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A B S T R A C T

Microgrids have become popular candidates for integrating diverse energy sources into the power grid as means
of reducing fossil fuel usage. Energy Resource Management (ERM) is a type of Unit Commitment problem,
where a player operates a microgrid with diverse renewable generators integrated with an external supplier.
Calculating the economic dispatch of each committed unit on a planning horizon is an NP-hard problem,
and therefore, finding an exact solution is difficult. This paper presents a multi-objective solution to the ERM
problem from the perspective of battery operation and external supplier dispatch. First, a novel multi-objective
decision problem modeling is proposed that considers three objectives: cost, greenhouse gas emissions, and
battery degradation. This framework involves a learning agent that controls the depth of discharge of a
Lithium-Ion battery. To address the proposed problem, a new multi-objective algorithm called Multi-Objective
Evolutionary Policy Search (MEPS) is introduced. The proposed algorithm uses NeuroEvolution of Augmenting
Topologies structure to evolve artificial neural networks for estimating action-preference values considering
multi-objective rewards. The MEPS performance is evaluated on both standard and newly-proposed benchmark
problems, using the hypervolume as the evaluation metric. When compared to standard deep reinforcement
learning, results showed that MEPS provides cost-effective, environmentally friendly, and efficient energy
storage management solutions. Furthermore, MEPS effectively solves the proposed ERM problem by finding
neural networks with a small number of nodes and connections, which are suitable for use in embedded control
systems. Overall, MEPS proved to be a promising multi-objective approach in the transition to clean energy
resources.

1. Introduction

The rise in atmospheric greenhouse gas (GHG) concentrations and
the impacts of climate change have made the use of renewable energy
sources (RESs) a global priority for both humanity and industry [1–3].
During the 2010–2020 decade, solar and wind technologies have faced
a cost reduction that increased their deployment in energy generation
to the detriment of fuel-based energy generation [4]. Furthermore, the
decarbonization of transport and mobility services is also considered a
key alternative for reducing GHG emissions [5]. Accordingly, electric
vehicles are being promoted for helping to achieve a transition towards
renewable energies in this sector and for reducing the corresponding
environmental impacts of vehicles based on fossil fuels [6].

Microgrids (MG) have become popular candidates for integrating
distributed energy resources (DERs) into the power grid aiming the
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goal of zero carbon emissions. The microgrid concept comprises a low-
voltage distribution system that integrates distributed energy resources,
such as microturbines, photovoltaic panels, and electric vehicles, with
storage and flexible loads. Microgrid systems can operate either au-
tonomously or non-autonomously by interconnecting to the public
grid [7,8].

A very important task in operating an MG involves determining
the optimal Unit Commitment (UC), taking into account technical and
economic constraints over a long planning horizon, of up to one year.
UC refers to the problem of determining the schedule of generating
units within a power system, with the goal of minimizing costs while
satisfying system constraints [9]. The UC module of an MG controls
not only the committed generators and power imported from the public
grid, but also the power exported to/imported from ESS units [10].
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Therefore, UC in MGs with ESS units is a complex constrained opti-
mization problem, due to the climate-dependent nature of renewable
resources such as solar and wind, and the fluctuating market price.
In this way, the Energy Resource Management (ERM) of an MG can
be considered as a type of UC problem, where a player operates an
MG with diverse renewable generators in integration with an external
supplier [11]. An efficient ERM solution leads to not only a profitable
but also a sustainable and reliable operation of the MG [7]. Thus,
controlling the dispatch of generation units is one of the most important
optimization problems for daily operation scheduling and planning.
Moreover, according to the International Electrotechnical Commission
in the standard IEC 61970, the computer system that assures the
effective management operation of a microgrid is called Energy Man-
agement System (EMS) [12]. Consequently, the EMS of a microgrid
encompasses both supply-side and demand-side management, while
ensuring that system constraints are respected.

EMSs are usually divided into centralized and decentralized ac-
cording to their mode of operation. In centralized mode, the man-
agement system is located in a central station and connected to the
distributed energy resources (DERs) via communication lines for con-
trol and data exchange. On the other hand, in the decentralized mode,
each DER operates independently and manages itself using a local
controller, eliminating the need for communication. In this paper, the
ERM control of a centralized energy management system is modeled
as a sequential decision problem and treated from a multi-objective
perspective regarding operating cost, greenhouse gas emissions, and
battery degradation.

Many classical and heuristic optimization algorithms have been
proposed to handle energy management problems [13–16]. However,
the ERM problem can also be interpreted as a sequential decision
problem with Markov decision process (MDP) properties [17]. In such
modeling, reinforcement learning (RL) approaches have been proposed
to solve the resulting ERM problems. For instance, Mannion et al. [18]
employed a multi-agent RL modeling using Q-Learning for controlling
the generating units, considering both cost and pollutant emissions. In
this model, different functions that combine cost, emission values, and
a constraint violation penalty into a single reward signal are evaluated.
In [19], a near-optimal ESS operation strategy using state–action–
reward–state–action (SARSA) algorithm is presented. The operation
strategy is then employed to manage uncertainties in forecasting wind
power generation. Wind power uncertainty is also tackled in [20],
in which a two-fold solution is proposed. First, a long-short term
memory (LSTM) model is used to predict wind power. Then, an ERM
problem for wind power control is modeled and solved as a sequential
decision problem using deep Q-learning. In the proposed modeling, the
learning agent is responsible for finding the optimal charge/discharge
decision-making strategy for the ESS present in the MG.

Regarding the life span and maintenance of ESSs, Wu et al. [21]
proposed a deep RL method that combines Monte Carlo Tree Search
(MCTS) and state–action estimation using deep neural networks for
preventive maintenance in a set of batteries. A combination of Q-
learning and MCTS is also presented in [22], in which the learning
agent handles the dispatching of the ESS in the microgrid using a
multiperiod stochastic model and considering the battery’s degradation
cost. The management of a community battery ESS (CBESS) through Q-
Learning is presented in [23]. The presented solution employs the cost
of charging and discharging the CBESS plus a penalty for exceeding
maximum and minimum SoC limits.

Within an EMS, some recent works target the problem of demand
response (DR), in which the energy consumption can be shifted over
time, and generated energy is stored to be used in high-demand periods,
providing more flexibility to the grid. For instance, in [24], a Q-
Learning algorithm is employed to control a service provider’s energy
retail price. To achieve the objective of maximizing the profit obtained
by the service provider while minimizing the cost for customers, the
reward is a function of the energy demand prior to the new retail price

and the actual energy consumption after setting the price. In [25], a
Deep Q-Learning-based solution is employed in a home energy man-
agement system (HEMS) to provide not only control but also demand
response by shifting load. The goal is to minimize cost and penalties
for daily actions and battery usage while maximizing user’s satisfaction
and consumption of PV energy. A Deep Q-Learning-based solution for
a HEMS is also presented in [26], in which the objective is to minimize
both the expected energy cost and the difference between the daily
consumption and PV generation.

The role of an EMS also includes guaranteeing security by defending
against cyber-attacks, and avoiding peaks of load demand by employing
demand side management (DMS). A priority deep Q-learning (PDQN)
algorithm is employed by [27] to perform DMS and minimize costs and
load peaks in attending load demand. To achieve these objectives, the
reward for reducing load peak is decomposed into four components
that explore properties of the differences in load height between time
steps. Regarding security, a three-module EMS is proposed by [28]. The
first module detects anomalies by classifying suppliers and predicts the
real energy supply, the second module is responsible for the system
operation, and the third is composed of a market call-auction system.
Moreover, the second module employs a Q-Learning algorithm that
is responsible for acting towards maximizing the ratio between the
reserved energy and the total energy produced. These studies, sum-
marized along with their limitations in Table 1, have provided an
important reference for this work.

According to the above literature review and data summarized in
Table 1, the following research gaps have been detected:

1. Based on the presented studies, the problem of ERM control has
not yet been approached from a multi-objective perspective;

2. Despite the work presented in [18], there has been no particular
focus on greenhouse gas emissions in the majority of these
studies that deal with RES;

3. Not all studies have considered both wind and solar generation;
4. Although battery degradation cost is considered in some works,

it is not explicitly calculated and considered as an objective;
5. If a weighted sum of objectives is utilized to solve a multi-

objective problem, it is not possible to discover multiple trade-
offs among objectives in one run, and the derived solutions are
constrained to the convex regions of the Pareto front [29];

In order to provide multiple trade-offs among objectives, multi-
policy multi-objective reinforcement learning (MORL) algorithms have
emerged as a promising alternative to finding high-quality trade-off so-
lutions. For example, in [30], an MORL algorithm, that couples a short
term-planning approach of parameterizing a reward function estimator
with a long-term planning based on actor-critic. Song et al. [31] pre-
sented a multi-objective version of proximal policy optimization (PPO)
for a multi-objective trajectory control and task offloading (TCTO)
problem. This problem consists of flying an unmanned aerial vehicle
along a planned trajectory to collect computation tasks from smart
devices. In [32], an algorithm that combines Fuzzy Coding and Actor-
Critic is proposed to solve a multi-objective robotic visual control
problem.

Despite the existence of MORL proposals based on policy search
in the state-of-the-art, they often rely on policy gradient updates, and
they are rarely employed in EMS solutions. Furthermore, the use of
deep learning models is frequent in ERM, RL [33], and time-series pro-
cessing [34]. However, deep learning model performances are highly
dependent on the architecture/topology and, therefore, require a lot
of domain knowledge and human intervention [35]. Motivated by this
and based on the research gaps mentioned above, our proposal aims at
exploiting not only the strong generalization ability of RL and the ad-
vantages of gradient-free optimization but also the search performance
of Evolutionary Algorithms. Therefore, the main contributions of this
work are:
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Table 1
Investigation of RL techniques applied to ERM problems.

Refs. Generation
sources

RL Method Objectives Limitations

[18] Fossil-fueled
Generators

Q-Learning Minimize the operational cost and total pollutant
emissions

Only considers fossil-fueled generators and the two
objectives are converted into one objective that
represents the weighted sum.

[19] Wind SARSA Minimize the difference between the error in
forecasted Wind Power and ESS energy

Does not consider photovoltaic panels and only
one objective is handled

[20] Wind Deep Q-Learning Minimize the costs of buying energy and ESS
operation, penalties for ESS constraints, penalties
for optimal SoC, and discarded wind energy

Does not consider photovoltaic panels and the five
objectives are converted into one objective that
represents the weighted sum.

[21] Fleet of batteries MCTS and Deep Learning
(ResNet)

Maximize the reliability of the entire battery
system over time

Does not consider neither wind nor photovoltaic
generation. Only one objective is considered.

[22] Wind and Solar MCTS and Q-Learning Minimize the degradation cost of ESS, the penalty
cost for exceeding the maximum power sent back
to public grid, and maximize the revenue
generated from power sent back to public grid

The reward is a scalar corresponding to the
weighted sum of the three objectives.

[23] Wind and Solar Double Deep Q-Learning Minimize the costs of ESS operation and penalties
for operating over the SoC limits

The reward is a scalar value.

[24] Public grid Q-Learning Maximize the profit obtained by the service
provider and minimize the cost for customers

The reward is a scalar obtained by a convex
combination between both objectives. Neither wind
nor solar energy generation is considered. Tabular
Q-learning suffers from the curse of dimensionality.

[25] Solar Deep Q-Learning and Double
Deep Q-Learning

Minimize cost and penalties for daily actions and
battery usage, and maximize user’s satisfaction and
consumption of PV energy

The reward is a scalar obtained by the sum of 5
different objectives. Wind energy is not considered.

[26] Solar Deep Q-Learning Minimize cost of energy and the difference
between the daily consumption and PV generation

The reward is sum of two objectives. Solar energy
is not considered.

[27] Wind and Solar Priority Deep Q-Learning Minimize cost of energy and load peaks The reward is a scalar corresponding to the sum of
5 objectives.

[28] Wind and Solar Q-Learning Maximize the ratio between the reserved energy
and the total energy produced

The reward is a scalar value. Tabular Q-learning
suffers from the curse of dimensionality.

1. A novel multi-objective neuroevolutionary reinforcement learn-
ing algorithm for deterministic multi-policy search, that does not
depend on policy gradient updates, is proposed.

2. A diversity selection mechanism that uses a heavy tail distri-
bution to restrict the number of individuals selected at each
iteration is proposed. This mechanism applied to evolving neural
networks, allows some newly introduced topologies to have time
to improve.

3. A new MORL benchmark environment based on the ZDT 3
multi-objective optimization benchmark function is proposed.

4. An extensive comparison and statistical analysis between the
proposed method and other MORL algorithms present in the
literature is presented.

5. A new multi-objective energy management problem that ac-
counts for the amount of CO2 emissions, integrates a non-linear
degradation model for lithium-ion batteries, and uses real-world
load time-series data is presented.

The remainder of the paper is as follows: Section 2 provides the
necessary definitions regarding RL, and Section 3 presents the pro-
posed ERM control problem modeling. After, Section 4 describes the
proposed algorithm. The benchmark analysis and experimental results
are presented in Section 5. The conclusions are presented in Section 6.

2. Reinforcement learning background

In reinforcement learning (RL), the learning agent deals with the
problem of making decisions in unknown, possibly dynamic environ-
ments. In the standard single-objective case, the overall target of the
agent is to learn a sequence of decisions that maximizes the expected
value of a scalar feedback signal. Essentially, these decisions relate to
action selection in certain environmental states. A typical formalization
of a reinforcement learning environment by means of Markov decision
process (MDP) is a tuple (𝑆,𝐴, 𝑇 , 𝑅) [36], in which:

• 𝑆 = {𝑠1,… , 𝑠𝑁} denotes the state space,
• 𝐴 = {𝑎1,… , 𝑎𝑟} denotes the finite set of available actions,
• 𝑇 (𝑠′|𝑠, 𝑎) ∈ [0, 1] is a transition function that specifies, for each

state, action, and next state, the probability of that next state
occurring given an action at the current state, and

• 𝑅(𝑠, 𝑎) ∶ 𝑆 × 𝐴 → R is a reward function that specifies, for each
pair state–action, the expected immediate reward.

