
Digit. Signal Process. 144 (2024) 104270

Contents lists available at ScienceDirect

Digital Signal Processing

journal homepage: www.elsevier.com/locate/dsp

CoSeNet: A novel approach for optimal segmentation of correlation

matrices
A. Palomo-Alonso a, D. Casillas-Pérez b, S. Jiménez-Fernández a,∗, A. Portilla-Figueras a,
S. Salcedo-Sanz a

a Department of Signal Processing and Communications, Ctra. Madrid-Barcelona, km 33, Alcalá de Henares, 28805, Madrid, Spain
b Department of Signal Processing and Communications, Camino del Molino, 5, Fuenlabrada, 28942, Madrid, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Correlation matrices
Segmentation algorithms
Multi-algorithm architecture
Metaheuristic optimization
Machine learning

In this paper, we propose a novel approach for the optimal identification of correlated segments in noisy
correlation matrices. The proposed model is known as CoSeNet (Correlation Segmentation Network) and is based
on a four-layer algorithmic architecture that includes several processing layers: input, formatting, re-scaling, and
segmentation layer. The proposed model can effectively identify correlated segments in such matrices, better
than previous approaches for similar problems. Internally, the proposed model utilizes an overlapping technique
and uses pre-trained Machine Learning (ML) algorithms, which makes it robust and generalizable. CoSeNet
approach also includes a method that optimizes the parameters of the re-scaling layer using a heuristic algorithm
and fitness based on a Window Difference-based metric. The output of the model is a binary noise-free matrix
representing optimal segmentation as well as its segmentation points and can be used in a variety of applications,
obtaining compromise solutions between efficiency, memory, and speed of the proposed deployment model.
1. Introduction

In today’s world, an immense amount of data is processed every
day. In many applications, it is crucial to identify relationships be-
tween different elements and group them accordingly [1]. In many
cases, these relationships are indicated by a correlation function [2,3],
which measures how correlated two elements are, based on one or more
characteristics or metrics. By applying a correlation function to every
combination of elements, it is possible to generate a square correlation
matrix with a length equal to the number of elements being processed.
However, noisy correlation matrices may be produced if the correla-
tion function is not efficient enough, or if the elements do not contain
enough information about the characteristic that links them. Thus, the
problem of segmentation of correlation matrices consists of, giving a
series of elements in a correlation matrix, belonging to one or more
groups and spatially ordered, and given a function capable of obtaining
a value (metric) from the relationship among these elements, we seek
to obtain (or identify) the points that correctly separate these groups.

The detection of correlated segments in noisy correlation matrices
is an important problem, closely related to the well-known subspace
clustering problem [4,5], that appears in different fields, mainly as-

* Corresponding author.

sociated with the discovery of underlying patterns and relationships
in complex data sets. This problem has been massively treated in im-
age processing [6,7], in Natural Language Processing [8], and in many
other research fields. In Finance, for instance, correlation matrix seg-
mentation is used to analyze clusters for financial data [9], which can
be useful for portfolio diversification, risk management, and asset corre-
lation [10,11]. In Biology, the segmentation of correlation matrices has
been used to identify co-regulated genes and infer cis-regulatory mod-
ules [12], which can provide insight into gene function and regulation
[13], and also in biomedical applications with a signal processing com-
ponent, such as human vessel segmentation [6] or heart sounds analysis
[14]. Moreover, in Physics, correlation matrix segmentation has been
used to identify communities or groups of interacting particles in com-
plex systems, such as social networks and biological networks [15]. This
can provide insight into the underlying structure and dynamics of these
systems. In Climate science, correlation matrix segmentation has been
used to identify patterns in climate time series data, such as El Niño-
Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)
[16], which can be used to improve climate predictions and understand
the dynamics of the Earth’s climate system.
Available online 24 October 2023
1051-2004/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
nc-nd/4.0/).

E-mail address: silvia.jimenez@uah.es (S. Jiménez-Fernández).

https://doi.org/10.1016/j.dsp.2023.104270
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:silvia.jimenez@uah.es
https://doi.org/10.1016/j.dsp.2023.104270
https://doi.org/10.1016/j.dsp.2023.104270
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2023.104270&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Previous works have addressed this problem using different classi-
cal techniques such as clustering algorithms [17–19], statistical models
[20,21] or graph-based algorithms [22]. However, many of these meth-
ods have limitations when dealing with highly noisy and imperfect
correlation functions. More recently, several studies have introduced
specific variations of the classical algorithms, which work better in
these cases of noisy correlation, for example, Correlation Clustering [23],
Community Detection (CD) techniques [24] (based on graph algorithms
and graph analysis techniques), and Deep Clustering techniques [25].
More recent approaches revisited Hierarchical Clustering approaches
[26] and Modularity maximization (MM) [27], with good results in the
detection of correlated segments in noisy correlation matrices.

