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Edge Computing Design Space Exploration for Heart Rate Monitoring

Jose A. Miranda, Manuel F. Canabal, Laura Gutiérrez-Martı́n, José M. Lanza-Gutiérrez, Celia López-Ongil

• Design Space Exploration is an essential task when
facing the development of physiological edge com-
puting devices.

• The different morphology of PPG signals directly
affects the data processing chain of HR-based
wearable devices.

• Heart Rate Variability is a reliable metric to detect
physiological activation.
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Abstract

Edge computing, smart sensors, and health monitoring are boosting current wearable development and enabling the
next technological user-centered revolution. Within this context, high added value applications based on physiolog-
ical information are gaining attention during the last years. Among the vast physiological metrics available, heart
rate variability (HRV) is one of the most used, from which different types of information related to the activity of
the autonomic nervous system can be obtained. This fact has led integrated chip manufacturers to foster the design
of novel analog front end circuitry for heart rate monitoring, which has forced a wearable smart sensor innovation.
Notwithstanding the capabilities and efficiency of these novel sensors, different design space exploration (DSE) pro-
cedures must be addressed for every sensor integrated within a wearable system towards maximizing the embedded
resources usage. On this basis, this paper presents an exhaustive DSE in-depth study for every stage affected in a
wearable edge device developed by the authors and based on HRV physiological monitoring. The particulates of such
system are detailed and explained. Moreover, time complexity and memory usage comparison regarding different
digital signal processing techniques are provided, which results in a set of recommendations for wearable constrained
application needs. Finally, a use case is presented based on a rapid stress detection application by using the different
DSE recommendations for our specific wearable edge device. This application reaches adequate trade-off precision
for detecting physiological HRV activation by using only four second temporal processing window.

Keywords: edge computing, heart rate, wearable design, design space exploration

1. Introduction

In the last decade, academic and industrial research
on wearable affective computing and emotion recogni-
tion has gained attention [1]. Among the smart sensors
considered for wearable affective computing, physio-
logical sensors such as heart rate (HR), skin tempera-
ture (SKT), and electrodermal activity (EDA) are those
that provide a seamless implementation from current
commercial-off-the-shelf (COTS) devices. Within this
physiological context, the autonomous nervous system
(ANS) controls the physiological regulation produced
by affective states [2]. Thus, unlike other types of infor-
mation, such as voice or gestures, physiological signals
can not be controlled by humans, resulting in reliable
information to identify any emotional change. Differ-
ent public and private databases dealing with emotion
recognition and wearable integration were developed in
last years [3]. These and other related experiments per-
formed different signal processing and feature extrac-
tion stages in an offline manner, meaning that the wear-
able device was only considered to collect data. This sit-

uation implied that they did not need to address the de-
sign space exploration (DSE) within their wearable em-
bedded devices to optimize computational time or mem-
ory usage. However, when designing a wearable edge
device for online physiological monitoring being able
to deal with complex stages as data acquisition, process-
ing, and feature extraction, a detailed DSE must be per-
formed to ensure that the hardware resources available
are successfully exploited.

Nowadays, there is a wide range of analog front
end (AFE) solutions for smart sensors, which provide
enough independence and autonomy to not overload
the connected microcontroller unit (MCU) with tasks
such as acquisition, data filtering, and even data pro-
cessing. However, there exist open questions related to
the management of the quality and quantity of the in-
formation provided by the sensors, that affect the per-
formance of the different algorithms to be integrated
into the MCU. Thus, obtaining enough useful infor-
mation is essential and subjected to both the AFE and
the main device capabilities (processing and storage).
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Other open questions are related to energy cost and
operating lifetime, which are critical aspects specially
in wearable constrained devices. All these open ques-
tions can be addressed by performing application and
platform-oriented DSEs, prior to integrating the com-
ponents into the wearable edge device. Moreover, one
of the main principles to be considered when design-
ing a low-resource wearable edge computing device
for physiological monitoring through the integration of
smart sensors is related to the form factor. This fact
should be considered essential from an unobtrusive de-
sign perspective. For instance, several physiological-
based computing systems were proposed in the litera-
ture [4], but most of them were based on laboratory set-
ups. That means that these systems included sensors
such as electrooculogram, electromyogram and elec-
troencephalogram, among others, hindering the current
wearable-ready feasibility. This latter fact is explained
by the not-ready current technological inconspicuous
aspect of such sensors.