The goal of an agent is to learn a policy 𝜋 that maps each state
to an action so that the expected return received in the long run
is maximized [37]. In this work, only deterministic transitions are
considered, hence 𝑇 (𝑠′|𝑠, 𝑎) = 1. The state-dependent value function of
a policy 𝜋 in a state 𝑠 is defined as

𝑉 𝜋 (𝑠) = 𝐄𝜋

[ ∞
∑

𝑘=0
𝛾𝑘𝑟𝑡+𝑘|𝑠𝑡 = 𝑠

]

, (1)

in which 𝑟𝑡 is the reward obtained at time 𝑡 and 𝛾 ∈ [0, 1] is the discount
factor. In a finite horizon model, the state value function becomes

𝑉 𝜋 (𝑠) = 𝐄𝜋

[ ℎ
∑

𝑘=0
𝑟𝑡+𝑘|𝑠𝑡 = 𝑠

]

, (2)

in which ℎ denotes the length of the horizon. The expected return from
starting at state 𝑠, taking action 𝑎, and following policy 𝜋 is given by a
𝑄𝜋 (𝑠, 𝑎)-value. For an infinite horizon model, it is expressed as:

𝑄𝜋 (𝑠, 𝑎) = 𝐄𝜋

[ ∞
∑

𝑘=0
𝛾𝑘𝑟𝑡+𝑘|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]

. (3)

The optimal 𝑄∗-values are defined as

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝐄
[

𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)
]

. (4)

The Q-Learning algorithm presented in [38] provides a way to itera-
tively approximate 𝑄∗. In Q-Learning, each state–action pair is stored
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in a Q-table and, with learning rate 𝛼 ∈ (0, 1], updated incremen-
tally based on feedback and Temporal Difference learning (TD) [39]
according to the rule

�̂�(𝑠, 𝑎) = �̂�(𝑠, 𝑎) + 𝛼𝑡

(

𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′) − �̂�(𝑠, 𝑎)
)

. (5)

Assuming that all state–action pairs are visited and updated under Q-
Learning, the �̂� estimates converge to the optimal values 𝑄∗ in either
deterministic or non-deterministic MDPs [40,41].

By selecting the first action according to the policy 𝜋, the Q-function
is equivalent to the value function and can be written as

𝑉 𝜋 (𝑠) = 𝐄𝜋
[

𝑄𝜋 (𝑠𝑡, 𝜋(𝑠𝑡))|𝑠𝑡 = 𝑠
]

. (6)

Finding a policy that maximizes Eq. (6) requires searching over a
function space, which is generally an intractable problem. Therefore,
policies are parameterized by some 𝜃 ∈ 𝛩 ⊂ R𝑑 so that search is
performed in a Euclidean space of finite dimension. Consequently, the
resulting problem becomes

max
𝜃

𝐄𝜋𝜃
[

𝑄𝜋𝜃 (𝑠𝑡, 𝜋𝜃(𝑠𝑡))|𝑠𝑡 = 𝑠
]

= 𝐽 (𝜃). (7)

In this work, policies are parameterized using neural networks.

2.1. Multi-objective reinforcement learning

In multi-objective reinforcement learning (MORL), the reward ob-
jective space consists of two or more dimensions that must be optimized
simultaneously [42,43]. Hence, scalar reward values in MDPs are trans-
lated into reward vectors 𝐑(𝑠, 𝑎) ∈ R𝑚. The variable 𝑚 stands for
the number of objectives and the 𝑖th component of the reward vector
denotes the reward obtained for the 𝑖th objective. Since the agent
will optimize several objectives simultaneously, there will be different
optimal policies with respect to distinct goals. Therefore, the optimality
criteria used is, in general, the concept of Pareto dominance [44].

Generally, to establish an ordering among solutions in MORL prob-
lems, two solutions are compared according to the Pareto dominance
relation [45].

Definition 1. Given two policies 𝜋1, 𝜋2 ∈ 𝛱 , it is said that policy 𝜋1
strictly dominates policy 𝜋2, denoted by 𝜋1 ≻ 𝜋2, if

∀𝑖 ∈ {1,… , 𝑚},𝐕𝜋1𝑖 (𝑠) ≤ 𝐕𝜋2𝑖 (𝑠) ∧ ∃𝑗 ∈ {1,… , 𝑚},𝐕𝜋1𝑗 (𝑠) < 𝐕𝜋2𝑗 (𝑠) (8)

𝐕𝜋1 (𝑠) strictly improves 𝐕𝜋2 (𝑠) in at least one objective and 𝐕𝜋1 (𝑠) is at
least equal to 𝐕𝜋2 (𝑠) in all other objectives.

Definition 2. Given two policies 𝜋1, 𝜋2 ∈ 𝛱 , it is said that policy 𝜋1 is
incomparable to policy 𝜋2 if

∃𝑖 ∈ {1,… , 𝑚},𝐕𝜋1𝑖 (𝑠) < 𝐕𝜋2𝑖 (𝑠) ∧ ∃𝑗 ∈ {1,… , 𝑚},𝐕𝜋2𝑗 (𝑠) < 𝐕𝜋1𝑗 (𝑠). (9)

𝐕𝜋1 (𝑠) strictly improves 𝐕𝜋2 (𝑠) in at least one objective and 𝐕𝜋2 (𝑠)
strictly improves 𝐕𝜋1 (𝑠) in at least one objective. Therefore, both poli-
cies are incomparable.

Definition 3. A policy 𝜋∗𝑖 ∈ 𝛱 is said to be Pareto optimal iff it is
non-dominated by any other policy 𝜋𝑗 :

𝜋∗𝑖 ∈ 𝛱 ↔ ∄𝜋𝑗 ∈ 𝛱 ∶ 𝜋𝑗 ≻ 𝜋∗𝑖 . (10)

The set 𝛱∗ ⊂ 𝛱 with all Pareto optimal policies is named Pareto
front [44].

3. ERM problem formulation

In this section, we formally define the Energy Resource Manage-
ment problem for a planning horizon of one year. First, we present
the microgrid configuration followed by the objective functions and
constraints definitions. Then, the ERM control problem is modeled as

Fig. 1. Solar wind power microgrid system structure.
Source: Based on [20].

Table 2
General information about the microgrid.

Unit INV PV WT LTO battery

Life time (years) Years 15 24 24 17.5
Efficiency (%) % 96 20.4 95 90
Rated power kW – 0.45 100 –
Capacity kW – – – 1000
Cycles un – – – 8000
Initial cost $ – 500.00 1800.00 –
Cost $/kW 700.00 – – 1143.00
Operational cost $/kW – 18 0.36 –

a Markov Decision Process (MDP) and treated from a multi-objective
perspective regarding operating cost, greenhouse gas emissions, and
battery degradation. In this resulting control problem, the learning
agent plays the role of an EMS that is responsible for managing the
maximum allowed monthly ESS’ depth of discharge (DoD), and the
energy imported from the public grid.

3.1. Microgrid system model

The structure of the simulated solar wind power microgrid system is
based on [46], which also details the mathematical modeling concern-
ing the components functioning. The simulated microgrid is composed
of six Norvento nED 100-22 wind turbines,1 5000 HiKu 450W-CS3W-
450MS photovoltaic panels,2 an ESS, DC/AC converter, electrical load
that comprises both residences and industrial buildings, main grid con-
nection (the main grid price mechanism employed is real-time pricing
(RTP)), and EMS. Fig. 1 presents the system structure. Moreover, the
ESS consists in a 1000 kW capacity spinel lithium titanate (Li4Ti5O12
(LTO) [47]) battery. Table 2 details the configuration values for the MG
project with a lifetime of 24 years.

With respect to the data used, a generic region from Cadiz, in
Southern Spain, was used as case a study of this work. In this regard, an
annual load profile (measured in 8640 h) comprising both a residential
community and an industrial consumption is analyzed. Besides, hourly
data for solar radiation, wind speed, ambient temperature, and dynamic
energy price from 2021 serve as input to the MG system.

Next, the objective functions and the different constraints involved
in the problem are introduced.

3.2. Operational costs objective and ESS constraints

The charge/discharge control of the ESS represents the use or stor-
age of energy from the ESS. At each time step 𝑡, the ESS can be either

1 https://www.norvento.com/productos/aerogeneradores-de-media-
potencia/.

2 https://www.csisolar.com/au/hiku/.

https://www.norvento.com/productos/aerogeneradores-de-media-potencia/
https://www.norvento.com/productos/aerogeneradores-de-media-potencia/
https://www.csisolar.com/au/hiku/
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charging or discharging. The minimum state-of-charge (SoC) value is
defined as the 1−𝐷𝑜𝐷(𝑡) of ESS. Furthermore, the SoC at time step 𝑡 is
given by [20]:

𝑆𝑜𝐶(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑆𝑜𝐶(𝑡 − 1) + 𝐸𝑏𝑎𝑡(𝑡)⋅𝜂𝑐
𝐸𝑟𝑎𝑡𝑒𝑑

, 𝐸𝑏𝑎𝑡(𝑡) ≥ 0

𝑆𝑜𝐶(𝑡 − 1) + 𝐸𝑏𝑎𝑡(𝑡)
𝐸𝑟𝑎𝑡𝑒𝑑 ⋅𝜂𝑑

, 𝐸𝑏𝑎𝑡(𝑡) < 0,
(11)

in which 𝜂𝑐 = 0.90 and 𝜂𝑑 = 1.0 are the charging and discharging
efficiencies, respectively. 𝐸𝑟𝑎𝑡𝑒𝑑 denotes the rated capacity of the ESS.
The amount of used or stored energy from the ESS, 𝐸𝑏𝑎𝑡(𝑡), is calculated
as

𝐸𝑏𝑎𝑡(𝑡) =

{

𝐸𝑑𝑐ℎ(𝑡), if discharging
𝐸𝑐ℎ(𝑡), if charging,

(12)

in which 𝐸𝑑𝑐ℎ(𝑡) and 𝐸𝑐ℎ(𝑡) are the discharging and charging requested
energy amount given by [46]:

𝐸𝑑𝑐ℎ(𝑡) =

⎧

⎪

⎨

⎪

⎩

max{(1 −𝐷𝑜𝐷(𝑡) − 𝑆𝑜𝐶(𝑡 − 1))
⋅𝐸𝑟𝑎𝑡𝑒𝑑 , 𝐸𝑑𝑐ℎ(𝑡)}, 𝑆𝑜𝐶(𝑡 − 1) > 1 −𝐷𝑜𝐷(𝑡)

0, 𝑆𝑜𝐶(𝑡 − 1) ≤ 1 −𝐷𝑜𝐷(𝑡),

(13)

𝐸𝑐ℎ(𝑡) = min{(𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶(𝑡 − 1)) ⋅ 𝐸𝑟𝑎𝑡𝑒𝑑 , 𝐸𝑐ℎ(𝑡)}. (14)

In addition, the use and degradation costs of ESS are considered in
the operation. The ESS use cost coefficient is given by [46,48]:

𝑐𝑑 (𝑡) =
𝐶𝑖

𝐿𝑐 ⋅ 𝐸𝑟𝑎𝑡𝑒𝑑 ⋅𝐷𝑜𝐷(𝑡)
, (15)

in which 𝐿𝑐 is the available cycle lifetime and 𝐶𝑖 is the initial invest-
ment of ESS. Therefore, in this modeling the total cost of an operation
is obtained by [48]:

𝐶𝑡𝑜𝑡𝑎𝑙(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) = 𝐼𝐶 + 𝑃𝑊𝑝 + 𝑃𝑊𝑛𝑝 +
𝑡𝑒𝑛𝑑
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑐𝑑 (𝑡), (16)

in which the value 𝐶𝑡𝑜𝑡𝑎𝑙(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) represents the sum of the system
costs of operating from time 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑 . The initial cost (IC) refers
to the 20% cost for operation & maintenance, 6% discount rate, 1.4%
inflation rate, personnel cost, installation, and connections. There is
also included both the periodic costs 𝑃𝑊𝑝 of components maintenance,
such as PV panels and wind generators, and the non-recurrent costs
𝑃𝑊𝑛𝑝 of components replacement, such as ESS [48]. Moreover, the
charging/discharging power constraints are given by

⎧

⎪

⎨

⎪

⎩

0 ≤ 𝐸𝑐ℎ ≤ 𝐸𝑚𝑎𝑥𝑐ℎ ,
0 ≤ 𝐸𝑑𝑐ℎ ≤ 𝐸𝑚𝑎𝑥𝑑𝑐ℎ ,
𝐸𝑐ℎ ⋅ 𝐸𝑑𝑐ℎ = 0,

(17)

in which 𝐸𝑚𝑎𝑥𝑐ℎ and 𝐸𝑚𝑎𝑥𝑑𝑐ℎ are the maximum charge and discharge energy,
respectively. Additionally, the ESS’ SoC should be maintained at a
suitable range at each time step

𝑆𝑜𝐶𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑜𝐶(𝑡) ≤ 𝑆𝑜𝐶𝑚𝑎𝑥, (18)

with 𝑆𝑜𝐶𝑚𝑖𝑛(𝑡) denoting the minimum SoC value at time step 𝑡 and
𝑆𝑜𝐶𝑚𝑎𝑥 as the maximum allowed SoC. Finally, the resulting objective
function for cost minimization, modeled by [46], is

min𝐶𝑜𝑠𝑡(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) = 𝐶𝑡𝑜𝑡𝑎𝑙(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) +
𝑡𝑒𝑛𝑑
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑃 𝑏𝑢𝑦𝑡 ⋅ 𝑃𝑟𝑡, (19)

where the operational cost is combined with the cost of the energy
bought from the public grid 𝑃 𝑏𝑢𝑦𝑡 at price 𝑃𝑟𝑡 to supply the insufficient
microgrid power.