In this study, we propose a novel approach for the optimal segmen-
tation of correlation matrices, based on a complete sequential multi-
algorithm architecture that involves different processing levels, each
implementing several methods. Specifically, the proposed approach
consists of three layers, which can be grouped into three categories. The
first level consists of different procedures essential to optimally prepare
the input data. The second level, Metaheuristic, adapts the input and out-
put data using classical algorithms. Finally, the third level is formed by
different Machine Learning (ML) algorithms able to accurately identify
the boundaries in the provided correlation matrix. Thus, the proposed
multi-algorithm architecture can process square correlation matrices
of any scale and size, using a ML model capable of identifying cor-
related segments with high performance, even for highly noisy data.
The proposed approach can adapt any matrix, regardless of its size,
to the ML model with excellent performance. The proposed approach
also runs faster on general-purpose processors, making it a more prac-
tical solution for real-world applications. Note that, unlike the rest of
the algorithms in the state of the art, the proposed architecture imple-
ments simple ML algorithms together with heuristic and other methods.
The main difference with the previous approach is that our method can
accurately solve the problem with these simple ML algorithms, so the
error rate, execution speed, and memory size improve with respect to
alternative (heavier) algorithms. Additionally, the architecture employs
a heuristic to perform custom fine-tuning of the algorithm’s parameters.

The algorithm’s performance has been assessed over a highly nonlin-
ear and noisy database. The problem proposed in the comparative is a
problem of text segmentation by topics. We obtain random articles from
Wikipedia, concatenate them, and divide them into sentences. With a
Language Model (BERT [28]) we generate a sentence similarity coeffi-
cient, used as correlation value, and correlation matrices are generated
with these values sentence by sentence. The effectiveness in identifying
correlated group segmentation and its superiority to some state-of-the-
art algorithms such as unsupervised, Community Detection, and Deep
Clustering have been tested, reaching improvements of 6% - 22% in
terms of performance. The proposed approach aims to propose a unified
solution to the problem, with the possibility of performing fine-tuning
with a few samples from the database. We have also included a GitHub
repository containing the source code and all the experiments in this
article, as well as a PyPi package for Python versions higher than 3.8
that can automatically perform matrix segmentation using the proposed
model.

The remainder of the paper has been structured as follows: the next
section presents the proposed approach for correlation matrices seg-
mentation, following a sequential order according to its different layers.
Within the approach, different ML techniques have been implemented
as final prediction models. Section 3, discusses what is the best ML
model for prediction following a comparison of several pre-trained ML
models to a synthetic database. In this section, we also provide de-
tails on the databases used and a brief explanation of the candidate
ML algorithms. Section 4 shows the results obtained by the proposed
optimized model for a real problem database, comparing the results ob-
tained with those by different state-of-the-art algorithms addressing the
same problem. Finally, Section 5 closes the paper with some conclusions
2

and remarks on the research carried out.
Digital Signal Processing 144 (2024) 104270

Fig. 1. Proposed multi-algorithm architecture with the description of each level,
for optimal noisy matrices segmentation.

2. CoSeNet: proposed multi-algorithm architecture

This work aims to present a generalized architecture (CoSeNet) able
to detect groups of correlated information in matrices (therefore per-
forming a matrix segmentation), with application in a broad class of
different problems, including noisy situations where grouping is diffi-
cult to obtain. Thus, the model’s input is the information regarding the
relationship among the elements in a given problem, so a correlation
matrix (or any information that can be transformed into that) will be
used. The model’s output is, of course, the segmentation performed.

The proposed CoSeNet approach consists of three processing levels,
each formed by an input and an output layer, except for the last level,
which only presents one layer (see Fig. 1).