From a physiological point of view, a deep under-
standing regarding the ANS behaviour is needed when
dealing with these systems and this type of information.
For instance, the relationship between both branches of
the ANS, i.e., sympathetic nervous system (SNS) and
parasympathetic nervous system (PNS), is usually ex-
plained by considering HR and heart rate variability
(HRV), which is the temporal inter-beat-interval (IBI) or
the time difference between successive HR beats. When
dealing with stressful situations, the SNS increases HR,
which leads to a more constant HRV. On the other hand,
in a relaxed affective state, the PNS decreases the HR,
which produces a more variant HRV [5]. Currently, HR
and all the metrics extracted from it are widely used in
the literature due to the direct relationship with emo-
tions and physiological states [6]. These metrics can be
derived from electrodes placed on the skin (electrocar-
diogram or ECG) or from blood volume pulse (BVP)
changes by using a photoplethysmogram (PPG) sensor,
presenting the latter more wearable possibilities than the
former. It should be noted that a valid surrogate of HRV
is the peak rate variability (PRV) from BVP [7].

Different HR-based wearable edge computing sys-
tems tried to link the wearable embedding restrictions
to the performance of the machine learning to be im-
plemented inside. Most of the works did not present
a detailed DSE to support design decisions. In [8],
the authors presented an ultra-low-power wearable sys-
tem with deep learning capabilities based on ECG in-
formation. This work was the first paper dealing with
the study of wearable embedded edge computing-based
emotion recognition capabilities. They considered a

COTS ARM®Cortex®-M4F MCU and provided a par-
tial DSE based on the performance of a lightweight ar-
tificial neural network. Nonetheless, they did not con-
sider the volatile memory usage. Other approaches us-
ing more powerful platforms were also published. In
[9], the authors considered the Intel Galileo board and
provided the Pareto optimal solution for a DSE based on
arrhythmia accuracy detection and computational cost.
Nevertheless, they leave memory impact analysis aside,
which could be due to the high performance of the board
with 400MHz clock speed and 256MB RAM. Other pa-
rameters for the DSE could be defined based on the ap-
plication, for instance, the authors in [10] considered
a wearable watch based on ARM®Cortex®-M MCU
and performed their DSE based on the number of de-
tected ECG beats, but without providing any computa-
tional cost or memory impact analysis.

When designing a HR-based wearable edge comput-
ing system, the digital data processing stages include
from the instant of raw signal acquisition, filtering, mo-
tion artifact removal, peak identification, interpolation,
and power spectral estimation, to the instant before the
inference process by the machine learning engine. Each
of these stages can be subjected to individual DSEs
based on available resources and time requirements,
among other application parameters. Thus, this paper
aims to provide a detailed DSE of the main embedded
procedures needed to implement this type of physiolog-
ical wearable systems. To accomplish this work, the au-
thors consider the BINDI wearable affective computing
platform [11, 12]. Note that this paper is an extended
version of [13]. In this version more technical infor-
mation regarding filtering, PPG morphology and peak
detection algorithm comparison is included. The main
contributions of this work are as follows:

• Implementation and study of a detailed DSE for
the main stages involved in a physiological based
wearable edge computing device based on an ARM
Cortex®-M4 processor.

• The use of experimental results to show the per-
formance of the concluded trade-offs regarding the
amount of physiological activation information de-
tection.

• Evaluation of a complete data processing chain for
real physiological based wearable into an ARM
Cortex®-M4.

The rest of the paper is organized as follows. Sec-
tion 2 presents the hardware and software architectures
of the wearable system. Section 3 discusses the DSEs
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for the different stages and exposes the results obtained.
Section 4 presents a specific rapid physiological activa-
tion detection application use case by considering the
results given by the DSEs. Finally, conclusions and fu-
ture works appear in Section 5.