3.3. Microgrid CO2 emissions objective

In order to take into consideration an estimation of the amount of
CO2 emissions for energy bought from the public grid and renewable

generation, we have used the greenhouse gas emission values as an
average of the minimum and maximum values from [49] in grams of
CO2eq./KWh for each energy source. Hence, the following values have
been used:

• Solar Photovoltaic: 44.15 g CO2eq./KWh;
• Wind Power: 11.90 g CO2eq./KWh;
• Nuclear: 5.75 g CO2eq./KWh;
• Hydro: 76.50 g CO2eq./KWh;
• Cogeneration and Combined cycle: 156.00 g CO2eq./KWh;

Moreover, with respect to energy bought from the public grid, the
CO2eq./KWh quantity is calculated using the dispatchable energy com-
position in Spain as reported by [50]:

• Solar Photovoltaic: 9%;
• Wind Power: 26%;
• Nuclear: 24%;
• Hydro: 13%;
• Cogeneration: 17%:
• Combined cycle: 11%;

Thus, the total emissions in CO2eq./KWh [16] for wind/solar power
generation and energy imported from the public grid are each:

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑊 𝑇 (𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) = 11.90 ⋅
𝑡𝑒𝑛𝑑
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑃𝑊 𝑇
𝑡 , (20)

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑉 (𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) = 44.15 ⋅
𝑡𝑒𝑛𝑑
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑃 𝑃𝑉𝑡 , (21)

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐵𝑢𝑦(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) = (44.15 ⋅ 0.09 + 11.90 ⋅ 0.26 + 5.75 ⋅ 0.24 +

75.60 ⋅ 0.13 + 156.00 ⋅ 0.28) ⋅
𝑡𝑒𝑛𝑑
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑃𝐵𝑢𝑦𝑡 , (22)

in which 𝑃𝑊 𝑇
𝑡 and 𝑃 𝑃𝑉𝑡 stand for the energy generated from wind

turbines and photovoltaic panels at time 𝑡, respectively. From that, Leite
et al. [16] modeled an objective function for minimizing the amount of
CO2 emissions, according to:

min𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑊 𝑇 (𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) +

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑉 (𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) + 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐵𝑢𝑦(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ). (23)

3.4. ESS degradation objective

In our modeling approach, we have included a quantification of
the Lithium-Ion battery (LIB) capacity degradation as a combination
of calendar and cycle aging, given by [51]:

𝛥𝐶 = 𝐶0 ⋅

(

0.75𝜏 ⋅
∑

𝑡
𝛼𝑐𝑎𝑝𝑡 ⋅ 𝑑

−0.25+

1
√

𝐸𝐹𝐶

( 𝑊
∑

𝑤=1
𝛽𝑐𝑎𝑝(𝐷𝑜𝐷𝑤) ⋅𝐷𝑜𝐷𝑤 + 1

2

𝐻
∑

ℎ=1
𝛽𝑐𝑎𝑝(𝐷𝑜𝐷ℎ) ⋅𝐷𝑜𝐷ℎ

))

, (24)

in which 𝐶0 is the initial battery capacity, 𝑑 are the total days, 𝑡 is the
model period in hours. 𝑊 and 𝐻 are the number of whole and half
equivalent full cycles (𝐸𝐹𝐶), obtained after applying rainflow cycle
counting algorithm to the ESS state of charge’s (SoC) profile [52].
𝐷𝑜𝐷𝑤 and 𝐷𝑜𝐷ℎ are the depths of discharge (DoD) associated with
each whole and half EFCs, respectively. The term 𝛼𝑐𝑎𝑝 denotes the
calendar aging factor, given by [51]

𝛼𝑐𝑎𝑝 = (7.543𝑉 − 23.75) ⋅ 106 ⋅ 𝑒6976∕𝑇 , (25)

in which 𝑉 and 𝑇 are the battery’s cell voltage and temperature (in K),
respectively. It is assumed that the cell voltage is constant and equals
to 3.7 [53] and 𝑇 is equal to the ambient temperature 𝑇𝑎𝑚𝑏 converted
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from Celsius to Kelvin. In addition, the term 𝛽𝑐𝑎𝑝 describes the battery
aging factor in terms of equivalent full cycles [51],

𝛽𝑐𝑎𝑝(𝐷𝑜𝐷) = 7.348 ⋅10−3 ⋅ (𝑉 −3.667)2+7.6 ⋅10−4+4.081 ⋅10−3 ⋅𝐷𝑜𝐷. (26)

The term 𝑉 is the average cell voltage, which, in this work, is
equal to the cell voltage 𝑉 = 3.7. Therefore, the objective function for
minimizing the accumulated ESS’ degradation according to [51] is

min𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ) =
𝑡𝑒𝑛𝑑
∑

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝛥𝐶(𝐷𝑜𝐷(𝑡)). (27)

3.5. ERM Markov decision process

In the presented ERM problem, the energy management is per-
formed through both the monthly control of the ESS’ depth of discharge
(DoD) [20], and the imported energy from the public grid. By setting a
DoD value, the manager restricts the amount of energy that is available
to be used from the ESS. The insufficient microgrid power is supplied
by importing from the public grid. Thus, the system needs information
from the environment to set different DoD values under different states.
As a result, the system dynamics of the ERM can be formalized as a
Markov decision process (MDP) characterized by a state space S, an
action space A, and a reward R evaluated every month over a finite
time horizon of a year. The state space S [20] is characterized by a R3

vector that contains the state information at each month 𝑚:

𝑠𝑚 ∈ 𝑆 =

{

𝑆𝑜𝐶(𝑡),
𝑇 𝑏𝑢𝑦𝑚

𝑇 𝑙𝑜𝑎𝑑𝑚
,
𝑇 𝑑𝑐ℎ𝑚

𝑇 𝑙𝑜𝑎𝑑𝑚

}

, (28)

in which 𝑇 𝑏𝑢𝑦𝑚 denotes the total energy bought in month 𝑚, 𝑇 𝑑𝑐ℎ𝑚 denotes
the total energy discharged from the ESS in month 𝑚, and 𝑇 𝑙𝑜𝑎𝑑𝑚 is the
accumulated load demand over the month 𝑚. Note that, since data time
steps are defined in hours, each month consists of a batch of 720 h.

At each month, the agent decides the DoD that will be used. Thus,
the action space contains eight available actions and is defined as

𝑎𝑚 ∈ 𝐴 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. (29)

After an action is performed, the ESS dynamics are updated as follows:

𝐷𝑜𝐷(𝑚) = 𝑎𝑚, (30)

in which 𝐷𝑜𝐷(𝑚) indicates the DoD used for every hour corresponding
to month 𝑚.

Finally, the multi-objective reward function proposed in this work
is a R3 vector given by

𝐑(𝑠𝑚, 𝑎𝑚) =
[

𝐶𝑜𝑠𝑡(𝑡𝑚𝑠𝑡𝑎𝑟𝑡, 𝑡
𝑚
𝑒𝑛𝑑 ), 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑡

𝑚
𝑠𝑡𝑎𝑟𝑡, 𝑡

𝑚
𝑒𝑛𝑑 ),

𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛(𝑡𝑚𝑠𝑡𝑎𝑟𝑡, 𝑡
𝑚
𝑒𝑛𝑑 )

]

, (31)

in which 𝑡𝑚𝑠𝑡𝑎𝑟𝑡 = 720 ⋅ (𝑚 − 1) and 𝑡𝑚𝑒𝑛𝑑 = 720 ⋅ 𝑚. The components of the
reward vector indicate a summation of the 𝐶𝑜𝑠𝑡, CO2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛, and ESS
𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 over the hours within the current month 𝑚.

Once the MDP is defined, reinforcement learning is used for solving
the resulting control problem. The learning agent dynamics of the
proposed control problem can be summarized as follows:

(1) Choose an action 𝑎𝑚.
(2) Run the microgrid for 720 h (30 days).
(3) Update the current state 𝑠𝑚.
(4) Update Costs.
(5) Update Emission.
(6) Update Degradation.
(7) Update battery capacity based on its degradation from the pre-

vious month.
(8) Repeat steps (1)–(7).

Fig. 2. Example of the agent’s interaction with the environment, transitioning from
state 𝑠𝑡 to state 𝑠𝑡+1 after selecting the action associated with the highest preference
value 𝑝(𝑠, 𝑎).

4. The multi-objective evolutionary policy search algorithm

A model-free method that estimates action-preference values in
MORL problems, the Multi-objective Evolutionary Police Search
(MEPS) algorithm, is proposed in this work. MEPS falls in the RL
‘‘actor-only’’ family of algorithms and inherits NEAT structure to evolve
artificial neural networks (ANNs) that implement deterministic policies
in MORL environments. First, an initial random population 𝑃𝑡 (for time
𝑡 = 0) of 𝑛𝑝 ANNs with one output node for each possible action is
created. At each generation, individuals are evaluated according to a
multi-objective reward function over ℎ episodes, with 𝐫ℎ indicating the
accumulated reward of each individual. Thereafter, the accumulated
reward is used to sort the networks in population 𝑃𝑡 by means of
non-dominated sorting and a density measure.

Specifically, the ANNs employed in MEPS are designed to output
action-preference values 𝑝(𝑠, 𝑎) for each available action 𝑎, given a
state 𝑠 as input. Moreover, to ensure that the agent deterministically
follows the policy, the actions are selected in a greedy manner. Thus,
Fig. 2 shows an example of an agent at state 𝑠𝑡 selecting an action, and
transitioning to state 𝑠𝑡+1.

The density measures considered are crowding distance (CD) [54]
and hypervolume contribution (HVC) [55]. Crowding distance is de-
fined as infinity for extremal solutions, and as the sum of side lengths of
the cuboid that touches adjacent solutions in the case of a non-extremal
solution on the Pareto front. It is meant to distribute solution points
uniformly on the Pareto front. In contrast to this, the hypervolume
contribution measure assigns a value to each solution according to its
contribution to the hypervolume of the Pareto front. Consequently,
it is meant to distribute them in a way that maximizes the covered
hypervolume, focusing on knee-points without losing extremal points
of the Pareto front.

Afterwards, a 𝐾𝑡 set of 𝑛𝑝 parents are randomly selected from the
population 𝑃𝑡 using a binary crowded tournament selection [54]. Note
that if the density measure used is the hypervolume contribution, the
density value of an individual 𝑥𝑖 used in the tournament selection
is 1∕𝐻𝑉 𝐶(𝑥𝑖). Thereafter, an offspring population 𝛬𝑡 is generated by
cloning selected parents and applying two types of mutation: structural
and parametrical mutations. Structural mutations occur with a pre-
defined probability and comprise (1) adding a new connection to
previously unconnected nodes, and (2) adding a new hidden node.

It is important to note that MEPS provides feedforward ANNs,
hence, no recurrent connections are allowed. Parametrical mutation
encompasses updating connection weights and biases by adding a
Gaussian noise with zero mean and standard deviation given by a
parameter 𝜎. Despite the performance of the crossover operator in the
ablation studies presented in [56], it is not guaranteed to generate
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Fig. 3. Standard MEPS flowchart of the evolution from generation 𝑡 to generation 𝑡 + 1.

Fig. 4. Discarded potential solutions due to dense regions of non-dominated solutions.
Source: Based on [58].

Fig. 5. Pareto distribution illustration for different values of 𝛼 and four non-dominated
fronts. The 𝑋-axis and 𝑌 -axis denote the non-dominated fronts and the proportion of
the population that will be selected from each front, respectively.

a chromosome that preserves the good characteristics of the parents
regarding the quality of the solution. As a result, the crossover operator
disturbs NEAT’s search ability, as attested in [57]. Therefore, the
crossover operator has not been employed in MEPS.

The next generation population 𝑃𝑡+1 is composed of the survivors
selected from population 𝑅𝑡 = 𝑃𝑡 ∪ 𝛬𝑡 of size 2𝑛𝑝. Differently from
NEAT original proposal, MEPS does not utilize any speciation mecha-
nism. Therefore, there are two possible approaches to perform survival
selection. The first approach is similar to the NSGA-II [54] survival
selection mechanism, in which the population 𝑅𝑡 is sorted by means of
non-dominated sorting in fronts or ranks, and then selected to the next
generation iteratively by front. If the size of a front is bigger than the
available slots in the next generation, the front is sorted in descending
order according to the selected density measure, and the individuals
from less dense regions are selected. Fig. 3 illustrates this approach.

The second approach comprises adaptively restricting the number
of selected survivors from each front. From a multi-objective optimiza-
tion perspective, in early generations, some undesired non-dominated
individuals are selected over individuals from other fronts [58]. Fig. 4
shows a situation in which some ignored dominated solutions are
potential candidates to improve the Pareto front. Likewise, from a
neuroevolutionary perspective, discarded potential solutions may in-
dicate newly introduced topologies, which are prematurely extincted.
Thus, this work proposes a novel selection method that allows some
individuals from higher ranks to survive. Specifically, a heavy-tailed
Pareto distribution [59] is used for this purpose. The maximum number
of survivors for each 𝑖th front is given by

𝑛𝐹𝑖 =

{

𝛼∕𝑖𝛼+1

𝐶 ⋅
(

𝑛𝑝 − ⌈𝑛𝑝 ⋅ 𝑟𝑎𝑡𝑖𝑜⌉
)

, 𝑖 > 1
⌈𝑛𝑝 ⋅ 𝑟𝑎𝑡𝑖𝑜⌉, 𝑖 = 1,

(32)

in which 𝐶 =
∑𝐾
𝑖>1 𝛼∕𝑖

𝛼+1 for 𝐾 non-dominated fronts, and 𝑟𝑎𝑡𝑖𝑜 denotes
the fraction of individuals selected from the first front. The parameter 𝛼
determines how heavy the distribution’s tail is, as presented in Fig. 5.
To avoid both premature convergence to an incomplete Pareto front
and extinction of potential topology innovations, the 𝑟𝑎𝑡𝑖𝑜 is set to
increase with the number of generations in a relationship defined
by Eq. (33)

𝑟𝑎𝑡𝑖𝑜 =

{

1, 𝑡𝑚𝑎𝑥 > 𝑡 > 𝑡𝑟
𝜓 + 𝑡𝑟 ⋅

(1−𝜓)
𝑡 , 𝑡 ≤ 𝑡𝑟,

(33)

where 𝜓 ∈ (0, 1) stands for the initial fraction of non-dominated indi-
viduals selected, which is increased over generations. This definition
of 𝑟𝑎𝑡𝑖𝑜 allows the algorithm to gradually decrease the exploration
of solutions from all non-dominated fronts. Moreover, after the pre-
defined 𝑡𝑟 generations, the heavy tail selection mechanism is replaced
by the approach shown in Fig. 3.

Despite the fact that Eq. (32) denotes the maximum number 𝑛𝐹𝑖
of allowed survivors in each front 𝑖, there may not exist all the 𝑛𝐹𝑖
individuals in the 𝑖th front. To handle this problem, the procedure
is started from the first front, and, if |𝑓𝑟𝑜𝑛𝑡𝑖| < 𝑛𝐹𝑖 , the remaining
𝑛𝐹𝑖 − |𝑓𝑟𝑜𝑛𝑡𝑖| slots are added to the 𝑛𝑓𝑖+1 allowed survivors of front
𝑖+1. This procedure is repeated until all fronts are processed. Although
unlikely, there could be situations in which there are still some slots
left at the end. In such cases, the procedure is repeated from the
beginning with the remaining individuals from each front until filling
the remaining slots.