Level 1 provides generality to the model in terms of the input’s
matrix size. That is, the CoSeNet model needs to segment correlation
matrices independently of their size, as algorithms used for segmenta-
tion cannot always work with variable sizes. Therefore, Level 1, Layer
1 (input layer) receives a noisy correlation matrix of a given size and
splits and pads it into sub-matrices, if necessary, preparing it for fur-
ther processing. Therefore, it provides generality to the model in terms
of the input’s matrix size. Then, Level 2, Layer 2 provides generality
to the model in terms of the input’s scale (range values). That is, the
CoSeNet model needs to be independent of the use case, and each cor-
relation problem may be provided on a different scale. For this purpose,
metaheuristic approaches are used both in the input and output layers
to solve this challenge. Finally, Level 3 performs the segmentation. As
there are many different Machine Learning approaches in the literature
for this purpose, the model can operate with many of these: CoSeNet
offers generality by providing a pre-trained model based on the use of a
synthetic database, that incorporates different noisy situations, used to
identify the boundaries of each group, yielding to the final segmenta-
tion. Therefore, the user does not have to pre-train the chosen model for
the specific problem but can tune parameters to adapt the model to the
specific problem requirements. The output layers are devoted to provid-
ing a noise-free segmented matrix and its corresponding segmentation
vector (that indicates the predicted segmentation points) both matching
the original input matrix. Subsection 2.1 explains the input correlation
matrix specifications as well as the output segmentation vector. Subsec-

tions 2.2 to 2.4 explain in detail all the levels of the CoSeNet model.

A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 2. Example of correlation matrices (in black and red colors) and their asso-
ciated segmentation (in black and green, with a green cell at the starting of each
segment); (a) Almost noise-free matrix with two strongly correlated segments;
(b) Noisy matrix with three correlated segments.

2.1. Input data, problem encoding and output data

CoSeNet approach receives as input a normalized correlation matrix
(see the left side of Fig. 1). We assume that the correlation function
is symmetric and square, meaning that the correlation of one element
with another is reciprocal and yields the same value if the positions of
the elements in the arguments of the function are interchanged.

Three key parameters define this matrix. First, the size of the in-
put matrix is not previously set (CoSeNet generalizes all possible input
problems), but it has to be square. Second, the scale of values in the cor-
relation matrices varies depending on the correlation function used for
the problem at hand. For instance, a high ratio between two elements
for one correlation function problem may be a value bigger than 0.3 (in
the range [0.0-1.0]), while another correlation function may identify a
high correlation with a value of 0.9 and low correlation with 0.3 (us-
ing the same range [0.0 - 1.0]). Thus, having to generalize the use of
different correlation functions is a challenge that has to be solved. Fi-
nally, the number of correlated segments that need to be obtained from
the matrices is unknown and may vary from one problem to another.
However, in the problem’s context, these matrices must have an implicit
spatial correlation. That is, they are spatially ordered.

The input matrix will be referred to as 𝐑𝑖𝑛, and the original size of
the input matrix is denoted as 𝑀𝑖𝑛. Also, we will refer to the scale of the
correlation function as scale 𝐴 = 𝑠𝑐𝑙(𝐑𝑖𝑛), where the function 𝑠𝑐𝑙 refers
to the input’s scale value.

In the context of the problem, we need to adapt the input matrices
to a set size because the segmentation algorithms used at the architec-
ture’s last level may only process arrays of a fixed size. For instance, the
majority of ML models cannot work with variable input sizes: a Neu-
ral Network cannot vary the size of input neurons, or a linear regressor
cannot vary the number of input dimensions. However, our system must
globally be able to process matrices of different sizes. Therefore, we re-
fer to the segmentation algorithms’ set size as the “throughput” (𝑇) of
the system, which is a crucial parameter for the whole approach (with-
out loss of generality, in this work we have considered 𝑇 even).

Fig. 2 illustrates an example of a correlation matrix (normalized
in the range [0, 1]) and its segmentation into a previously unknown
number of groups. The first eight rows by eight columns represent the
correlation matrix itself (red color represents a high correlation value
and black color represents a low correlation value), while the bottom
row presents the segmentation (the green cell corresponds to the be-
ginning of each segment). Fig. 2a presents an example of a correlation
matrix that contains two distinct groups of highly correlated elements,
where the red color represents the value of the correlation function in
the matrix, the brighter it is, the larger the relationship between the
elements. The first group consists of elements 0 to 3, and the second
group consists of elements 4 to 7. In this case, the correlation function
3

is well-defined, and there is a small amount of noise in the matrix. How-
Digital Signal Processing 144 (2024) 104270

ever, Fig. 2b shows an example where the correlation between elements
is not as clear. In this case, there are three groups (elements 1 to 3, 4 to
5, and 6 to 8), and there is noise in the matrix (the boundaries between
two different groups are not clear).