2. System Architecture

BINDI is a wearable solution, composed of a
bracelet, a pendant, and a smart-phone application,
whose final goal is detecting gender-based violence sit-
uations by using affecting computing [14]. This work
focuses on the bracelet subsystem, which is equipped
with three physiological sensors: EDA, SKT, and BVP.
The data provided by these sensors together with a com-
prehensive signal processing and a lightweight machine
learning engine are embedded within the bracelet MCU.
The next subsections describe the bracelet hardware and
software architectures subjected to analysis in this doc-
ument.

2.1. Bracelet Hardware Architecture

The hardware architecture in the BINDI bracelet is
formed by the MCU, the physiological sensors, and
other necessary elements, such as a Power Controller
Unit (PCU), which handles the battery consumption and
correctly supply the MCU and sensors. Next, specific
details about these parts are as follows:

• MCU: nRF52832 SoC ARM®Cortex®-M4 32-
bit, with 64MHz clock speed, 512KB mem-
ory flash, 64KB RAM, single-precision floating-
point unit, Thumb®-2 instruction set, Bluetooth
Low Energy 5.2, and some integrated peripherals
(UART, SPI, I2C, I2S, RTC, PDM, AES).

• PCU: BQ2407xT and MAX17055 are responsible
for charging and monitoring the battery. Both in-
tegrated circuits are intended for low-power hand-
held and/or wearable devices. They are accompa-
nied by a set of different low-dropout regulators to
power-on the different parts of the bracelet.

• Physiological sensors: The only physiological
sensor of interest for this work is the BVP sensor.
That is the MAX30101 High-Sensitivity reflective
pulse-oximeter and HR Sensor for wearable health,
with configurable sampling frecuency from 50Hz
up to 3.2kHz, integrated LEDs (red, green, and
infrared), noise cancellation, 18-bit current ADC,
and I2C communication.

2.2. Bracelet Algorithmic Architecture

2.2.1. Data Segmentation
Although it is possible to extract real-time infor-

mation from HR information [15], data partitioning is
needed when dealing with wearable constraint devices.
Moreover, physiological data segmentation and over-
lapping are recommended to enhance the physiological
stimuli classification from an affective computing per-
spective [16].

During this process, the raw signal data is acquired
based on a temporal window requirement. The length
of the window, the number of windows, and the exis-
tence of window overlapping will depend on the capa-
bilities and specifications of the system, as well as the
application.

2.2.2. Data Processing
The goal of this stage is to eliminate all the unde-

sired frequency components within the signal, being es-
sential because PPG signals are specially sensitive to
noise. There are two main tasks in this stage: filtering
and motion artifact removal (MAR), being both widely
addressed for wrist-worn devices in the literature [17].

Filtering. Filtering aims to eliminate all unnecessary
frequencies by applying digital filtering techniques.
One of the most common approaches is considering
bandpass filtering, leaving wide enough bandwidth to
detect any possible HR frequency. For instance, from
0.5Hz (30 BPM) to 4Hz (240 BPM). From an embedded
or a digital perspective, there are two main techniques
for this filtering process: infinite impulse response fil-
ters (IIRs) and finite impulse response filters (FIRs).
IIRs are computationally fast, although it does not have
a linear phase response, which could lead to not preserv-
ing the wave-shape, resulting in wrong affective patterns
to be identified by the intelligence engine. This dis-
advantage is avoided by using a forward-backward IIR
filtering [18] technique, which requires double filtering
and double time reversal of the signal. This latter fact
leads up to higher computational time at the expense
to obtain a zero-phase transfer function using IIRs. On
the contrary, FIR filters can be designed to have a linear
phase response, so preserving the wave-shape and not
affecting possible patters. Although they require more
coefficients and memory than IIRs, they do not need
to perform the amount of operations as for forward-
backward IIR filtering. These and other digital tech-
niques are used to deal with out-of-band noises, such as
baseline wander and high frequency noise. The former
is related to low-frequency disturbances, bellow 0.5Hz,
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Figure 1: Example of different noise sources for PPG: a) raw PPG
contaminated by baseline wander and high frequency noise, b) ex-
tracted baseline wander by applying a forward-backward IIR filtering,
c) PPG filtered signal without any out-of-band noise.

while the latter is due to typical electrical noise. For in-
stance, Figure 1 shows the effect of these two types of
noises over raw PPG data. The rejection of these types
of noises is key to properly minimize changes in PPG
signals morphology that does not have a cardiac origin.

