Weekly use of 
appliance

𝐷𝐹𝑅𝑍 Freezers Controllable 2 10 2 3 23 110

𝐷𝑅𝐹𝐺 Refrigerators Controllable 2 13 2 3 23 110

𝐷𝑃𝐿𝐻𝐸𝐴𝑇 Pool heater Controllable 2 3 2 3 23 20

𝐷𝐷𝐻𝑈𝑀 Dehumidifiers Controllable 1 5 2 3 23 90

𝐷𝐻𝑈𝑀 Humidifiers Controllable 1 5 2.5 15 23 90

𝐷𝑃𝐿𝑃𝑀𝑃 Pool pumps Controllable 1 3 3 10 23 21

𝐷𝐷𝑊 𝐻 Dishwasher Controllable 1 2.5 4 8 23 12

𝐷𝐶𝑊 Clothes washers Controllable 1 4 2 3 23 15

𝐷𝐶𝐷𝑅 Clothes dryers Controllable 1 4 2,5 15 23 15

𝐷𝐸𝑉 𝐴𝑃𝐶𝑂𝐿 Evaporative coolers Controllable 2 3,5 2 10 20 20

𝐷𝐴𝐻𝑈𝐶𝑂𝐿 Air handlers for cooling Controllable 2 3 2,5 11 20 40

𝐷𝐴𝐻𝑈𝐻𝐸𝐴𝑇 Air handlers for heating Controllable 3 6 2,5 11 20 40

𝐷𝐶𝑂𝐿 Air conditioning Controllable 3 6 2 10 21 80

𝐷𝐻𝑇 𝐵𝑃𝑀𝑃 Hot tub pumps Controllable 1 4 1 10 21 40

𝐷𝐻𝑇 𝐵𝐻𝐸𝐴𝑇 Hot tub heaters Controllable 1 5 2 10 21 40

𝐷𝑆𝑃𝐻 Space heating Controllable 1 2 2 10 21 80

𝐷𝑊 𝑇 𝐻 Water heating Controllable 2 1 4 10 21 80

𝐷𝐶𝑂𝐾 Stoves, cook-tops, ovens Non-controllable 10 12 1 6-24 6-24

𝐷𝑇 𝑉 𝑅𝐸𝐿 Television Non-controllable 2 14 0.5 6-24 6-24

𝐷𝐿𝐺𝑇 Misc. lighting Non-controllable 20 24 1 6-24 6-24

𝐷𝐹𝐴𝑁 Fans Non-controllable 3 6 2,5 6-24 6-24

Table 5

Characteristics of the different tariffs considered in simula-
tions.

Tariff Energy price (𝜋𝑐𝑜𝑠𝑡)

1 0.10 €/kWh

2 0.13 €/kWh (8:00 – 10:00 h) (14:00 – 18:00 h)

3 0.18 €/kWh (10:00 – 14:00 h) (18:00 – 22:00 h)

renewable base values within a non-PV provision context are denoted 
by (𝐺𝑅𝑊 ) and set to approximately 11 kWh. The hourly power ac-
cording to fossil-fuel resources was selected from the daily scope dated 
06/09/2023 and provided by the Omie Company [71]. Some 10% of the 
total MWh hourly values were selected from coal, nuclear, hydroelec-
tric, combined cycle or co-generation/waste/mini-hydraulic sources.

3. Results and discussion

3.1. Optimization analysis results

At each stage of the optimization process, the operation time of 
appliances will be modified within a certain predefined range. The 
aim of the proposed models is to reduce or otherwise minimize the 
maximum stress of the proposed variables. More specifically, experi-
mentation aims to automatically optimize energy peak consumption in 
three cases: 1) reducing the daily bill of the end-user; 2) maximizing the 
use of renewable sources in order to achieve an efficient environment; 
and 3) optimizing the use of the non-renewable sources available. The 
evaluation is performed by an Intel® Apple M1 8.00 GB RAM personal 
computer under a Matlab R2023a environment.

The results of the demand optimization process are shown in Figs. 10
- 11 - 12 by comparing optimized (red) and non-optimized demand 
(blue), taking into account energy price (red) and renewable or fossil re-
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Fig. 10. CASE1. Results obtained for the optimization of controllable appliances by reducing energy cost and reducing consumption peaks (a); number of needed 
iterations for the best mean optimized solution and population diversity (b).

Fig. 11. CASE2. Results obtained for the optimization of controllable appliances by maximizing the renewable sources and reducing consumption peaks (a); number 
of needed iterations for the best mean optimized solution and population diversity (b).

Fig. 12. CASE3. Results obtained for the optimization of controllable appliances by maximizing the non renewable sources and reducing consumption peaks (a); 
number of needed iterations for the best mean optimized solution and population diversity (b).

sources (green) as target variables. Non-optimized demand (blue) is the 
resulted appliances’ reallocation without consideration of variables in 
demand optimization. Because of the participants’ flexibility, operation 
time of controllable loads in all cases can be shifted between the 8 am to 
12 pm interval of the day. Demand optimization provides a low margin 
to flatten demand throughout the entire day and barely manages to allo-
cate the available supply despite the lowest energy cost during the early 
hours of 1 am - 7 am (see Fig. 10a). However, the daily bill can be re-
duced by up to 9% by rescheduling the controllable loads at affordable 

intervals in Case 1. Fig. 11a shows how demand optimization maximizes 
the use of renewable sources by generating a demand peak within a pe-
riod of maximum available PV energy (9 am - 4 pm). The optimization 
can unlock up to 29% of the scheduled demand volume, this being con-
sidered the most efficient scenario of Case 2. Finally, Case 3 optimizes 
demand for a heterogeneous available energy source. Here, the possi-
bility to demand optimization of the non-renewable sources available 
can reallocate up to 10% of total energy demand (see Fig. 12a).