In this work, for a correlation matrix of size 𝑀𝑖𝑛 ×𝑀𝑖𝑛, the output
segmentation vector (𝐬𝑜𝑢𝑡) is a binary vector of size 1 ×𝑀𝑖𝑛.

In this output binary vector, a value of 0 indicates that the cor-
responding index does not correspond to the start of a new group of
elements, while a value of 1 indicates that a new group of elements be-
gins at that index. Since the number of groups is previously unknown,
it is important to highlight that this number is determined by the seg-
mentation algorithms. Therefore, this is a regression problem for the
third-level algorithms, since the algorithms must estimate the segmen-
tation vector which will be denoted as 𝐬𝐢.

2.2. Level 1, layer 1: Formatting the input data

The Formatting Layer is a Level 1 layer (See Fig. 1) located at the
input (see the left side of Fig. 3). Its principal purpose is to split the in-
put matrix into a given number of sub-matrices, to provide generality to
the proposed model. This is needed due to two facts: 1) different appli-
cations are defined by different sized inputs, and 2) different Machine
Learning solutions (explained in Level 3, Subsection 2.4) can be applied
to solve the segmentation prediction, and each one of them may need
a specific or fixed size. Therefore, the Formatting Layer receives an in-
put matrix of size 𝑀𝑖𝑛 and divides it into 𝑉 sub-matrices of size 𝑇 . Note
that 𝑉 depends on the matrix’s input size and the throughput 𝑇 .

This splitting process is achieved with a technique we denote as
“Window Overlapping Copy on the Diagonal (WOCD)”. To perform this
technique, it is necessary that the original size of the input matrix 𝑀𝑖𝑛

is divisible by 𝑇∕2. Since this only happens in exceptional cases, a pro-
cess to expand the input matrix to size 𝑀0 (𝑀0 ≥ 𝑀𝑖𝑛) is needed. The
procedure used to expand this matrix is denoted as “Identity Padding”
(IP), and consists of extending the original input matrix until its size 𝑀0
is divisible by 𝑇∕2 and filling it with zeros, except for the main diagonal,
were it is filled with 1 (as if it was the identity matrix). Once the padded
matrix has been expanded, we split it using the WOCD technique.

The WOCD method involves copying sub-matrices of size 𝑇 ×𝑇 every
𝑇∕2 elements onto the main diagonal 𝑉 times (note that 𝑉 is the number
of sub-matrices present). Although it would be possible to copy the sub-
matrices every 𝑇 elements, it is necessary to overlap them to ensure
that the segmentation at the boundaries of each matrix is optimally
reconstructed (that is, to provide context information). Fig. 4 illustrates
this overlap, which is critical, as the points where the segmentation
is more likely to fail are those corresponding to the edges of the sub-
matrices, while the easiest points to predict are in the center.

It is important to consider the relationship between the model’s
throughput and the input matrices and the estimated size of the ele-
ment groups. If the number of elements in a group is larger than the
throughput, it is still acceptable and the proposed architecture will be
able to perform the segmentation. Nevertheless, if the throughput size
is too unbalanced, the system’s performance may decrease slightly.

The number of matrices and the outgoing length of the input matrix
resulting from applying WOCD on the input matrix with IP is given by
Equation (1):

𝑉 =

{ ⌈
2⋅𝑀𝑖𝑛

𝑇

⌉
− 1, for 𝑀𝑖𝑛 ≥ 𝑇

1, for 𝑀𝑖𝑛 < 𝑇

𝑀0 =
𝑇 ⋅ (𝑉 + 1)

2

(1)

Once the WOCD is performed on the expanded matrix, the result-
ing matrices are serialized, ordered, and handed to the next layer. The

original size 𝑀𝑖𝑛 of the input matrix is stored for later reconstruction.

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 3. Classical processes involved in the model’s first level (Level 1). Formatting Layer (left side, Layer 1) and Reconstruction Layer (right side, Layer 2).
2.3. Level 2, Layer 1: Scaling layer

The scaling layer is a Level 2 layer (see Fig. 1), and its main pur-
pose is to prepare different problems’ matrices to fit into a unique scale,
to provide generality to the proposed CoSeNet model. Note that this
process can be indistinctly addressed before or after dividing the initial
matrix into sub-matrices, that is Level 1, Layer 1, and Level 2, Layer 1
can be interchanged. Without loss of generality, in this work, we pro-
pose fixing the scaling problem at the sub-matrix level of the system
(Level 2, Layer 1).