Motion artifact removal. MAR techniques aim to de-
tect and remove transient changes because of move-
ments of areas where the sensor is placed, which are
translated into in-band noises. These types of tech-
niques are quite computationally demanding, worsen-
ing their applicability in wearable devices. This fact
makes the design of lightweight MAR techniques be a
hot topic nowadays. The different solutions to deal with
this problem range from the use of adaptive filtering by
using a surrogate set of signals, e.g., inertial motion unit
signals [19], to the use of extensive matrix operations,
e.g., singular value decomposition with different PPG
wavelength sources [20]. The comparison and imple-
mentation of different MAR techniques are not within
the scope of this work.

2.2.3. Feature Extraction
The goal of this stage is to extract useful information

from the data obtained in the previous stage. The first
step consists in calculating the HRV for the current tem-
poral window. To this end, it is required to get the IBI
along with the window by detecting different peaks of
the PPG signal. The robustness of this delineation pro-
cess is key to properly detect the desired morphologi-
cal PPG parameters. This fact is determined not only
by the previous filtering step but also by the different
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Figure 2: PPG morphological differences between three age groups:
(a) 18-24 year old person, (b) 35-44 year old person and (c) 55-65
year old person.

PPG wave morphologies, which can be directly affected
by factors such as age and emotions [21, 22]. Figure 2
shows the morphological difference between three dif-
ferent age groups measured with our PPG sensor. The
differences observed are in line with the ones published
in the literature [23]. For instance, the dicrotic part of
the wave is the most affected. This is mainly due to the
vascular tone variation with age, which is directly trans-
lated into more or less vasoconstriction and vasodila-
tion. This fact produces differences in arterial pressure
leading to distorting diastolic run-off.

Within this physiological variable context, different
algorithms could provide different delineation results,
also affected by the previous filters applied. For in-
stance, if the application does not use any baseline wan-
der removal filter, e.g. notch filter bellow 0.5Hz, the
different points extracted by the delineation algorithm
employed should be robust enough to not be affected by
the low-frequency out-of-band trends. Different tech-
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niques can be applied to assure robust peak-to-peak de-
tection, however, some of them require the implemen-
tation of zero-crossing throughout the first and second
derivatives of the signal [24, 25]. This fact directly af-
fects the computational time within the data process-
ing chain. Therefore, the authors consider the imple-
mentation and comparison of two different PPG algo-
rithms. On the one hand, the first is based on a lo-
cal maximum/minimum method (LCM) developed by
the authors using the local slope and mean evolution
over short periods of samples along with the data pro-
cessing window. LCM methods are well known within
PPG peak detection algorithms as they used to be less
computationally demanding at the expense to lower per-
formance. On the other hand, the second algorithm is
taken from [26], which is based on an adaptive thresh-
old detection method (ADT) that outperformed LCM
techniques without requiring first and/or second deriva-
tive signal operations. Note that the latter algorithm has
been validated against publicly available datasets.

Once the delineation is performed and the HRV is cal-
culated for the current window, several statistical, fre-
quency, and non-linear features can be derived from this
information. Among them, frequency ones are specially
interesting because they provide information about SNS
and PNS activation in form of four bands: 0.01-0.04Hz,
0.04-0.15Hz, 0.15-0.40Hz, and 0.40-1.00Hz. As they
are very low frequency bands, obtaining information
with enough resolution with physiological-based wear-
able devices is still challenging.

3. HR-Based Design Space Exploration

To achieve a full wearable integration, individual
DSEs are recommended for the sensors in the system.
These DSEs could focus on the quality of the output ob-
tained for each stage in the software architecture involv-
ing the sensor. This section presents a HR-based DSE
focused on extracting HRV frequency information. This
DSE is split into the different stages in the software ar-
chitecture, as Fig. 3 shows.