MEPS uses a memory of the same size as the population to store
the best individuals ever found throughout generations. The memory
is updated after the next generation population 𝑃𝑡+1 selection. Let 𝑀
be the memory population, the memory update mechanism, inspired
by [60], can be summarized as follows:
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(1) Generate a temporary population 𝑀𝑡𝑒𝑚𝑝 =𝑀 ∪ 𝑃𝑡+1.
(2) Clear memory 𝑀 .
(3) Sort the temporary population 𝑀𝑡𝑒𝑚𝑝 into non-dominated fronts.
(4) If the first front size is bigger than 𝑛𝑝, sort based on the density

measure employed.
(5) Assign individuals from the sorted front to 𝑀 until memory is

full.

Algorithm 1: Memory update mechanism
Input: Population (𝑃𝑡+1), Memory (𝑀), density measure 𝑆
Output: Updated memory 𝑀

1 𝑀𝑡𝑒𝑚𝑝 ←𝑀 ∪ 𝑃𝑡+1;
2 𝑀 ← ∅;
3 Sort population in non-dominated fronts 𝐹1 ,… , 𝐹𝑘 according to Pareto

Dominance;
4 if |𝐹1| > 𝑛𝑝 then
5 Sort 𝐹1 based on the density measure 𝑆;
6 end
7 𝑖← 0;
8 while |𝑀| < 𝑛𝑝 do
9 Assign the 𝑖-th individual from 𝐹1 to 𝑀 ;
10 𝑖 ← 𝑖 + 1;
11 end
12 return 𝑀

Finally, MEPS avoids performing gradient updates and computing
value function or Q-value function estimators as it updates network
policies in an evolutionary manner. Additionally, MEPS is classified as a
multi-policy algorithm, as it leverages population-based techniques and
produces a set of Pareto-optimal policies [61]. Algorithm 2 shows the
pseudocode for the proposed method. In addition, Table 3 summarizes
a description of the parameters used.

In order to provide a clear distinction among MEPS versions, the
different configurations of MEPS are identified based on both the
survivor selection method and the density measure used. The survivor
selection method can be either based on heavy tail selection (H1) or
based on non-dominance sorting (H0). The density measure can be
crowding distance (S0) or hypervolume contribution (S1). In this way,
4(2 ⋅ 2) versions of MEPS are proposed and analyzed. As an example,
one possible setting of MEPS is H1/S1, in which the proposed heavy
tail survivor selection mechanism is used along with hypervolume
contribution as the density measure.

4.1. Computational complexity

Subsequently, we evaluate the time complexity of MEPS as shown
in Algorithm 2 according to the density measure employed. When using
crowding distance, the binary crowded tournament selection operator
in Step (5) involves running non-dominated sorting for all fronts and
sorting based on the density measure. So, it is executed with time
complexity 𝑂(𝑚 ⋅ 𝑛2𝑝), in which 𝑚 stands for the number of objectives.
In Step (6), the offspring generation is executed with time complexity
𝑂(𝑛𝑝 ⋅(𝑇𝐶+𝑇𝑁)), in which 𝑇𝐶 and 𝑇𝑁 are the total maximum number
of connections and nodes, respectively. The fitness evaluation present
in Steps (3) and (7) is run with time complexity 𝑂(ℎ ⋅ |𝐴|). Sorting is
executed in Step (9) with time complexity 𝑂(𝑚 ⋅ (2𝑛𝑝)2). In Steps (10)–
(29) and (31)–(42), the worst-case scenario comprises sorting only one
front with size 2𝑛𝑝. Hence, the time complexity is 𝑂(𝑚 ⋅ (2𝑛𝑝) log(2𝑛𝑝)).

Afterwards in Step (44), time complexity for the memory update
mechanism presented in Algorithm 1 depends on whether the number
of objectives in the problem is 𝑚 = 2 or 𝑚 = 3. For 𝑚 = 2 and 𝑚 = 3,
this memory update is executed with time complexity 𝑂(2𝑛𝑝 ⋅ log(2𝑛𝑝))
and 𝑂(2𝑛𝑝⋅log2(2𝑛𝑝)), respectively [62]. Finally, after omitting low order
terms, the MEPS version that employs crowding distance is governed by
the non-dominated sorting component of the algorithm and executed
with time complexity 𝑂(𝑡𝑚𝑎𝑥 ⋅ 𝑚 ⋅ 𝑛2𝑝). The MEPS counterpart that em-
ploys hypervolume contribution is governed by the calculation of the
hypervolume, which is executed with time complexity 𝑂(𝑛3𝑝 ⋅ 𝑚2) [55].

Table 3
Parameters description.

Parameter Description

𝑛𝑝 Population size
𝑆 Density measure function
𝜙(𝑥) Activation function
𝜓 Initial fraction selected from first front
𝑡𝑚𝑎𝑥 Total generations
𝑡𝑟 Final generation of the heavy tail survivor selection
𝛼 Heavy tail selection parameter
𝑛𝑖 Number of input nodes
𝑛ℎ Number of initial hidden nodes
𝑛𝑜 Number of output nodes
𝑝𝑎𝑐 ‘‘Add connection’’ mutation probability
𝑝𝑎𝑛 ‘‘Add node’’ mutation probability
𝜎 Parametrical mutation standard deviation
𝐻𝑇 Indicate the use or not of the heavy tail survivor selection
ℎ Length of the episode to evaluate the agent

Algorithm 2: The Multi-Objective Evolutionary Policy Search
algorithm (MEPS)

Input: 𝑛𝑝, 𝜓 , 𝑡𝑚𝑎𝑥, 𝑡𝑟, 𝛼, 𝜙(𝑥), 𝜎, 𝑝𝑎𝑐 , 𝑝𝑎𝑛, 𝑛𝑖, 𝑛𝑜, 𝑛ℎ, 𝑆, 𝐻𝑇 , ℎ
Output: Memory 𝑀

1 𝑡 ← 0;
2 Initialize population 𝑃𝑡 with fully connected ANNs containing 𝑛𝑖 input nodes, 𝑛ℎ

hidden nodes and 𝑛𝑜 output nodes;
3 Evaluate each individual of 𝑃𝑡 for an episode of length ℎ;
4 while 𝑡 < 𝑡𝑚𝑎𝑥 do
5 Generate a population 𝐾𝑡 of 𝑛𝑝 parents selected from the population 𝑃𝑡 using

binary crowded tournament selection and the selected density measure 𝑆;
6 Generate 𝛬𝑡 offspring population
7 end
8 ;
9 Evaluate each individual of 𝛬𝑡 for an episode of length ℎ;
10 𝑅𝑡 ← 𝑃𝑡 ∪ 𝛬𝑡;
11 Sort population 𝑅𝑡 in non-dominated fronts 𝐹1 ,… , 𝐹𝑘;
12 𝑃𝑡+1 ← ∅;
13 if 𝑡 ≤ 𝑡𝑟 OR 𝐻𝑇 > 0 then

/* runs heavy tail selection */
14 Calculate 𝑟𝑎𝑡𝑖𝑜 according to Eq. (33);
15 Calculate maximum number of survivors 𝑛𝐹1 ,… , 𝑛𝐹𝑘 for each front using

parameters 𝛼 and 𝜓 ;
16 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ← 0;
17 For each Front 𝐹𝑖 do
18 𝑛𝐹𝑖 ← 𝑛𝐹𝑖 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔;
19 if 𝑛𝐹𝑖 < |𝐹𝑖| OR min(|𝐹𝑖|, 𝑛𝐹𝑖 ) > 𝑛𝑝 − |𝑃𝑡+1| then
20 Sort front based on density measure function 𝑆;
21 Add the min(|𝐹𝑖|, 𝑛𝐹𝑖 , 𝑛𝑝 − |𝑃𝑡+1|) fittest individuals from 𝐹𝑖 to 𝑃𝑡+1;
22 end
23 else
24 𝑃𝑡+1 ← 𝑃𝑡+1 ∪ 𝐹𝑖;
25 end
26 if 𝑛𝑝 = |𝑃𝑡+1| then
27 break;
28 end
29 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ← max(𝑛𝐹𝑖 − min(|𝐹𝑖|, 𝑛𝑝 − |𝑃𝑡+1|), 0);
30 end
31 end
32 else
33 For each Front 𝐹𝑖 do
34 if |𝐹𝑖| > 𝑛𝑝 − |𝑃𝑡+1| then
35 Sort front based on density measure function 𝑆;
36 Add the 𝑛𝑝 − |𝑃𝑡+1| fittest individuals from 𝐹𝑖 to 𝑃𝑡+1;
37 end
38 else
39 𝑃𝑡+1 ← 𝑃𝑡+1 ∪ 𝐹𝑖;
40 end
41 if 𝑛𝑝 = |𝑃𝑡+1| then
42 break;
43 end
44 end
45 end
46 Update memory 𝑀 following memory update procedure;
47 𝑡 ← 𝑡 + 1;
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Fig. 6. Deep Sea Treasure (DST) MORL benchmark.

Fig. 7. Modified Bountiful Sea Treasure (MBST) MORL benchmark.

As a result, both MEPS versions are polynomial in the population size
𝑛𝑝. A complete MEPS code version, based on [63], is available at https:
//github.com/gabrielmatos26/MEPS-Paper.

5. Experiments

In order to evaluate the performance and quality of our proposal,
we conducted a two-fold experimental analysis. First, we have selected
traditional MORL benchmark environments with 2 and 3 objectives.
Then, we proposed a new 2-objective MORL benchmark environment
as a variation of the Deep Sea Treasure [64], Discontinuous Deep Sea
Treasure. Finally, we evaluate and analyze the performance of MEPS
as an EMS controlling the depth of discharge of an ESS in a microgrid.

From the several metrics available to evaluate the performance of
a MORL algorithm, [64], we have employed the hypervolume indi-
cator (HV) to evaluate the performance of each algorithm. The HV
value is calculated using the multiple policies’ accumulated rewards
obtained by the learning agents at the end of the pre-defined number
of generations [64]. The HV measure is selected because it provides
a single value to compare different algorithms and it does not require
knowledge about the true Pareto front or its approximation. Moreover,
All the computational simulations were conducted using an Intel(R)
Core(TM) i9-10900X CPU@3.70 GHz and 64 GB RAM, with Windows
10 Pro. The simulation code is implemented in Python 3.10.

5.1. Comparison with benchmark MORL methods

The proposed versions of MEPS are compared with three state-of-
the-art MORL algorithms, Pareto Q-Learning (PQL) [65], Q-Managed
(QM) [66] and Multi-Policy Soft Actor-Critic (MPSAC) [67]. For a fair
comparison, as Q-Managed was initially proposed only for 2-objective
problems, we did not analyze its performance on environments with
3 objectives. Five MORL benchmark environments with 2 and 3 ob-
jectives have been selected to evaluate the proposal for an MORL

algorithm, namely Deep Sea Treasure [64], Pressurized Bountiful Sea
Treasure [65], Modified Bountiful Sea Treasure [66], Space Explo-
ration [68], and Bonus World [68]. Besides, a sixth novel MORL
environment is proposed and used to validate MEPS proposal.

Deep Sea Treasure (DST) is an episodic deterministic environment
in which an agent controls a submarine searching for an undersea
treasure. The environment is a rectangular grid with 11 rows and
10 columns (Fig. 6(a)), containing 10 treasures of varying values at
different locations. Each episode starts with the submarine at the top
left corner and ends if either a treasure is found or ℎ actions were taken.
The treasures are arranged to have the lowest treasure value at the clos-
est location to the starting point and the highest value at the furthest
location, which means the treasure value is inversely proportional to its
distance from the source. The agent can move around the environment
by performing four available actions, representing the four cardinal
directions - (1) right, (2) left, (3) down, or (4) up. Each action taken
by the agent incurs a time penalty,3 which is a −1 decrease applied to
the time penalty objective. Note that, this time penalty objective is not
a time unit, but is the sum of penalties the agent receives for the time
it takes in interacting with the environment.

Additionally, the agent’s goals are to minimize the time penalty
received in finding a treasure and maximize the treasure value. The
reward vector 𝐫ℎ ∈ R2 consists of the time penalty as the first element
and the treasure value as the second element. The true Pareto front
(Fig. 6(b)) is globally concave with some local concavities in the
second, fourth, and sixth points from left to right.

A variation of the DST is the Modified Bountiful Sea Treasure
(MBST) environment. This is a 2-objective problem in which not only
the treasure values but also their location are modified (Fig. 7(a)).
To find all the Pareto optimal policies, the agent must learn how to

3 In order to maintain the same description for penalty objective in time
from [66], it is presented as a negative time penalty in the Pareto fronts.

https://github.com/gabrielmatos26/MEPS-Paper
https://github.com/gabrielmatos26/MEPS-Paper
https://github.com/gabrielmatos26/MEPS-Paper
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Fig. 8. Discontinuous Deep Sea Treasure (DDST) MORL benchmark.

Fig. 9. Space Exploration (SE) MORL benchmark.

Fig. 10. Pressurized Bountiful Sea Treasure (PBST) MORL benchmark.

enter in a tunnel between two locations, which makes learning more
challenging. With this change, the Pareto front (Fig. 7(b)) is divided
into one convex part and one non-convex part.

Afterwards, a new variation of the DST is proposed, dubbed Dis-
continuous DST (DDST). Inspired by the ZDT set of MOO benchmark
functions [69], specifically ZDT3, both treasure values and treasure
locations are modified to create two discontinuities in the Pareto front.
Furthermore, to increase difficulty in learning, DDST includes a tunnel
containing three treasures (Fig. 8(a)). To discover all the Pareto optimal
policies, the agent needs to decide not collecting the closest reward to
the tunnel entrance but, instead, to enter the tunnel. The true Pareto
front (Fig. 8(b)) is also divided into three parts, mixing convex and
non-convex parts.

Another 2-objective benchmark environment is the Space Explo-
ration (SE) (Fig. 9(a)), in which the agent controls a spaceship that
starts the episode in the location marked ‘S’ with the goal of discovering
a habitable planet while minimizing the radiation it is exposed during
the search. The first objective is the radiation penalty. After every

action, the radiation objective is penalized by −1 or −11 if the next
state is marked ‘R’. The second objective is the mission level of success,
which denotes the habitability of the planet, or −100 if the agent moves
to a black cell, representing an asteroid.