Fig. 5 shows the model’s second level. On the left side, a schematic
representation of Level 2, Layer 1 (responsible for addressing the scaling
problem) is presented.

The scaling problem is needed as the ML model used in Level 3 is
designed on a given scale (referred to as scale B) between two values
(typically 0-1). When values of the correlation matrix used in the spe-
cific problem are provided on a different scale (referred to as scale A),
segmentation errors may occur, since the ML model has been built to
consider scale B. The scaling problem is an important challenge asso-
ciated with the correlation function used to generate the matrix and is
highly dependent on the specific problem at hand.

Thus, to generalize the model, a re-scaling function composed of
several terms has been considered in this work, as different re-scaling
functions may be optimum for different problems. In all cases, param-
eters determining each one’s weight for the specific problem at hand
have to be discovered.

Let us define a re-scaling function 𝑓𝑠𝑐𝑎𝑙𝑒(𝐑, 𝝆) defined to transform
the values of the input matrix 𝐑 to a new scale 𝐴̂. The re-scaling function
parameters are represented by 𝝆.

To determine the parameters that best fit the problem, we imple-
4

ment an evolutionary algorithm. Thus, we reserve a small amount
of the data as validation data and it is used only to optimize these
parameters. Take into account that we seek to minimize the differ-
ence in scales argmin

𝝆
{𝐴̂ − 𝐵} or maximize the system’s performance

argmin
𝝆

{MSE(𝐬̂𝑜𝑢𝑡, 𝐬𝑜𝑢𝑡)} (where MSE is the Mean Squared Error) given a
prediction model in Level 3.

In this work, we suggest the use of Equation (2) as a re-scaling func-
tion to produce 𝐑̂.

𝑓𝑠𝑐𝑎𝑙𝑒(𝐑,𝐴,𝐵, 𝛼) =𝑤𝐴 +𝑤𝐵 +𝑤0

𝑤𝐴 =𝐴 ⋅ 𝑟

𝑤𝐵 =𝐵 ⋅
(

1
1 + 𝑒𝛼(25−50𝑟)

)
𝑤0 =

(1 −𝐴−𝐵
2

)
Constraints ∶ 0 ≤ {𝐑𝑖𝑗 ,𝐴+𝐵,𝛼} ≤ 1;

(2)

where 𝐴, 𝐵 and 𝛼 are the hyper-parameters to be optimized, and 𝐑𝑖𝑗
are the values of the input matrix 𝐑.

This rescaling function considered is a linear combination of two
functions, a linear function, and a sigmoid function, each multiplied
by one parameter, 𝐴 and 𝐵, respectively. Parameter 𝐴 weights the lin-
ear function, while 𝐵 weights the sigmoid function. Parameter 𝛼 is the
sigmoid parameter that multiplies the input of the rescaling function,
centered at 0.5. We consider a constraint in these parameters, in such a
way that the sum of 𝐴 and 𝐵 cannot exceed 1, to ensure that the output
values are bounded between 0 and 1. The rescaling function can take
various forms centered at 0.5, with increasing values along the input
(positive derivative). The proposed scaling function is flexible enough
to represent linear and exponential scales, however, other scaling func-

tions may be considered and∕or added.

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 4. Window Overlapping Copy on the Diagonal (WOCD) process for a 16 × 16 matrix with throughput 𝑇 = 4 and the corresponding sub-matrices generated: 𝐑1 to
𝐑7; where (a) shows the expanded matrix (𝐑0 in red), (b) to (h) are the copies to overlap (shown also superimposed in (a) in blue).
2.4. Level 3: Prediction of the segmentation

The prediction layer is a Level 3 layer (see Fig. 1), and its main pur-
pose is to perform a segmentation into an unknown number of groups.
After pre-processing the correlation matrices as indicated in the previ-
ous sections, we use ML algorithms to detect correlated segments for
linear scales. To make the proposed approach completely general, a
pre-training of the ML approaches is needed and is done on a synthetic
database, generated as a result of modifying several parameters related
to the noise present in the system. We show in this research that this
pre-training allows the system to learn to solve the task on a pre-defined
design scale, without using a specific real problem database.