3.1. Data Segmentation: Windowing and Overlapping

Data acquisition and temporal storage are key tasks
when dealing with wearable constrained systems for
continuous rapid inference applications. Enough pro-
cessing time between acquisitions must be assured to
perform the rest of the data processing chain.

Time and memory requirements linearly increase
with the length of the window and the sensor sam-
pling frequency. Different trade-offs must be taken at
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Peak detection

HRV information 
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HRV frequency 
information

% HRV Frequency 
Bands Detection 
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Figure 3: Parameters and processes involved in the BVP-based DSE.

this stage considering how many information and how
frequently is needed. For HRV, this fact is challeng-
ing because HRV information is an unevenly or non-
uniformed sampled signal, because human cardiac fre-
quency is not constant. The number of HRVs suscepti-
ble to be detected into one window is given by

HRVWi =
WL

THRi

− 1, (1)

where WL is the window time duration, THR is the pe-
riod of the current HR, and i is the window number.
This equation is applicable for fixed windowing strate-
gies. However, this scheme suffers from a variable tem-
poral and frequency resolution problem. Suppose that
an application requirement is to give a response on ev-
ery processed window, then the amount of information
in each window will not be the same. Different alter-
natives can be used to avoid this problem, from inter-
polation to even dynamic frequency resolution adjust-
ments if the application allows it. Another approach
is to work with dynamic window length and overlap-
ping. Although, this type of allocation is intended to
optimize resources, a memory handler should be de-
signed to manage all the allocations and deallocations
performed. The latter leads to more added ROM mem-
ory usage and computational time.

Regardless of the windowing and overlapping
lengths, data processing must be performed between
window acquisitions. If the MCU is fast enough to
perform the data processing from a window before ac-
quiring the next one, then only one buffer is required.
However, this is not usual in constrained devices, so two
buffers are commonly included, i.e., one for data acquir-
ing and the other for data processing.
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3.2. Data Processing: filtering

The authors consider five parameters for the filtering
DSE: memory usage, window computation time, set-
tling time, stop-band mean attenuation, and bandpass
ripple. The two first parameters are related to the fil-
ter implementation and are constrained by the micro-
controller resources. The computation time parameter
is also constrained by the timing defined by the appli-
cation. The other parameters are related to filter char-
acteristics. Settling time is specially relevant denoting
the filter stabilization time, which could be linked with
a waste in time and memory. Stop-band mean attenu-
ation is related to the mean attenuation level with the
designated rejection band, while bandpass ripple is the
amount of variation in the gain within the designated
bandwidth of the filter.

Four filter design options are considered, three band-
pass FIR filters with different orders and a two-stage fil-
ter based on moving averaging. The design of band-
pass filters was conducted by Matlab® according to
the equiripple method. The resulting coefficients were
quantified to 14-bit integer to reduce memory usage and
boost processing time. This number of bits is the maxi-
mum precision that ensures no overflow in this system,
with 18-bit BVP signals and 32-bit registers. The fre-
quency response impact is minimal and the root means
square deviation of the output compared with 64-bit
floating-point coefficients is less than 0.6. On the other
hand, the two-stage filter is composed of two moving
averaging steps. The first one is a low pass 4-sample fil-
ter. The second one is the signal subtraction of the 100
values, centered moving average.

Table 1 shows the result obtained for the filtering
DSE. Analyzing this table, the authors reach that, for
bandpass filters, increasing the filter order (the number
of coefficients) increases mean stopband attenuation but
also ROM memory usage, computation time, and set-
tling time. The computation time for these bandpass fil-
ters could be reduced if coefficients are stored in RAM
at the expense of memory usage. Note that the compu-
tation for the two-stage filter is significantly lower than
for the bandpass filters.

Regarding stopband attenuation, this parameter ben-
efits bandpass filters, providing a higher attenuation
across all the stopband. Note that the most efficient re-
lationship stopband attenuation vs. ROM memory us-
age is reached by the 400-coefficient bandpass filter, be-
cause of the constant code size effect. Focusing on the
bandpass ripple, this metric remains below limits in all
cases but especial care should be taken in the rest of
the processing chain if the third bandpass filter is im-

Table 1: Results obtained for the DSE filtering.