The episode ends whether the agent performs ℎ actions, reaches a
planet, or collides with an asteroid. Unlike the previous environments,
in SE, the agent is also allowed to move diagonally, totaling eight
directions. Additionally, a movement that would lead the agent out
of the grid, takes it to the opposite edge of the grid. For example, if
the agent moves down from the bottom row of the grid, the next state
will be the top row of the grid, maintaining the column. Thus, in this
environment, every action leads to a state change. The Pareto front is
illustrated in Fig. 9(b).

Pressurized Bountiful Sea Treasure (PBST) Environment (Fig. 10(a))
is a variation of DST in which a third objective representing the
pressure penalty is included. Similarly to penalty in time, this objec-
tive denotes the pressure penalty received by the agent for staying
underwater at the depth indicated by the row, with an initial value
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Fig. 11. Bonus World (BW) MORL benchmark.

equal to −1. For example, if the agent moves down from the starting
point, it receives a −2 pressure penalty for row 2 and, therefore the
total pressure penalty is −3. The first and second objectives remain the
same as in the DST environment. Moreover, the treasure values are
modified to create a Pareto front that is globally convex. The set of
Pareto optimal policies is presented in Fig. 10(b).

Bonus world (Fig. 11(a)) is a 3-objective environment similar to
DST, in which the agent starts at cell marked ‘S’ and is allowed to
move in the four cardinal directions with black cells indicating walls the
agent cannot pass through. At every step, a time penalty of −1 is applied
to the first objective. The gray cells correspond to terminal states that
reward the agent with values corresponding to treasure 1 and treasure
2. If the agent reaches a cell marked ‘X2’, a bonus is activated and
the values for treasure 1 and treasure 2 are doubled. Contrarily, if the
agent enters a cell marked ‘PIT’, it not only loses the bonus but is also
moved to the start state. Although not all the Pareto optimal policies
require the agent to activate the bonus, some Pareto optimal policies
are only reachable with the bonus activated. Therefore, this is a difficult
environment because the agent must learn to both avoid penalties and
activate the bonus before moving to some terminal states. The set of
Pareto optimal policies is shown in Fig. 11(b).

In this analysis, the obtained HVs are compared to the HV of the
true Pareto front in each benchmark environment. For the Bonus World
and Space Exploration environments, the choice of reference point was
based on choosing a point that is worse than the nadir point. In the
Deep Sea Treasure and its variations, the reference points used are the
same as in [65]. Moreover, as a measure of network complexity, MEPS
and MPSAC are compared in terms of their average number of network
nodes and connections.

For each benchmark environment, 20 independent executions were
performed. Since the main goal of this experiment is to validate the
proposed approach, no fine-tuning of the parameters has been done.
Therefore, PQL and QM were run with the hyperparameter values
found in the literature. Also, MPSAC execution was divided into two
stages. The hyperparameters used throughout executions are presented
in Table 4 and the initial topology used in MEPS is presented in Fig. 12.
Regarding the output layer for both MEPS and MPSAC networks, the
number of nodes is equal to the number of available actions in the
environment. As a result, the output layer contains four nodes in the
DST, MBST, DDST, PBST, and BW environments, and 8 nodes for the
SE environment.

Detailed benchmark results based on the hypervolume indicator are
shown in Table 5 and the algorithm with superior performance is indi-
cated in bold for each problem. The normalized average hypervolume
obtained by each algorithm on each benchmark environment is shown
in Fig. 13. In both DST (Fig. 13(a)) and PBST (Fig. 13(b)) problems, all
the four versions of MEPS are able to find the entire Pareto front in less
than half the number of maximum generations with similar topologies.
The final networks evolved using MEPS are composed of an average of
25 connections and 10 (1 input, 5 hidden, and 4 output) nodes.

Fig. 12. MEPS initial topology configuration for benchmark tests.

Table 4
Parameter initialization values used by the algorithms in benchmark tests.

Description MEPS PQL QM MPSAC

Population size 50 – 50 50
Activation function relu – – relu
Initial fraction selected from first
front

0.5 – – –

Final generation of the heavy tail
survivor selection

1000 – – –

Heavy tail selection parameter 1.0 – – –
Number of input nodes 1 – – 1
Number of initial hidden nodes 4 – – 64
Number of output nodes 4 or 8 – – 4 or 8
‘‘Add connection’’ mutation
probability

0.2 – – –

‘‘Add node’’ mutation probability 0.2 – – –
Parametrical mutation standard
deviation

0.5 – – 1.0

Learning rate – – – 0.001
Gamma – – – 0.99

Generations 2000 2000 2000 1000 + 1000
Episode length 20

PQL, QM, and MPSAC are not able to consistently find all the non-
dominated policies in DST, only achieving the maximum hypervolume
value in some executions. However, MPSAC is able to find all the non-
dominated policies in all the 20 runs in PBST. It is worth noting that,
due to the simpler Pareto front of these benchmarks compared to the
other benchmarks, the use of the proposed heavy tail survivor selection
operator (H1/S0 and H1/S1) results in a delay in the search. Hence,
both H0/S0 and H0/S1 achieve the maximum hypervolume in fewer
generations.

In the MBST problem (Fig. 13(c)), with the exception of MPSAC, all
the algorithms obtained all the Pareto optimal solutions in at least one
execution. The effectiveness of the proposed survivor selection method
is demonstrated with H1/S0 and H1/S1 achieving the highest mean
hypervolume values. Specifically, H1/S0 can find all the Pareto optimal
solutions in all the executions.
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Fig. 13. Average normalized hypervolumes obtained by PQL, QM, MPSAC, and MEPS versions in all the MORL benchmark environments.

Regarding the topology of the final networks, H1/S0 networks
provide an average of 26 connections and 10 (1 input, 5 hidden, and
4 output) nodes. By increasing the difficulty, as in the DDST problem
(Fig. 13(d)), the MEPS stands out as an advantageous algorithm, as
PQL, QM, and MPSAC cannot find all the Pareto optimal solutions in
any execution. Among the MEPS configurations, H1/S0 achieves the
highest mean hypervolume with less complex networks, containing an
average of 28 connections and 12 nodes. Therefore, it can be said that
H1/S0 achieved the highest mean hypervolumes in the DST problem
and its variations, providing a population of solutions comprising less
complex networks.

Furthermore, in both SE (Fig. 13(e)) and BW (Fig. 13(f)) problems,
the MEPS obtained the highest average hypervolumes, which indicates
a better approximation of the true Pareto front. Similarly to the DST
and PBST results, the use of the heavy tail survivor selection operator
in a problem with a Pareto front without any discontinuities, such as
SE, worsened the results. The configuration H0/S0 consistently found
the entire Pareto front, while the use of hypervolume contribution as
the density measure achieved the worst results among MEPS versions.
Moreover, MEPS versions using crowding distance, H0/S0 and H1/S0,
obtained networks with a smaller average number of connections and
nodes, 52 and 18, respectively.

It is worth mentioning that, despite the simple Pareto front (only
three solutions) in the SE problem, the increased action space poses

a more difficult problem in searching for optimal policies. This is
indicated by results showing that six out of seven algorithms struggled
to obtain all the Pareto optimal solutions across runs. Unlike previous
benchmark results, BW stands as the most difficult benchmark problem,
in which none of the algorithms were able to approximate the Pareto
front. H1/S0 nonetheless achieved the highest average hypervolume
among the algorithms, with an average of only 7 hidden nodes (12
nodes in total) and 28 connections.

The mean and standard deviation values are preliminary measures
that are often not sufficient to provide an effective analysis of the
obtained results. Hence, a Kruskal–Wallis test is performed, aiming
to find possible differences between the mean hypervolumes. Using
a significance value of 5%, a 𝑝-value below 0.05 is found indicating
that there is a difference among the means. Accordingly, a Wilcoxon
signed-rank test is carried out to perform a pairwise analysis to identify
the differences between the samples analyzed. Table 6 provides the
results of the statistical test. The test results indicated that the results
of algorithms under the column with a (+) differ with 95% confidence
from those under the column with a (−).

The obtained results indicate that MEPS versions obtain competitive
results in all the benchmark problems evaluated. In both DST and PBST,
MEPS was as efficient as MPSAC. Moreover, in MPSAC each individual
was composed of five networks with 320 (64+64+ (64 ⋅ 7)) connections
and 69 (1 input, 64 hidden, 4 output) nodes each, whereas MEPS
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Table 5
Hypervolume analysis for each MORL benchmark environment (labeled as Env). The hypervolume for the true Pareto front (PF) is calculated with reference points given in
parenthesis.

Env PF Algorithm Mean Std Min Median Max

DST 1155.00 (25, 0)

𝐌𝐄𝐏𝐒𝐇𝟏∕𝐒𝟎 1155.00 0.00 1155.00 1155.00 1155.00
𝐌𝐄𝐏𝐒𝐇𝟏∕𝐒𝟏 1155.00 0.00 1155.00 1155.00 1155.00
𝐌𝐄𝐏𝐒𝐇𝟎∕𝐒𝟎 1155.00 0.00 1155.00 1155.00 1155.00
𝐌𝐄𝐏𝐒𝐇𝟎∕𝐒𝟏 1155.00 0.00 1155.00 1155.00 1155.00
PQL 947.40 223.66 663.00 1005.00 1155.00
QM 1091.80 120.22 759.00 1155.00 1155.00
MPSAC 1098.95 250.66 34.00 1155.00 1155.00

PBST 358 636.00 (25, 0)

𝐌𝐄𝐏𝐒𝐇𝟏∕𝐒𝟎 358636.00 0.00 358636.00 358636.00 358636.00
𝐌𝐄𝐏𝐒𝐇𝟏∕𝐒𝟏 358636.00 0.00 358636.00 358636.00 358636.00
𝐌𝐄𝐏𝐒𝐇𝟎∕𝐒𝟎 358636.00 0.00 358636.00 358636.00 358636.00
𝐌𝐄𝐏𝐒𝐇𝟎∕𝐒𝟏 358636.00 0.00 358636.00 358636.00 358636.00
PQL 353 983.20 1250.58 351 582.00 353 790.00 356 175.00
QM – – – – –
MPSAC 358636.00 0.00 358636.00 358636.00 358636.00

MBST 2632.00 (25, 0)

𝐌𝐄𝐏𝐒𝐇𝟏∕𝐒𝟎 2632.00 0.00 2632.00 2632.00 2632.00
MEPSH1/S1 2630.50 3.66 2622.00 2632.00 2632.00
MEPSH0/S0 2626.00 5.03 2622.00 2622.00 2632.00
MEPSH0/S1 2623.00 3.08 2622.00 2622.00 2632.00
PQL 2608.20 26.97 2564.00 2620.00 2632.00
QM 2629.50 11.18 2582.00 2632.00 2632.00
MPSAC 870.60 1176.35 120.00 120.00 2622.00

DDST 1416.00 (25, 0)

𝐌𝐄𝐏𝐒𝐇𝟏∕𝐒𝟎 1412.15 2.08 1411.00 1411.00 1416.00
MEPSH1/S1 1409.95 2.82 1405.00 1411.00 1416.00
MEPSH0/S0 1408.95 3.05 1405.00 1409.00 1416.00
MEPSH0/S1 1407.55 3.42 1405.00 1405.00 1416.00
PQL 1310.15 114.26 1033.00 1330.00 1411.00
QM 1383.40 38.57 1299.00 1405.00 1405.00
MPSAC 1406.60 2.01 1405.00 1405.00 1409.00

SE 11 540.00 (400, 0)

MEPSH1/S0 11 539.00 4.47 11 520.00 11 540.00 11 540.00
MEPSH1/S1 11 347.00 832.95 7810.00 11 540.00 11 540.00
𝐌𝐄𝐏𝐒𝐇𝟎∕𝐒𝟎 11540.00 0.00 11540.00 11540.00 11540.00
MEPSH0/S1 10 956.50 1388.37 7700.00 11 540.00 11 540.00
PQL 10 740.00 1954.72 3960.00 11 420.00 11 540.00
QM 5006.00 3313.47 0.00 7570.00 7790.00
MPSAC 11 131.00 1139.12 7810.00 11 530.00 11 540.00

BW 2038.00 (20, 0, 0)

𝐌𝐄𝐏𝐒𝐇𝟏∕𝐒𝟎 799.12 166.09 690.46 724.86 1210.58
MEPSH1/S1 709.32 6.46 693.90 709.12 720.66
MEPSH0/S0 772.10 127.18 708.68 722.19 1121.11
MEPSH0/S1 711.55 9.35 691.83 711.53 728.89
PQL 704.00 29.42 608.00 708.00 732.00
QM – – – – –
MPSAC 684.40 20.18 660.00 692.00 716.00

Table 6
Wilcoxon signed-rank test using hypervolume analysis of each MORL problem. Algo-
rithms in the (+) column are statistically significant compared to algorithms in the
column (−).

Env Statistically Significant

(+) (−)

DST MEPS (all versions), MPSAC PQL, QM
PBST MEPS (all versions), MPSAC PQL

MBST MEPSH1/S0, MEPSH1/S1, QM MEPSH0/S0, MEPSH0/S1 PQL, MPSAC

DDST MEPSH1/S0 MEPSH1/S1, MEPSH0/S0, MEPSH0/S1
PQL, QM, MPSAC

SE MEPS (all versions) PQL, QM, MPSAC

BW MEPSH1/S0, MEPSH0/S0 MEPSH1/S1, MEPSH0/S1 PQL, QM,
MPSAC

outputs one network per individual, with an average of 25 connections
and 10 nodes. Despite obtaining similar results as the QM algorithm
in the MBST problem, MEPS versions were the best algorithms in
DDST, SE, and BW. Besides, H1/S0 was the best algorithm for the
DDST problem, indicating that the proposal for a survivor selection
mechanism, that attempts to search through all the non-dominated
fronts, leads to competitive results in a problem with discontinuities
and non-convex regions in the Pareto front.

5.2. Ablation study

After evaluating the different versions of MEPS in multiple bench-
mark environments, we performed an ablation study to investigate
the effects of both parametrical and structural mutation operations.
Ablations can significantly harm performance. Accordingly, we selected
the DDST environment for the ablation study. This environment is
complex enough even to unablated MEPS versions. Thus, we believe
that it is suitable to compare ablated MEPS to its unablated counterpart.