Energy & Buildings 308 (2024) 113988

12

C. Cruz, M. Tostado-Véliz, E. Palomar et al.

Table 6

Results provided by the developed GA optimization process for the three cases.

CASE Num. 
evaluations for 
fitness soln.

Num. evaluations for 
optimal distance 
between soln.

Solution 
time (s)

Case 1 - Energy cost reduction 48 45 12.02

Case 2 - Use of 𝐺𝑅𝑊 & 𝐺𝑃𝑉 sources 25 40 11.10

Case 3 - Use of non RW sources 12 20 10.49

Table 6 summarizes the results obtained for the three cases consid-
ered besides the total solution time, the required number of evaluations 
for fitness solution, and the diversity of population.6 Decay trends of 
cost function by GA optimization are depicted by reducing the energy 
cost or maximizing the renewable resources. The Case 1 - Cost Model 
requires 48 evaluations (see Fig. 10b). The peaks volume of the cost tar-
get variable increases the search space for residential appliances’ load 
allocation, which means it must search for a longer time in order to find 
the optimal schedule. The best solutions are achieved after 30 evalua-
tions in Case 2 - Efficient Model (see Fig. 11b) and 10 interactions are 
required in Case 3 - Use of Fossil-Fuel Resources Model (see Fig. 12b). 
The results also imply that load shifting optimization can be achieved 
by the evaluation of the average distance between defined operating 
times of appliances at each generation. In this regard, the optimal value 
of demand allocation diversity is achieved in the fossil supply scenario 
(12 iterations). Communities with micro-generation capabilities are also 
considered efficient scenarios (25 iterations for fitness solution).

3.2. Discussion

The energy sector has lagged behind regarding publicly available 
demand datasets and surveys. The high upfront costs of gathering and 
processing data can hold back DSM development. Therefore, synthetic 
data are commonly used to generate energy consumption profiles ac-
cording to appliance use, and to model, optimize and predict customer 
response to variables from DSM [59]. This fact is due to real data val-
ues only becoming visible once they have been gathered and analyzed. 
In addition, it is difficult to operate with highly accurate results based 
on synthetic data or even if consumption habits vary significantly due 
to a large number of variables such as weather, activity or occupancy 
patterns, household size, heterogeneous consumer behaviour, etc. Other 
factors include privacy concerns or the implementation cost of reading 
devices. Recorded data often leads to a lack of privacy and can leave 
customers vulnerable to security attacks. Data collection relies on di-
rect user participation in DSM environments or automation processes, 
which requires potentially costly instrumentation to enable remote sen-
sors and control platforms. User participation also entails convincing 
consumers to install more energy-efficient appliance technologies, and 
surveys can play an important role here [72].

The inclusion of categorical demand variables, in addition to ac-
cessible consumption data and available survey analysis of appliance 
patterns, would allow a more in depth behaviour pattern to emerge 
for demand optimization purposes. Some of the limitations of the ana-
lyzed RECS surveys relate to the lack of integration of both controllable 
consumption by electric vehicles and the diversity of renewable energy 
generation provided by prosumers at the household level (e.g. PV panel, 
renewable storage systems). Our collected data may not be able to ade-
quately capture the variation in daily activity (e.g. observed in real-time 
smart metering, adverse weather, consumer engagement concerns, etc.). 
This can be challenging to address, especially when performing DSM in 
demand response scenarios. A significant challenge in developing real-
istic synthetic residential load profiles is to find appropriate datasets 

6 The optimal distance between solutions determines the quality of the GA 
performance.

to represent different types of climates, social variables, demographics 
and types of non-controllable appliances, since the activity patterns of 
different countries and DSM regulation are not fully implemented [73]. 
The accessibility and availability of all the above-mentioned informa-
tion from legitimate, open and up-to-date sources is crucial to check 
the validation and maintain the reliability of the resulting DSM models.

4. Conclusions

The accessible datasets of electricity consumption and load profiles 
based on time series are valuable instruments when it comes to bet-
ter understanding demand dynamics and its fluctuations for Demand-
Side Management (DSM) system design and real deployment. For in-
stance, publicly available or available-at-request residential load profile 
datasets can play a powerful role in the implementation of new tech-
nologies in household appliances such as washing machines, dryers or 
room heaters that can be pre-programmed or controlled to switch on 
at specific times. Pearson correlation analysis is applied to the relevant 
datasets, such as the Residential Energy Consumption Survey (RECS) 
administered by the U.S. Energy Information Administration (EIA), in 
order to assess a linear relationship among the collected variables. Mea-
sured consumption and time-of-use of washing machines and dryers 
are found to be strongly associated (>0.7 correlation coefficient). Ge-
netic optimization is generated considering the time-of-use tariffs and 
load to quantitatively capture the influence of the controllable appli-
ances’ patterns over the DSM performance and its optimization towards 
the integration of renewable energy supply. Experimentation demon-
strated the impact of the controllable loads on the optimization of a 
community demand scheduling DSM over three different real scenarios, 
considering supply from renewables, supply from fossil sources and/or 
electricity bill. Optimization reaches the best case fastest (in terms of 
time spent in demand reallocation) in the fossil supply scenarios, with 
the scenarios based on bill being the least efficient. Community demand 
reallocation takes place, nonetheless, with viable time and resource ex-
penditure. Additional findings showed an average peak load reduction 
of up to 29% by increasing renewable self-consumption, and electric-
ity bill saving of 9%. Future research directions shall concentrate on 
integrating new variables into the data-driven model, such as battery 
charging loads, electric vehicles and micro-generation, as well as vary-
ing objective functions for different energy models.
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