Desing Compt. RAM ROM Set. Time Mean stopband bandpass
options Time [ms] [bytes] [bytes] [samples] att. [dB] ripple [dB]
400-coef 0.2474 10 626 400 -38.8 0.09
200-coef 0.1240 10 426 200 -25 0.64
100-coef 0.0623 10 326 100 -14.9 3.09
2-stage 0.0048 20 470 4 -9.3 1.93

plemented. Regarding settling time, the difference be-
tween two-stage and bandpass filters is large, benefiting
the latter. From all this analysis, the authors select the
two-stage filter, with a good trade-off between compu-
tation time, attenuation, and memory usage.

3.3. Feature Extraction: Peak Detection

As commented in Section 2.2.3, different approaches
can be used to delineate PPG time series. In our particu-
lar case, a computational comparison between two well-
known approaches is presented. The first algorithm im-
plemented, Algorithm 1, is based on LCM techniques,
while the second algorithm uses an adaptive threshold
through a varying slope.

Figure 4 shows a time impact analysis for the two dif-
ferent peak detection algorithms considering the num-
ber of samples in the processing window. For the
LCM algorithm, the number of samples to be compared
within the slope and the mean local evaluation (stc) is
the key element. Note the high time complexity of this
type of time series processing, as every sample of the
signal needs to be evaluated against its neighbors. For
instance, if the BVP signal is sampled at 100Hz, the
mean evaluation over ten samples supposes -6dB atten-
uation for 6Hz and -3dB attenuation for 4.5Hz, being
the latter close to 4Hz which is a frequency of interest,
as stated in Section 2.2. Thus, based on the residual
high noise frequencies of the signal filtered, this param-
eter can be adjusted. For this particular algorithm, and
guided by the trade-off taken on the previous stage, a stc
equal to ten can be chosen, which increases peak detec-
tion capabilities at the expense of time complexity. The
LCM algorithm used is one of the simplest, yet it fits the
requirements of our particular use case. Moreover, the
implemented algorithm just utilizes 2KB of ROM and
16B of RAM. On the other hand, regarding the ADT al-
gorithm, there can be observed a computational time in-
crease between 30% and 50% in comparison to an LCM
algorithm with the highest stc. This fact is mainly due
to the calculation of the standard deviation for the whole
processing window signal, which is needed for obtain-
ing the varying slope to be used by this algorithm. In
this case, 2.5KB of ROM and 64B of RAM are used by
this algorithm.
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Algorithm 1: BVP Peak Detection Algorithm

1 function getPeaks (bvpsignal, bvplen);
Input :
Clean BVP signal bvpsignal;
Total number of samples bvplen;
Output:
Detected peaks position peaksindex;
Total number of peaks peakstotal;

2 peaksmax ←− 0;
3 peaksmin ←− 0;
4 for i← 1 to (bvplen − stc) do
5 peaksindex(i)←− 0;
6 if bvpsignal(i)>peakmax then
7 Check not finished valley detection;
8 vtcmean ←− mean value for i+stcmin;
9 Check consecutive identical points;

10 vtcslope ←− slope for i and stcmax;
11 if vtcmean≥peakmax then
12 if vtcslope<0 then
13 Last point of a peak found;
14 end
15 else
16 Check if a peak was already detected;
17 if peak not detected && vtcslope<0

then
18 A peak was left behind;
19 end
20 end
21 end
22 if bvpsignal(i)<peakmin then
23 Perform opposite operation to detect

valleys;
24 end
25 end

3.4. Feature Extraction: HRV Information

In digital constrained embedded systems, frequency
analysis are performed by DFT. One of the usual algo-
rithms is the Fast Fourier Transform (FFT). However,
this algorithm is based on the assumption of an equidis-
tant sampled input. At this point, two possibilities arises
based on the application needs. If the application is
not limited by any inference time restriction, the sys-
tem can wait until enough HRV points are extracted
and the desired frequency resolution is possible. On
the contrary, when continuous rapid inference is needed
within a fixed temporal window, interpolation between
the HRV samples is applied to reestablish the temporal
coherence.
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Figure 4: Time impact analysis for the peak detection algorithms.
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Focusing on the continuous rapid inference use case,
Fig. 5 shows a time impact analysis for different in-
terpolation methods (linear and polynomial) and win-
dow processing lengths. As expected, polynomial meth-
ods have a higher time complexity, although produc-
ing more precise results if spectral accuracy is needed.
Note that Lagrange polynomial interpolation is applied.
In this particular case, a fixed-point 32-bit radix-2 FFT
algorithm1 is used, which provides one of the lowest
computational complexities (O(n log n)) and is then ad-
equate for the embedded device.