According to the previously presented results, the MEPS version
using crowding distance and the heavy tail survivor selection operator,
namely H1/S0, obtained the most competitive performance among the
comparisons. Thus, we selected H1/S0 as MEPS unablated version and,
consequently, ablations were performed in this MEPS version.

In order to assess the hypothesis that H1/S0 using both structural
mutations in combination with parametrical mutation is the most com-
petitive option for the DDST problem, we performed six ablations as
follows:

• Ablation 1: allowed only structural mutation of adding a new
connection to previously unconnected nodes;

• Ablation 2: allowed only structural mutation of adding a new
hidden node;

• Ablation 3: allowed both structural mutations;
• Ablation 4: allowed only parametrical mutation
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Fig. 14. Average normalized hypervolumes obtained by the unablated H1/S0 version and its six ablated versions in the DDST MORL benchmark environment.

• Ablation 5: allowed both structural mutation of adding a new
connection to previously unconnected nodes and parametrical
mutation;

• Ablation 6: allowed both structural mutation of adding a new
hidden node and parametrical mutation;

Each ablated version was initialized using the parameters presented
in Table 4, zeroing each respective restricted mutation probability. For
example, Ablation 1 was initialized with zero probability for the ‘‘add
connection’’ mutation and zero standard deviation for parametrical mu-
tation. With respect to the initial topology, ablated versions 2, 3, 4, and
6 were initialized as presented in Fig. 12. However, if ablated versions
1 and 5 were initialized containing all the possible connections, the
‘‘add connection’’ mutation would never be executed and, therefore,
we would not be able to assess its effect on the final performance.
As a result, networks in ablated versions 1 and 5 were initialized by
randomly connecting 50% of the possible connections.

Subsequently, 20 independent executions were performed for each
ablated version. Fig. 14 shows the normalized average hypervolume
obtained by the unablated version and each of the ablations. Detailed
results based on the hypervolume indicator are presented in Table 7.
Ablations 1 and 2, which constrained the mutations to either add a
new hidden node or a new connection, presented the worst average
hypervolume values. Although Ablation 3, which employs both struc-
tural mutations, improved its performance when compared to Ablations
1 and 2, its performance is still far from those that employ parametrical
mutation. This highlights the importance of the parametrical mutation
in MEPS.

Among the ablated versions that employed parametrical mutation,
Ablation 4, which does not use any structural mutation, achieved the
highest mean hypervolume value. This indicates that the combination
of parametrical mutation with either ‘‘add connection’’ (Ablation 5) or
‘‘add node’’ (Ablation 6) mutations is still worse than employing all
operators together as in the unablated version. Finally, we can see that
only the unablated version of MEPS was able to find all the Pareto
optimal solutions.

5.3. Solving the ERM problem

In this section, we analyze the results of MEPS in the proposed
ERM problem of controlling the DoD of an ESS in a microgrid con-
taining both solar and wind generation. Moreover, two standard MORL
algorithms are used for comparison, Multi-Policy Soft Actor Critic and
Multi-Objective Deep Q Networks (MODQN). The former is based on

Table 7
Hypervolume analysis of H1/S0 unablated version and its six ablated versions in the
DDST MORL benchmark environment. The hypervolume for the true Pareto front (PF)
is calculated with reference points given in parenthesis.

PF Algorithm Mean Std Min Median Max

1416.00
(25, 0)

𝐌𝐄𝐏𝐒𝐇𝟏∕𝐒𝟎 1412.15 2.08 1411.00 1411.00 1416.00
Ablation 1 574.30 602.43 144.00 144.00 1405.00
Ablation 2 1198.05 461.82 144.00 1405.00 1411.00
Ablation 3 1279.20 388.23 144.00 1405.00 1411.00
Ablation 4 1407.60 2.76 1405.00 1407.00 1411.00
Ablation 5 1405.90 2.20 1405.00 1405.00 1411.00
Ablation 6 1406.20 2.46 1405.00 1405.00 1411.00

Table 8
Parameter initialization values used by the algorithms in the microgrid environment.

Description MEPS MPSAC MODQN

Population size 20

Initial fraction selected from first front 0.5 – –
Final generation of the heavy tail
survivor selection

250 – –

Heavy tail selection parameter 1.0 – –
‘‘Add connection’’ mutation probability 0.2 – –
‘‘Add node’’ mutation probability 0.2 – –
Parametrical mutation standard
deviation

0.5 1.0 –

Learning rate – 0.001 0.001
Gamma – 0.99 0.99
Initial epsilon – – 0.1
Epsilon decay – – 3.7 ⋅ 10−5

Generations 500 250 + 250 500
Episode length 12

ANNs and multi-objective CMA-ES [67], while the latter is based on
the MORL framework for Deep RL proposed in [70].

With respect to the configurations, MODQN used two 64-neuron
fully connected layers. MPSAC used ANNs with one hidden layer of
size 64, and MEPS initialized the ANN population without any hidden
layers. ReLU function activation [71] was used in neurons for all the
algorithms. In addition, the output layer configuration was the same for
all three algorithms and contained 8 neurons for the 8 actions as stated
in Eq. (29). The remaining parameters used are listed in Table 8.

In order to assess the generalization ability of each algorithm,
different load scenarios were used in training and testing. The test
scenario is depicted in Fig. 15(a) as a black line, and the green area
shows the range of the noise added to the test scenario at each hour
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Fig. 15. Train and test load scenarios generation.

Fig. 16. Average hypervolume values of 20 executions of each algorithm during training.

when generating training scenarios. During training, five different load
scenarios are randomly sampled from the green area as shown in
Fig. 15(b). The training rewards were the average of the rewards
obtained from each one of the five scenarios. Moreover, each algorithm
was run 20 times with the same initialization parameters as presented
in Table 8 and started with ESS at 20% SoC, in state 𝑠1 = {0.2, 0.0, 0.0}.

The average hypervolume for the 20 runs of each algorithm’s train-
ing rewards is presented in Fig. 16. During training, HV values from

MPSAC oscillated in the first 250 generations and improved in the last
250, when the MO-CMA-ES counterpart started. On the other hand,
although the multi-objective DQNs increased across generations, it only
presented a HV value higher than MPSAC in the first 250 generations.
After 250 generations, MODQN performance was below the perfor-
mances of all the other algorithms. MEPS shows the best performance
regarding HV, with H1/S1 and H0/S1 achieving the highest HV values
at the end of training.
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Fig. 17. Boxplot results of the average hypervolumes on test scenario for 20 executions of each algorithm.

Table 9
Performance of each algorithm regarding hypervolume when evaluated in the test
scenario.

Mean Std. Worst Median Best

MEPSH1/S0 21 585.09 126.33 21 353.65 21 582.21 21 823.05
MEPSH1/S1 22 090.50 49.18 21 993.69 22 086.85 22 189.52
MEPSH0/S0 21 645.97 97.39 21 408.43 21 652.99 21 798.68
𝐌𝐄𝐏𝐒𝐇𝟎∕𝐒𝟏 22120.26 44.87 22047.51 22118.48 22195.82
MPSAC 21 604.24 102.89 21 389.04 21 643.24 21 767.06
MODQN 20 899.15 141.02 20 499.26 20 978.54 20 989.08

Afterwards, each algorithm was evaluated on the test scenario to
assess its generalization ability on a scenario never seen before. Table 9
details the test results obtained. It can be seen that, although able to
generalize to an unseen scenario, MODQN mean results are not only
worse than the results from MEPS and MPSAC, but also present a higher
standard deviation. Comparing MPSAC to MEPS versions, MPSAC’s
results are very similar to H1/S0 results and very close to H0/S0
results. Yet, with respect to H1/S1 and H0/S1, MPSAC’s performance
is worse in terms of not only mean HV but also standard deviation.
Moreover, MPSAC’s best HV value is lower than the worst HV values
in both H1/S1 and H1/S0. Among MEPS versions, H1/S1 and H1/S0
show very similar performances and present the best values with the
smallest variation when compared to MODQN, MPSAC, and other MEPS
versions.

Nevertheless, to provide a robust evaluation of the results obtained,
we performed two non-parametric tests. Firstly, we analyze the boxplot
behavior, then, similar to Section 5.1, we conducted a two-fold anal-
ysis using a Kruskal–Wallis test, followed by a Wilcoxon signed-rank
posthoc test with the Holm–Bonferroni correction. Boxplots are a useful
tool to analyze the range and distribution of the data, and sometimes,
obtain information about the true difference among the means. If the
notches in the boxplots do not overlap, it can be concluded, with 95%
confidence, that the true means do differ [72]. With this in mind and
analyzing Fig. 17, it is possible to conclude that there are differences
among the means of the algorithms.

To statically determine the difference in the performance of the
evaluated algorithms, a Kruskal–Wallis test with 1% significance level
was applied. Thereafter, a Wilcoxon signed-rank test with the Holm-
Bonferroni correction was applied to find out, by pairwise comparisons,
which specific group’s means are different. The Kruskal–Wallis test
results corroborated the boxplot analysis attesting that, with a higher

Table 10
Ranking of algorithms based on Wilcoxon signed-rank test results using mean
hypervolumes in the test scenario.

Rank

1 2 3

MEPSH1/S1 – –
MEPSH0/S1 – –
– MEPSH1/S0 –
– MEPSH0/S0 –
– MPSAC –
– – MODQN

confidence level of 99%, there are differences among the mean hyper-
volume values. After that, from posthoc test results, it is possible to
provide a ranking among algorithms as presented in Table 10.

Therefore, the experimental results have shown that MEPS networks
are able to provide feasible solutions to the proposed ESS control prob-
lem with performance comparable to state-of-the-art MORL techniques.
Specifically, H1/S1 and H0/S1 outperformed Deep Q Networks as well
as the combination of MO-CMA-ES and Soft Actor-Critic in the proposed
multi-objective ERM problem. Furthermore, both H1/S1 and H0/S1
solutions are composed of ANNs with an average of 30 connections
and 15 nodes. Compared to MPSAC networks (75 nodes and 776
connections) and MODQN networks (131 nodes and 4936 connections),
H1/S1 and H0/S1 solutions comprise much lighter networks. These
light networks present a suitable solution to microgrids because they
can be deployed as controllers in devices with low computational
power.

An important observation regarding MEPS configuration is that,
contrary to the benchmark results, the use of hypervolume contribution
as the density measure (S1) achieved higher hypervolume values than
MEPS counterparts using crowding distance (S0). This indicates that, al-
though benchmarking algorithms using test environments are necessary
to validate new techniques, test environments are not globally sufficient
to attest a model’s performance. In fact, when it comes to real problems
such as energy management-based problems, some models are better
suited than others.

Next, we analyze the microgrid functioning of both the H1/S1 and
H0/S1 solutions. As the multi-objective approach provides alternatives
for a decision maker to select knowledge-based solutions, we have
employed a multi-criteria decision technique, namely TOPSIS [73],
to select a solution that satisfies an equal preference over the three
objectives. Fig. 18 illustrates the MG behavior of each solution in a
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Fig. 18. MG behavior analysis of H1/S1 and H0/S1 solutions selected from TOPSIS
with equal preference over the three objectives.

year of operation. The total amount of wind and solar energy consumed
per month are indicated by 𝑃𝑤𝑖𝑛𝑑 and 𝑃𝑝𝑣, respectively. The amount of
energy bought from the public grid is indicated by 𝑃𝑔𝑟𝑖𝑑 , and the total
energy discharged from the battery per month is denoted by 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.

The more conservative behavior of using lower DoDs in the H0/S1
solution leads to a cost of $567 194.54, CO2 emissions of 60.45 tons of
CO2eq./kWh, and a 0.06% ESS degradation per year. In contrast, the
H1/S1 solution adopts higher DoD values, specially from September
to November when there is less wind and solar radiation. Although
allowing a higher use of the ESS, H1/S1 solution leads to both lower
cost of $537 287.03 and lower ESS degradation of 0.04%, but a higher
CO2 emission of 60.66 tons of CO2eq./kWh.

6. Conclusion

In this paper, we have presented a novel neuroevolutionary MORL
algorithm for learning multiple policies in multi-objective environ-
ments. The proposed algorithm, the Multi-objective Evolutionary Policy
Search (MEPS), searches for deterministic policies parameterized by
ANNs in MORL environments. The MEPS is a model-free multi-policy
algorithm that belongs to the actor-only family of RL algorithms. There-
fore, MEPS estimates preference values for discrete actions and does not
depend on gradient updates or value function estimation. Additionally,
a survivor selection mechanism has been proposed based on a heavy-
tailed distribution that selects solutions from all non-dominated fronts
between generations. Accordingly, we conducted a twofold analysis to
evaluate the performance of the proposal.

In the first part of the analysis, five different existing benchmark
MORL environments, along with a sixth and novel MORL environment,
the Discontinuous Deep Sea Treasure (DDST), were selected. In addi-
tion, three state-of-the-art MORL algorithms, namely Pareto Q-Learning
(PQL), Q-Managed (QM), and Multi-Policy Soft Actor-Critic (MPSAC),
were executed and the obtained results were compared with the MEPS

results. We conducted an extensive analysis of four versions of MEPS
in the benchmark functions, with a focus on not only the hypervolume
measure but also the complexity of the networks obtained by MEPS
in terms of the number of nodes and connections. Furthermore, MEPS
achieved competitive results in all six benchmarks.

In the second part, we presented a novel ERM modeling as a MORL
problem, where the agent controls the depth of discharge (DoD) of
the ESS present in the grid. The proposed ERM model incorporates a
Lithium-Ion degradation model to monthly update the battery capacity,
based on the previous DoDs and usage. Subsequently, we assessed the
performance of MEPS in this model using real-world time-series data on
load and environmental characteristics. Comparing the results to those
obtained using MPSAC and multi-objective deep Q networks, we found
that MEPS is capable of generalizing better to unseen scenarios and
can compete with deep learning-based MORL algorithms. In addition
to achieving competitive results, MEPS also generated smaller networks
with an average of 30 connections and 14 nodes.