Fig. 6 shows a scheme of this part of the model: we propose to use
a synthetic database to train the ML model (this synthetic database is
used by any of the proposed ML models). The pre-trained model is then
incorporated as a fixed module into the system in Level 3.

In terms of model inference, after being trained with the synthetic
database, the input matrices are serialized and flattened to a vector of
size of 1 × 𝑇 2 (except for a few cases such as Convolutional Neural Net-
works), and a bias term is added. This flattened matrix is then used as
input of the pre-trained regressor to generate an output vector, 𝐬𝑖, for
each input sub-matrix at Level 3. These output vectors contain values
associated with probabilities, as they are real values ranging from 0 to 1.
These values indicate the probability that each segment is the beginning
of a new group of elements, according to the encoding defined in the
specific problem. Values close to 1 represent that there is a high proba-
bility that the segment is the first element of a new group, while values
close to 0 represent that there is a high probability that the segment
5

belongs to the previous group. Each prediction obtained is transmitted
again to Level 2, Layer 2 of the model. For more information on possible
algorithms used in Level 3, please refer to Subsection 3.2.

2.5. Level 2, Layer 2: Overlap and threshold layer

The overlap and threshold layer is a Level 2 layer (see Fig. 1), and
its main purpose is to merge the predicted segmentation of the 𝑉 sub-
matrices (each of size 𝑇) into a unique segmentation vector of size 𝑀0.
After the pre-trained ML model predicts the indexes of elements be-
longing to a new group, Level 2, Layer 2 awaits for all matrices to be
processed and uses the proposed technique called “Overlap Mean” to
merge all predictions from Level 3 into a single prediction (𝐬′0). The
result is a vector of predictions with real values between 0 and 1, indi-
cating the probability of each index starting a new group of elements.
Next, the vector is transformed into a binary vector (𝐬0) using a conven-
tional thresholding technique with parameter 𝑡ℎ. This parameter, along
with the parameters of the scaling function, is trained using the meta-
heuristic characteristic of Level 2, Layer 2, as shown in Fig. 5 (right
side). The segmentation vector already binarized (𝐬0), is transmitted to
Level 1, Layer 2 of the model, to perform a simple transformation on
the vector and to be able to present the CoSeNet model’s output data
with the expected format.

Regarding the “Overlap Mean” (OM) method applied, it is an over-
lapping method that maintains similarities with the WOCD method
presented above. Fig. 7 illustrates the OM method applied, where the
predictions from Level 3 are first organized, and OM and thresholding

are performed on the information of each prediction.

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 5. Heuristic processes involved in the model’s Level 2. The left side presents Layer 1 (Scaling Layer) while the right side presents Layer 2 (Overlap & Threshold
Layer).
6

Fig. 6. Machine Learning processes involved in the model’s level 3: Prediction, Deployment, and Training.

A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 7. Graphical overview of the Overlap & Threshold process.

2.6. Level 1, Layer 2: Reconstruction of the final solution matrix

The reconstruction layer is a Level 1 layer (see Fig. 1) in charge of
producing a segmentation vector 𝐬𝑜𝑢𝑡 sized 1 ×𝑀𝑖𝑛 (same size as the
problem’s input matrix size).

After the predictions have been combined into a single prediction
at Level 2, Layer 2, the final step is handled by Level 1, Layer 2 of the
model, which is responsible for the final formatting and presentation of
the segmentation information in a binary output vector, noise-free (See
right side of Fig. 3). This process involves trimming the segmentation
binary vector (𝐬0) using information about the original matrix size, and
producing a binary vector of size 1 ×𝑀𝑖𝑛. The last elements of the vector,
which correspond to those added by the 𝐼𝑃 to make the matrix divisible
by the system’s throughput, are now removed, to obtain a final binary
prediction vector (𝐬𝑜𝑢𝑡).

Finally, the prediction vector can be used to construct a matrix
that represents the original binarized correlation matrix, based on the
model’s predictions. The overall process is illustrated in Fig. 8, which
provides an overview of all the steps involved in the segmentation
prediction, from the input matrices to the final output matrix in a se-
quential perspective.