In this stage a trade-off between temporal and fre-
quency resolution must be taken. Note that indepen-
dently of the fsensor, if the window processing length
is fixed, the frequency bin resolution for the chosen
FFTlen will not change. Thus, in order to improve

1https://github.com/stg/SYLT-FFT
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frequency resolution for a fixed temporal window, re-
sampling techniques are applied after interpolation in
these situations. For instance, if the HRV is interpo-
lated at 100Hz for a fixed four second time window,
it results into a 0.39Hz/bin resolution. However, af-
ter applying a 1Hz resampling, frequency resolution in-
creases up to 0.25Hz/bin. Note that for the former case,
only 256 available points are taken. In case of taking
more points than the window length, zero padding must
be applied. Thus, time and frequency resolution, as
well as interpolation and resampling techniques, depend
on the application. This is a key aspect when dealing
with applications that require HRV frequency informa-
tion extraction, as the lowest band of interest is located
within 0.01Hz and 0.04Hz. Therefore, to achieve full
HRV frequency band detection capability a minimum
of 0.04Hz/bin should be assured. A frequency resolu-
tion value higher than that will decrease such detection
capability. Note that frequency bin resolution is given
by

fres =
fsensor

FFTlen
, (2)

where fsensor is the sampling frequency of the sensor,
and FFTlen is the amount of samples of the processing
window. Regarding temporal resolution, there must be
considered that, based on Equation (1), the duration of
the processing window must be selected to assure the
presence of at least two HRV points, otherwise, interpo-
lation is not possible.

Related to the memory storage considerations of
this stage special care needs to be taken for FFT re-
source requirements by implementing in-place proper-
ties and non-recursive behavior. Resampling consumed
resources are considered negligible. In our particular
case, the interpolation utilizes 698B of ROM and 10B
of RAM, while the FFT needs 3KB of ROM and 548B
of RAM.

4. DSE Use Case Implementation

To give a real use case and implement all the different
trade-offs concluded in each DSE stage, a specific four
second stress rapid-inference application is presented.
BINDI bracelet is programmed with all the detailed sig-
nal processing architecture and taken trade-offs. Thus,
the HRV metrics for this application need to be ex-
tracted within the specified time. In this case, an exper-
iment with six volunteers and ten different stressed and
non-stressed one-minute audiovisual stimuli was used.
These stimuli were previously labelled and selected by
the authors. After each stimulus, the volunteers self

reported their own level of arousal or excitement felt
when watching the video. To provide a validation tool
or a golden measure against the signals acquired by our
platform, BioSignalPlux2 was considered, which is one
of the commonly employed professional physiological
sensing systems for validations.

For this experiment, a 100Hz fsensor was used and a
fixed four second temporal processing window was em-
ployed. Note that for HRs bellow 45BPMs, this window
is not applicable, as only one HRV point could be found.
Every four seconds, the HRV points are extracted and
interpolated, which is followed by a FFT calculation and
a PSD estimate given by

PS Di =
2 ∗ | f f t|

s
, (3)

where PS Di is the power spectral density for one spe-
cific frequency bin i, | f f t| is the squared spectrum mag-
nitude and s is the sum of squared samples of the win-
dow function used. Specifically, to deal with scallop-
ing loss and picket fence effects, a flat top window is
applied. A fix FFTlen of 256 points is used, leading
to a 0.39Hz/bin resolution. This resolution is enough
to observe the activity of lower frequency bands (up to
0.4Hz) and higher ones (from 0.4Hz up to 1Hz). Take
into consideration that in case of having less than 256
points after interpolation, zero padding is applied. The
same digital procedure is applied for the validation tool
and BINDI.