Regarding the neuroevolutionary algorithm proposed, MEPS suf-
fered from some drawbacks. For instance, the different mutation pa-
rameters require either a careful selection or a hyperparameter opti-
mization. Additionally, due to its stochasticity, multiple runs should
be performed to assess an average result. Besides, the current im-
plementation of MEPS is restricted to problems with discrete action
spaces. In spite of the aforementioned drawbacks, a neuroevolutionary
algorithm like MEPS proved to be an efficient controller for ESS depth
of discharge in MGs. Additionally, future work is to investigate new
ways in which crossover can be performed for neuroevolution. In
summary, from a perspective of sustainability and energy savings, the
results presented in this work are becoming more relevant every day,
and represent concrete benefits for the environment in a future where
the integration of renewable energy sources is increasing every day.

CRediT authorship contribution statement

G.M.C. Leite: Writing – original draft, Visualization, Validation,
Software, Resources, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. S. Jiménez-Fernández: Writing – re-
view & editing, Project administration, Methodology, Investigation,
Funding acquisition, Conceptualization. S. Salcedo-Sanz: Writing –
review & editing, Project administration, Methodology, Investigation,
Funding acquisition, Conceptualization. C.G. Marcelino: Writing –
review & editing, Visualization, Supervision, Project administration,
Methodology, Investigation, Formal analysis, Conceptualization. C.E.
Pedreira: Writing – review & editing, Supervision, Project administra-
tion, Methodology, Investigation, Funding acquisition, Conceptualiza-
tion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors are unable or have chosen not to specify which data
has been used.

Acknowledgments

This work was partially funded by the Brazilian research agen-
cies: CNPq-National Council for Scientific and Technological Devel-
opment, Brazil (Grant Number 306258/2019-6), FAPERJ- Fundação
Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro,
Brazil (Grant Number E-26/200.840/2021), Ph.D. Scholarship from



Knowledge-Based Systems 280 (2023) 111027

18

G.M.C. Leite et al.

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Supe-
rior, Brazil (CAPES-PROEX), and support from CAPES, Brazil (Grant
number: 23038.006308/2021-70). This research has also been partially
supported by projects PID2020-115454GB-C21 and TED2021-131777B-
C22 of Spanish Ministry of Science and Innovation (MICINN). The
authors thank UAH and UFRJ for the infrastructure used to conduct
this work.

References

[1] A. Mahmoudan, P. Samadof, S. Hosseinzadeh, D.A. Garcia, A multigeneration
cascade system using ground-source energy with cold recovery: 3E analyses and
multi-objective optimization, Energy 233 (2021) 121185, http://dx.doi.org/10.
1016/j.energy.2021.121185.

[2] S. Choudhury, Review of energy storage system technologies integration to
microgrid: Types, control strategies, issues, and future prospects, J. Energy
Storage 48 (2022) 103966, http://dx.doi.org/10.1016/j.est.2022.103966.

[3] N. Eghbali, S.M. Hakimi, A. Hasankhani, G. Derakhshan, B. Abdi, Stochastic
energy management for a renewable energy based microgrid considering battery,
hydrogen storage, and demand response, Sustain. Energy Grids Netw. 30 (2022)
100652, http://dx.doi.org/10.1016/j.segan.2022.100652.

[4] IRENA, Renewable Energy Statistics, The international renewable energy agency,
abu dhabi, in: Renewable Power Generation Costs in 2019, 2020.

[5] EC, Transport, Commission Outlines Ambitious Plan to Increase Mobility and
Reduce Emissions, European Commission, Brussels, Press Release, 2011.

[6] Association internationale pour l’évaluation du rendement scolaire, Global EV
Outlook 2016: Beyond One Million Electric Cars, IEA, 2016.

[7] N. Hatziargyriou, H. Asano, R. Iravani, C. Marnay, Microgrids, IEEE Power
Energy Mag. 5 (4) (2007) 78–94, http://dx.doi.org/10.1109/MPAE.2007.376583.

[8] L. Luo, S.S. Abdulkareem, A. Rezvani, M.R. Miveh, S. Samad, N. Aljojo, M.
Pazhoohesh, Optimal scheduling of a renewable based microgrid considering
photovoltaic system and battery energy storage under uncertainty, J. Energy
Storage 28 (2020) 101306, http://dx.doi.org/10.1016/j.est.2020.101306.

[9] N.P. Padhy, Unit commitment-a bibliographical survey, IEEE Trans. Power Syst.
19 (2) (2004) 1196–1205, http://dx.doi.org/10.1109/TPWRS.2003.821611.

[10] A. Rezaee Jordehi, An improved particle swarm optimisation for unit commit-
ment in microgrids with battery energy storage systems considering battery
degradation and uncertainties, Int. J. Energy Res. 45 (1) (2021) 727–744,
http://dx.doi.org/10.1002/er.5867.

[11] L. Alvarado-Barrios, A.R. del Nozal, J.B. Valerino, I.G. Vera, J.L. Martínez-Ramos,
Stochastic unit commitment in microgrids: Influence of the load forecasting error
and the availability of energy storage, Renew. Energy 146 (2020) 2060–2069,
http://dx.doi.org/10.1016/j.renene.2019.08.032.

[12] International Electrotechnical Commission and others, IEC 61970: Energy
Management System Application Program Interface (EMS-API), International
Electrotechnical Commission (IEC), Geneva, Switzerland, 2004.

[13] S. Salcedo-Sanz, C. Camacho-Gómez, R. Mallol-Poyato, S. Jiménez-Fernández, J.
Del Ser, A novel Coral Reefs Optimization algorithm with substrate layers for
optimal battery scheduling optimization in micro-grids, Soft Comput. 20 (11)
(2016) 4287–4300, http://dx.doi.org/10.1007/s00500-016-2295-7.

[14] M.A. Hossain, H.R. Pota, S. Squartini, A.F. Abdou, Modified PSO algorithm for
real-time energy management in grid-connected microgrids, Renew. Energy 136
(2019) 746–757, http://dx.doi.org/10.1016/j.renene.2019.01.005.

[15] M.H. Mostafa, S.H.E.A. Aleem, S.G. Ali, A.Y. Abdelaziz, P.F. Ribeiro, Z.M. Ali,
Robust energy management and economic analysis of microgrids considering
different battery characteristics, IEEE Access 8 (2020) 54751–54775, http://dx.
doi.org/10.1109/ACCESS.2020.2981697.

[16] G.M.C. Leite, C.G. Marcelino, C.E. Pedreira, S. Jiménez-Fernández, S. Salcedo-
Sanz, Evaluating the risk of uncertainty in smart grids with electric vehicles
using an evolutionary swarm-intelligent algorithm, J. Clean. Prod. 401 (2023)
136775, http://dx.doi.org/10.1016/j.jclepro.2023.136775.

[17] J. Yuan, G. Zhang, S.Y. Samson, Z. Chen, Z. Li, Y. Zhang, A multi-timescale
smart grid energy management system based on adaptive dynamic programming
and Multi-NN Fusion prediction method, Knowl.-Based Syst. 241 (2022) 108284,
http://dx.doi.org/10.1016/j.knosys.2022.108284.

[18] P. Mannion, K. Mason, S. Devlin, J. Duggan, E. Howley, Multi-objective dynamic
dispatch optimisation using multi-agent reinforcement learning, in: Proceedings
of the 2016 International Conference on Autonomous Agents & Multiagent
Systems, 2016, pp. 1345–1346.

[19] E. Oh, H. Wang, Reinforcement-learning-based energy storage system operation
strategies to manage wind power forecast uncertainty, IEEE Access 8 (2020)
20965–20976, http://dx.doi.org/10.1109/ACCESS.2020.2968841.

[20] F. Liu, Q. Liu, Q. Tao, Y. Huang, D. Li, D. Sidorov, Deep reinforcement learning
based energy storage management strategy considering prediction intervals of
wind power, Int. J. Electr. Power Energy Syst. 145 (2023) 108608, http://dx.
doi.org/10.1016/j.ijepes.2022.108608.

[21] Q. Wu, Q. Feng, Y. Ren, Q. Xia, Z. Wang, B. Cai, An intelligent preventive
maintenance method based on reinforcement learning for battery energy storage
systems, IEEE Trans. Ind. Inform. 17 (12) (2021) 8254–8264, http://dx.doi.org/
10.1109/TII.2021.3066257.

[22] Y. Shang, W. Wu, J. Guo, Z. Ma, W. Sheng, Z. Lv, C. Fu, Stochastic dispatch of
energy storage in microgrids: An augmented reinforcement learning approach,
Appl. Energy 261 (2020) 114423, http://dx.doi.org/10.1016/j.apenergy.2019.
114423.

[23] V.-H. Bui, A. Hussain, H.-M. Kim, Double deep 𝑄-learning-based distributed
operation of battery energy storage system considering uncertainties, IEEE
Trans. Smart Grid 11 (1) (2019) 457–469, http://dx.doi.org/10.1109/TSG.2019.
2924025.

[24] R. Lu, S.H. Hong, X. Zhang, A dynamic pricing demand response algorithm for
smart grid: Reinforcement learning approach, Appl. Energy 220 (2018) 220–230,
http://dx.doi.org/10.1016/j.apenergy.2018.03.072.

[25] Y. Liu, D. Zhang, H.B. Gooi, Optimization strategy based on deep reinforcement
learning for home energy management, CSEE J. Power Energy Syst. 6 (3) (2020)
572–582, http://dx.doi.org/10.17775/CSEEJPES.2019.02890.

[26] S.B. Slama, M. Mahmoud, A deep learning model for intelligent home energy
management system using renewable energy, Eng. Appl. Artif. Intell. 123 (2023)
106388, http://dx.doi.org/10.1016/j.engappai.2023.106388.

[27] A. Mathew, M.J. Jolly, J. Mathew, Improved residential energy management
system using priority double deep Q-learning, Sustainable Cities Soc. 69 (2021)
102812, http://dx.doi.org/10.1016/j.scs.2021.102812.

[28] J.-H. Syu, G. Srivastava, M. Fojcik, R. Cupek, J.C.-W. Lin, Energy grid manage-
ment system with anomaly detection and Q-learning decision modules, Comput.
Electr. Eng. 107 (2023) 108639, http://dx.doi.org/10.1016/j.compeleceng.2023.
108639.

[29] P. Vamplew, J. Yearwood, R. Dazeley, A. Berry, On the limitations of scalarisa-
tion for multi-objective reinforcement learning of pareto fronts, in: Australasian
Joint Conference on Artificial Intelligence, 2008, pp. 372–378, http://dx.doi.org/
10.1007/978-3-540-89378-3_37.

[30] A. Pan, W. Xu, L. Wang, H. Ren, Additional planning with multiple objectives
for reinforcement learning, Knowl.-Based Syst. 193 (2020) 105392, http://dx.
doi.org/10.1016/j.knosys.2019.105392.

[31] F. Song, H. Xing, X. Wang, S. Luo, P. Dai, Z. Xiao, B. Zhao, Evolutionary multi-
objective reinforcement learning based trajectory control and task offloading
in UAV-assisted mobile edge computing, IEEE Trans. Mob. Comput. (2022)
http://dx.doi.org/10.1109/TMC.2022.3208457.

[32] M. Xu, J. Wang, Learning strategy for continuous robot visual control: A multi-
objective perspective, Knowl.-Based Syst. 252 (2022) 109448, http://dx.doi.org/
10.1016/j.knosys.2022.109448.

[33] J. Chen, H. Xing, Z. Xiao, L. Xu, T. Tao, A DRL agent for jointly optimizing
computation offloading and resource allocation in MEC, IEEE Internet Things J.
8 (24) (2021) 17508–17524, http://dx.doi.org/10.1109/JIOT.2021.3081694.

[34] H. Xing, Z. Xiao, R. Qu, Z. Zhu, B. Zhao, An efficient federated distillation
learning system for multitask time series classification, IEEE Trans. Instrum.
Meas. 71 (2022) 1–12, http://dx.doi.org/10.1109/TIM.2022.3201203.

[35] Y. Li, R. Wang, Z. Yang, Optimal scheduling of isolated microgrids using
automated reinforcement learning-based multi-period forecasting, IEEE Trans.
Sustain. Energy 13 (1) (2021) 159–169, http://dx.doi.org/10.1109/TSTE.2021.
3105529.

[36] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[37] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, John Wiley & Sons, 2014.

[38] C.J.C.H. Watkins, Learning from delayed rewards, 1989.
[39] R.S. Sutton, Learning to predict by the methods of temporal differences, Mach.

Learn. 3 (1) (1988) 9–44, http://dx.doi.org/10.1007/BF00115009.
[40] P. Dayan, C. Watkins, Q-learning, Mach. Learn. 8 (3) (1992) 279–292, http:

//dx.doi.org/10.1007/BF00992698.
[41] J.N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning, Mach.

Learn. 16 (3) (1994) 185–202, http://dx.doi.org/10.1023/A:1022689125041.
[42] D.J. White, Multi-objective infinite-horizon discounted Markov decision pro-

cesses, J. Math. Anal. Appl. 89 (2) (1982) 639–647, http://dx.doi.org/10.1016/
0022-247X(82)90122-6.

[43] D.M. Roijers, P. Vamplew, S. Whiteson, R. Dazeley, A survey of multi-objective
sequential decision-making, J. Artificial Intelligence Res. 48 (2013) 67–113,
http://dx.doi.org/10.1613/jair.3987.

[44] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley
& Sons, Inc., 2001.

[45] V. Pareto, Cours d’Économie Politique, Vol. 1, Librairie Droz, 1964.
[46] C.G. Marcelino, G.M.C. Leite, E.F. Wanner, S. Jiménez-Fernández, S. Salcedo-

Sanz, Evaluating the use of a Net-Metering mechanism in microgrids to reduce
power generation costs with a swarm-intelligent algorithm, Energy 266 (2023)
126317, http://dx.doi.org/10.1016/j.energy.2022.126317.