3. Evaluation of pre-trained ML prediction models

The proposed CoSeNet approach is capable of solving any matrix
segmentation problem, but it must be tuned to improve performance for
specific problems. In addition, we can use several different ML methods
in the proposed approach, including different forms of linear regression,
neural networks, deep algorithms, etc., and we can, of course, carry
out comparative tests to check which one behaves best in terms of ma-
trix segmentation performance. These ML methods can be incorporated
into the model as pre-trained models, using synthetic databases to tune
them. In this section, we evaluate this possibility and analyze the per-
formance of different ML approaches trained on a synthetic database,
and how is the transferability of these ML approaches, i.e. the change
of performance of these ML models when we apply them to databases
with different variables.

3.1. Synthetic databases

We have generated several synthetic databases using as inputs the
corresponding segmentation vectors (ground truth solutions). There-
fore, we have to determine several characteristics: 1) vector’s size 𝑀𝑖𝑛,
2) the number of segments 𝑁𝑔 , and 3) the amount of noise added (de-
7

termined by the mean and the variance).
Digital Signal Processing 144 (2024) 104270

Table 1

Databases generated for training the ML model at Level 3 in terms of the matrix
input size (Min), noise parameters, and cluster metrics.

Min Gaussian Noise Number of groups (𝑁𝑔)

Mean Variance Mean Variance
8 0.00 0.0 3.0 1.0
8 0.01 0.1 3.0 1.0
8 0.01 0.2 3.0 1.0
8 0.01 0.3 3.0 1.0
8 0.01 0.4 3.0 1.0
8 0.02 0.5 3.0 1.0

16 0.00 0.0 4.0 2.0
16 0.01 0.1 4.0 2.0
16 0.01 0.2 4.0 2.0
16 0.01 0.3 4.0 2.0
16 0.01 0.4 4.0 2.0
16 0.02 0.5 4.0 2.0

32 0.00 0.0 8.0 2.0
32 0.01 0.1 8.0 2.0
32 0.01 0.2 8.0 2.0
32 0.01 0.3 8.0 2.0
32 0.01 0.4 8.0 2.0
32 0.02 0.5 8.0 2.0

The different correlation matrices used in this work have been gen-
erated with segmentation vector’s sizes 𝑀𝑖𝑛 = 8,16 , and 32, and several
segments (groups) and mean and variance of the added noise as pre-
sented in Table 1. Each database is then formed by 32,768 (215) pairs
of matrix-segmentation, in which we divide 70% to train, 20% as vali-
dation set, and 10% to test.

Note that the diagonal of the matrix is finally set to 1 since all cor-
relation values must be maximum on the main diagonal. This process
can be repeated as many times as desired to generate a database with
specific parameters, resulting in a set of noise-free solutions and a set
of noisy data points.

To train some ML models (Level 3) that require a pre-selected fixed
input size (throughput 𝑇), we have generated a synthetic database
where matrices sizes (𝑀𝑖𝑛) match this requirement, therefore, in this
case, 𝑀𝑖𝑛 =𝑀0 = 𝑇 .

3.2. Machine-learning models considered

Supervised ML algorithms are those methods that use a labeled
dataset of input-output pairs  = {(𝐱𝑖, 𝑦𝑖)|1 ≤ 𝑖 ≤ 𝑛} to infer the gen-
eral relation 𝑦 = 𝑓 (𝐱) between the input variables 𝐱 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)
(also called predictors) and the output variable 𝑦. Except for the non-
parametric methods which directly use the input-output pairs of the
database  for providing predictions, most of the supervised ML meth-
ods obtain the input-output map 𝑓 by minimizing a loss function ,
which penalizes a kind of error, into a specific parametric function
space 𝑓 ∈ 𝐹 = {𝑓 (⋅,𝜔)|𝜔 ∈Ω}, shown in Equation (3):

𝑓 ∗ = argmin
𝜔∈Ω

 (𝑓 (𝑥,𝜔), 𝑦)) (3)

Different parametric function spaces 𝐹 together with their learn-
ing algorithms drive a huge variety of methods. We consider three
categories of them: QP-based (quadratic programming), ensemble,
and backpropagation-based methods, analyzed in Sections 3.2.1, 3.2.2
and 3.2.3, respectively. Table 2 shows the acronyms of the methods
used in this manuscript.

3.2.1. QP-based

Quadratic programming-based methods, or simply QP-based, are
those supervised ML algorithms that involve a quadratic, 𝐿2 or least-
squares minimization problem in their loss function, shown in Equation
(4):

∗
𝑓 = argmin
𝜔∈Ω

‖𝑓 (𝑥,𝜔) − 𝑦‖2 + 𝜆𝜔(𝜔) (4)

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 8. System overview in a sequential perspective for a given machine learning model.
Table 2

Alias and acronyms of the Machine Learning methods and algorithms consid-
ered in this work.