Table 2 shows the collected results obtained for two
arbitrary selected stress (H) and non-stress (L) stimuli
for the six different volunteers. PG f 1 is the averaged
quotient between the first frequency bin (0.39Hz) and
the second frequency bin (0.78Hz) during the stimulus
using the signal from the validation tool, while PG f 2 is
the one observed for the averaged quotient between the
second frequency bin and the sum of the first and the
second. The fourth and the fifth columns are the ana-
logue values taken from BINDI. These results show a
decrease on the first factor for all the patients from the
stress to the non-stress stimulus. Conversely, there is a
increase in the second factor. This is in line to the the-
ory of the ANS. As commented in Section 1 and Section
2.2.3, the lower frequency bands are dominated by the
SNS which is in charge of regulating stress situations,
while PNS is related with the higher bands and respon-
sible of controlling relaxed conditions. The errors be-
tween the validation results and BINDI results are also
provided in Table 2 . These errors are low (ε < 10%),

2https://www.biosignalsplux.com/index.php/researcher
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Table 2: Measurement result of specific HRV stress detector use case.

Type PG f 1 PG f 2 PB f 1 PB f 2 ε [%(ε f 1, ε f 2)]

1H 5.28 0.15 5.27 0.16 (0.18,6.66)
1L 5.05 0.16 4.81 0.17 (4.75,6.25)
∆ -0.23 +0.01 -0.46 +0.01
2H 4.09 0.24 4.29 0.20 (4.88,16.66)
2L 3.83 0.27 3.45 0.29 (9.92,7.41)
∆ -0.26 +0.03 -0.84 +0.09
3H 5.18 0.16 5.17 0.16 (0.19,0.00)
3L 4.40 0.19 4.28 0.21 (2.72,10.52)
∆ -0.78 +0.03 -0.90 +0.05
4H 5.27 0.15 5.32 0.15 (0.09,0.00)
4L 5.16 0.16 5.12 0.17 (0.7,6.25)
∆ -0.11 +0.01 -0.20 +0.03
5H 5.07 0.16 4.82 0.17 (4.93,6.25)
5L 4.64 0.17 4.63 0.18 (0.21,5.88)
∆ -0.43 +0.01 -0.19 +0.01
6H 4.98 0.16 4.96 0.17 (4.03,6.25)
6L 4.84 0.17 4.46 0.20 (7.85,17.64)
∆ -0.14 +0.01 -0.50 +0.03

except for cases such as 2H or 6L, in which strong mo-
tion artifacts presented in the signal of BINDI were not
cleaned as expected, resulting into locally contaminated
segments of signals, which affects directly to the peak
detection process and, therefore, to the HRV extraction.

By performing this particular use case, the differ-
ent detailed trade-offs for rapid-inference applications
have been successfully applied. Notwithstanding that
the presented use case does not reach the full HRV
frequency band detection capability, the goal of rapid
stress detection is accomplished using low amount of
resources at the expense of frequency resolution.

5. Conclusions

This work provides a detailed DSE for a physiologi-
cal based constrained wearable device developed by the
authors. Different signal processing elements are ana-
lyzed and compared based on particular wearable appli-
cations needs.

Based on the given DSE results, a particular con-
tinuous rapid detection use case is implemented. We
demonstrate that stress detection using HRV can be per-
formed by extracting only two frequency bins, which
supposes a novel low-power wearable device HRV in-
tegration using low-resource, low-complexity computa-
tion followed from a detailed DSE.

Certain limitations of the proposed system must be
considered. On the one hand, different signal process-
ing techniques can be applied. For instance, to deal with

the unevenly spaced HRV data, Lomb-Scargle periodro-
gram method could be applied [27] instead of FFT. On
the other hand, the different possibilities, extension and
complexity of the MAR methods lead to not include any
specific DSE for this part. This fact must be properly ad-
dressed for any physiological wearable constrained de-
vice integrating PPG sensors. Moreover, future work
related to the inference stage DSE of the affective com-
puting wearable is to be studied and analyzed in further
publications.

Some of the limitations identified while performing
this work confirms the need for DSEs based on current
low-power system-on-chips and physiological signals to
be published in the literature.
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