[47] H. Yan, D. Zhang, Qilu, X. Duo, X. Sheng, A review of spinel lithium titanate
(Li4Ti5O12) as electrode material for advanced energy storage devices, Ceram.
Int. 47 (5) (2021) 5870–5895, http://dx.doi.org/10.1016/j.ceramint.2020.10.
241.

http://dx.doi.org/10.1016/j.energy.2021.121185
http://dx.doi.org/10.1016/j.energy.2021.121185
http://dx.doi.org/10.1016/j.energy.2021.121185
http://dx.doi.org/10.1016/j.est.2022.103966
http://dx.doi.org/10.1016/j.segan.2022.100652
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb4
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb4
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb4
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb5
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb5
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb5
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb6
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb6
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb6
http://dx.doi.org/10.1109/MPAE.2007.376583
http://dx.doi.org/10.1016/j.est.2020.101306
http://dx.doi.org/10.1109/TPWRS.2003.821611
http://dx.doi.org/10.1002/er.5867
http://dx.doi.org/10.1016/j.renene.2019.08.032
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb12
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb12
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb12
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb12
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb12
http://dx.doi.org/10.1007/s00500-016-2295-7
http://dx.doi.org/10.1016/j.renene.2019.01.005
http://dx.doi.org/10.1109/ACCESS.2020.2981697
http://dx.doi.org/10.1109/ACCESS.2020.2981697
http://dx.doi.org/10.1109/ACCESS.2020.2981697
http://dx.doi.org/10.1016/j.jclepro.2023.136775
http://dx.doi.org/10.1016/j.knosys.2022.108284
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb18
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb18
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb18
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb18
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb18
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb18
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb18
http://dx.doi.org/10.1109/ACCESS.2020.2968841
http://dx.doi.org/10.1016/j.ijepes.2022.108608
http://dx.doi.org/10.1016/j.ijepes.2022.108608
http://dx.doi.org/10.1016/j.ijepes.2022.108608
http://dx.doi.org/10.1109/TII.2021.3066257
http://dx.doi.org/10.1109/TII.2021.3066257
http://dx.doi.org/10.1109/TII.2021.3066257
http://dx.doi.org/10.1016/j.apenergy.2019.114423
http://dx.doi.org/10.1016/j.apenergy.2019.114423
http://dx.doi.org/10.1016/j.apenergy.2019.114423
http://dx.doi.org/10.1109/TSG.2019.2924025
http://dx.doi.org/10.1109/TSG.2019.2924025
http://dx.doi.org/10.1109/TSG.2019.2924025
http://dx.doi.org/10.1016/j.apenergy.2018.03.072
http://dx.doi.org/10.17775/CSEEJPES.2019.02890
http://dx.doi.org/10.1016/j.engappai.2023.106388
http://dx.doi.org/10.1016/j.scs.2021.102812
http://dx.doi.org/10.1016/j.compeleceng.2023.108639
http://dx.doi.org/10.1016/j.compeleceng.2023.108639
http://dx.doi.org/10.1016/j.compeleceng.2023.108639
http://dx.doi.org/10.1007/978-3-540-89378-3_37
http://dx.doi.org/10.1007/978-3-540-89378-3_37
http://dx.doi.org/10.1007/978-3-540-89378-3_37
http://dx.doi.org/10.1016/j.knosys.2019.105392
http://dx.doi.org/10.1016/j.knosys.2019.105392
http://dx.doi.org/10.1016/j.knosys.2019.105392
http://dx.doi.org/10.1109/TMC.2022.3208457
http://dx.doi.org/10.1016/j.knosys.2022.109448
http://dx.doi.org/10.1016/j.knosys.2022.109448
http://dx.doi.org/10.1016/j.knosys.2022.109448
http://dx.doi.org/10.1109/JIOT.2021.3081694
http://dx.doi.org/10.1109/TIM.2022.3201203
http://dx.doi.org/10.1109/TSTE.2021.3105529
http://dx.doi.org/10.1109/TSTE.2021.3105529
http://dx.doi.org/10.1109/TSTE.2021.3105529
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb36
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb36
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb36
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb37
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb37
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb37
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb38
http://dx.doi.org/10.1007/BF00115009
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1023/A:1022689125041
http://dx.doi.org/10.1016/0022-247X(82)90122-6
http://dx.doi.org/10.1016/0022-247X(82)90122-6
http://dx.doi.org/10.1016/0022-247X(82)90122-6
http://dx.doi.org/10.1613/jair.3987
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb44
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb44
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb44
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb45
http://dx.doi.org/10.1016/j.energy.2022.126317
http://dx.doi.org/10.1016/j.ceramint.2020.10.241
http://dx.doi.org/10.1016/j.ceramint.2020.10.241
http://dx.doi.org/10.1016/j.ceramint.2020.10.241


Knowledge-Based Systems 280 (2023) 111027

19

G.M.C. Leite et al.

[48] C. Marcelino, M. Baumann, L. Carvalho, N. Chibeles-Martins, M. Weil, P.
Almeida, E. Wanner, A combined optimisation and decision-making approach
for battery-supported HMGS, J. Oper. Res. Soc. 71 (5) (2020) 762–774, http:
//dx.doi.org/10.1080/01605682.2019.1582590.

[49] UNECE, Life cycle assessment of electricity generation options, 2022,
https://unece.org/sed/documents/2021/10/reports/life-cycle-assessment-
electricity-generation-options Available in 16th march 2022.

[50] Red Eléctrica, The Spanish Electricity System. Preliminary report 2021, 2022,
https://www.ree.es/en/datos/publications/annual-system-report/the-spanish-
electricity-system-preliminary-report-2021 Available in 11th January 2022.

[51] D. Roberts, S. Brown, The economics of firm solar power from Li-ion and
vanadium flow batteries in California, MRS Energy Sustain. 9 (2022) 129–141,
http://dx.doi.org/10.1557/s43581-022-00028-w.

[52] M. Musallam, C.M. Johnson, An efficient implementation of the rainflow count-
ing algorithm for life consumption estimation, IEEE Trans. Reliab. 61 (4) (2012)
978–986, http://dx.doi.org/10.1109/TR.2012.2221040.

[53] A. Maheshwari, N.G. Paterakis, M. Santarelli, M. Gibescu, Optimizing the
operation of energy storage using a non-linear lithium-ion battery degradation
model, Appl. Energy 261 (2020) 114360, http://dx.doi.org/10.1016/j.apenergy.
2019.114360.

[54] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197,
http://dx.doi.org/10.1109/4235.996017.

[55] M. Emmerich, N. Beume, B. Naujoks, An EMO algorithm using the hypervolume
measure as selection criterion, in: International Conference on Evolutionary
Multi-Criterion Optimization, 2005, pp. 62–76, http://dx.doi.org/10.1007/978-
3-540-31880-4_5.

[56] K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting
topologies, Evol. Comput. 10 (2) (2002) 99–127, http://dx.doi.org/10.1162/
106365602320169811.

[57] S. Sarti, G. Ochoa, A NEAT visualisation of neuroevolution trajectories, in:
International Conference on the Applications of Evolutionary Computation (Part
of EvoStar), 2021, pp. 714–728, http://dx.doi.org/10.1007/978-3-030-72699-
7_45.

[58] C. Yue, P.N. Suganthan, J. Liang, B. Qu, K. Yu, Y. Zhu, L. Yan, Differential
evolution using improved crowding distance for multimodal multiobjective
optimization, Swarm Evol. Comput. 62 (2021) 100849, http://dx.doi.org/10.
1016/j.swevo.2021.100849.

[59] B.C. Arnold, Pareto distribution, in: Wiley StatsRef: Statistics Reference Online,
2014, pp. 1–10, http://dx.doi.org/10.1002/9781118445112.stat01100.pub2.

[60] C.G. Marcelino, G.M.C. Leite, C.A.D.M. Delgado, L.B. de Oliveira, E.F. Wanner,
S. Jiménez-Fernández, S. Salcedo-Sanz, An efficient multi-objective evolutionary
approach for solving the operation of multi-reservoir system scheduling in hydro-
power plants, Expert Syst. Appl. 185 (2021) 115638, http://dx.doi.org/10.1016/
j.eswa.2021.115638.

[61] C.F. Hayes, R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane, M.
Reymond, T. Verstraeten, L.M. Zintgraf, R. Dazeley, F. Heintz, E. Howley, A.A.
Irissappane, P. Mannion, A. Nowé, G. Ramos, M. Restelli, P. Vamplew, D.M.
Roijers, A practical guide to multi-objective reinforcement learning and planning,
Auton. Agents Multi-Agent Syst. 36 (1) (2022) 1–59, http://dx.doi.org/10.1007/
s10458-022-09552-y.

[62] M.T. Jensen, Reducing the run-time complexity of multiobjective EAs: The NSGA-
II and other algorithms, IEEE Trans. Evol. Comput. 7 (5) (2003) 503–515,
http://dx.doi.org/10.1109/TEVC.2003.817234.

[63] A. McIntyre, M. Kallada, C.G. Miguel, C. Feher de Silva, M.L. Netto, neat-python,
2019, https://github.com/CodeReclaimers/neat-python.

[64] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, E. Dekker, Empirical evaluation
methods for multiobjective reinforcement learning algorithms, Mach. Learn. 84
(1) (2011) 51–80, http://dx.doi.org/10.1007/s10994-010-5232-5.

[65] K. Van Moffaert, A. Nowé, Multi-objective reinforcement learning using sets of
Pareto dominating policies, J. Mach. Learn. Res. 15 (107) (2014) 3663–3692.

[66] T.H.F. de Oliveira, L.P. de Souza Medeiros, A.D.D. Neto, J.D. Melo, Q-Managed:
A new algorithm for a multiobjective reinforcement learning, Expert Syst. Appl.
168 (2021) 114228, http://dx.doi.org/10.1016/j.eswa.2020.114228.

[67] D. Chen, Y. Wang, W. Gao, Combining a gradient-based method and an evolution
strategy for multi-objective reinforcement learning, Appl. Intell. 50 (10) (2020)
3301–3317, http://dx.doi.org/10.1007/s10489-020-01702-7.

[68] P. Vamplew, R. Dazeley, C. Foale, Softmax exploration strategies for multiobjec-
tive reinforcement learning, Neurocomputing 263 (2017) 74–86, http://dx.doi.
org/10.1016/j.neucom.2016.09.141.

[69] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algo-
rithms: Empirical results, Evol. Comput. 8 (2) (2000) 173–195, http://dx.doi.
org/10.1162/106365600568202.

[70] T.T. Nguyen, N.D. Nguyen, P. Vamplew, S. Nahavandi, R. Dazeley, C.P. Lim, A
multi-objective deep reinforcement learning framework, Eng. Appl. Artif. Intell.
96 (2020) 103915, http://dx.doi.org/10.1016/j.engappai.2020.103915.

[71] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[72] C.G. Marcelino, G.M.C. Leite, S. Jiménez-Fernández, S. Salcedo-Sanz, An im-

proved C-DEEPSO algorithm for optimal active-reactive power dispatch in
microgrids with electric vehicles, IEEE Access 10 (2022) 94298–94311, http:
//dx.doi.org/10.1109/ACCESS.2022.3203728.

[73] G.-H. Tzeng, J.-J. Huang, Multiple Attribute Decision Making: Methods and
Applications, CRC Press, 2011.

http://dx.doi.org/10.1080/01605682.2019.1582590
http://dx.doi.org/10.1080/01605682.2019.1582590
http://dx.doi.org/10.1080/01605682.2019.1582590
https://unece.org/sed/documents/2021/10/reports/life-cycle-assessment-electricity-generation-options
https://unece.org/sed/documents/2021/10/reports/life-cycle-assessment-electricity-generation-options
https://unece.org/sed/documents/2021/10/reports/life-cycle-assessment-electricity-generation-options
https://www.ree.es/en/datos/publications/annual-system-report/the-spanish-electricity-system-preliminary-report-2021
https://www.ree.es/en/datos/publications/annual-system-report/the-spanish-electricity-system-preliminary-report-2021
https://www.ree.es/en/datos/publications/annual-system-report/the-spanish-electricity-system-preliminary-report-2021
http://dx.doi.org/10.1557/s43581-022-00028-w
http://dx.doi.org/10.1109/TR.2012.2221040
http://dx.doi.org/10.1016/j.apenergy.2019.114360
http://dx.doi.org/10.1016/j.apenergy.2019.114360
http://dx.doi.org/10.1016/j.apenergy.2019.114360
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/978-3-540-31880-4_5
http://dx.doi.org/10.1007/978-3-540-31880-4_5
http://dx.doi.org/10.1007/978-3-540-31880-4_5
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1007/978-3-030-72699-7_45
http://dx.doi.org/10.1007/978-3-030-72699-7_45
http://dx.doi.org/10.1007/978-3-030-72699-7_45
http://dx.doi.org/10.1016/j.swevo.2021.100849
http://dx.doi.org/10.1016/j.swevo.2021.100849
http://dx.doi.org/10.1016/j.swevo.2021.100849
http://dx.doi.org/10.1002/9781118445112.stat01100.pub2
http://dx.doi.org/10.1016/j.eswa.2021.115638
http://dx.doi.org/10.1016/j.eswa.2021.115638
http://dx.doi.org/10.1016/j.eswa.2021.115638
http://dx.doi.org/10.1007/s10458-022-09552-y
http://dx.doi.org/10.1007/s10458-022-09552-y
http://dx.doi.org/10.1007/s10458-022-09552-y
http://dx.doi.org/10.1109/TEVC.2003.817234
https://github.com/CodeReclaimers/neat-python
http://dx.doi.org/10.1007/s10994-010-5232-5
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb65
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb65
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb65
http://dx.doi.org/10.1016/j.eswa.2020.114228
http://dx.doi.org/10.1007/s10489-020-01702-7
http://dx.doi.org/10.1016/j.neucom.2016.09.141
http://dx.doi.org/10.1016/j.neucom.2016.09.141
http://dx.doi.org/10.1016/j.neucom.2016.09.141
http://dx.doi.org/10.1162/106365600568202
http://dx.doi.org/10.1162/106365600568202
http://dx.doi.org/10.1162/106365600568202
http://dx.doi.org/10.1016/j.engappai.2020.103915
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb71
http://dx.doi.org/10.1109/ACCESS.2022.3203728
http://dx.doi.org/10.1109/ACCESS.2022.3203728
http://dx.doi.org/10.1109/ACCESS.2022.3203728
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb73
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb73
http://refhub.elsevier.com/S0950-7051(23)00777-3/sb73

	Solving an energy resource management problem with a novel multi-objective evolutionary reinforcement learning method
	Introduction
	Reinforcement Learning background
	Multi-objective Reinforcement Learning

	ERM Problem Formulation
	Microgrid System model
	Operational Costs objective and ESS constraints
	Microgrid CO2 emissions objective
	ESS degradation objective
	ERM Markov Decision Process

	The Multi-Objective Evolutionary Policy Search algorithm
	Computational Complexity

	Experiments
	Comparison with benchmark MORL methods
	Ablation Study
	Solving the ERM problem

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