Method or algorithm Acronym
Adaboost Regressor AR
Bayesian Ridge BR
Convolutional Neural Network CNN
Decision Tree Regresor DTR
ElasticNet EN
Extra Tree Regressor ETR
Extra Trees Regressor ETsR
Linear Regressor LR
Linear SVR LSVR
Lasso Regressor Lasso
Lasso Lars LL
Multi-Layer Perceptron MLP
Orthogonal Matching Pursuit OMP
Random Forest Regressor RFR
Ridge Regressor Ridge
Random Trees Regressor RTsR
Singular Value Decomposition SVD
Support Vector Regressor SVR

Deep Clustering DC
Hierarchical Clustering HC
Louvain’s method Louvain
Modularity Maximization MM
SegCorr algorithm SegCorr
Spectral Clustering SC
Genetic Algorithm Optimization Genetic
Particle Swarm Optimization PSO

with possibly other regularization terms 𝜔(𝜔) weighted by a parameter
(𝜆).

The Linear Regression method (LR) assumes a linear relationship
between the inputs variables and the output, as shown in Equation (5):

𝑦 =𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 + 𝛽 (5)

and exclusively minimizes the mean square error. Such a minimiza-
tion problem directly yields a closed-form solution through the pseudo-
inverse. Other linear regressors also include a regularization term in the
loss function, such as Lasso [29] (Lasso), Ridge [30] (Ridge) and Elas-
ticNet [31] (EN) that additionally minimize the 𝐿1 norm (‖𝝎‖1), the 𝐿2
norm (‖𝝎‖2) and a linear combination of both norms (𝛼1‖𝝎‖1 +𝛼2‖𝝎‖2)
of the coefficients 𝝎, respectively. LassoLars [32] (LL) fits also a linear
regressor that involves the 𝐿1 norm as a regularization term, similar to
Lasso, but least-angle regression (LARS) obtains the best variables fol-
lowing the equiangular direction. Bayesian Ridge [33,34] (BR) is also
a linear regressor method that includes Ridge regularization. However,
BR presumes a prior distribution of the 𝜆 parameter that fits in consecu-
tive iterations with the training set. This method also estimates the best
8

weight 𝜆 using the Bayesian method.
Orthogonal Matching Pursuit [35,36] (OMP) is a sparse approxi-
mation method that finds the so-called best matching projections of
the data onto the codomain of an over-complete linear function, repre-
sented by a matrix 𝐷 (frequently named as dictionary).

The objective is to represent the input-output function (𝑓) from the
Hilbert space 𝐻 as a finite linear combination (𝑓𝑁) of 𝑔𝛾𝑛 (known as
atoms) extracted from columns of 𝐷, as follows in Equation (6):

𝑓𝑁 (𝑡) =
𝑁∑
𝑛=1
𝑎𝑛𝑔𝛾𝑛

(𝑡). (6)

Matching Pursuit seeks the atoms, one at a time, to maximally reduce
the approximation error, that is, choosing the atom with the highest
inner product with the function 𝑓 subtracting the approximation that
uses only that one atom.

Support Vector Regression (SVR) [37–39] is a well-established al-
gorithm for regression and function approximation problems. The SVR
formulation is quite similar to its classification counterpart. It also es-
tablishes an optimization problem where few support vectors are found
to approximate the regressor. Besides, it is common to adopt an ap-
propriate non-linear mapping 𝜙∶ ℝ𝑛 → ℝ𝑝 that transforms samples to
a higher-dimension feature space ℝ𝑝 (𝑛 ≪ 𝑝). By solving the dual opti-
mization problem in the feature space ℝ𝑝, the scalar product 𝐾(𝑥𝑖, 𝑥𝑗) of
the high-order space ℝ𝑝 is called kernel [39]. This kernel trick has been
used for a large number of problems and applications in science and en-
gineering [40], especially the linear, polynomial, or Gaussian kernels.
In this article we use the linear (LSVR) and the Gaussian (SVR) kernels.
Details on the solution process for the SVR algorithm and its tuning and
optimization can be found in [39].

Singular Value Decomposition (SVD) [41] is a matrix factorization
method and a generalization of eigen-decomposition of squared ma-
trices. Consider that 𝑋 ∈ 𝑚,𝑛(ℝ) is a 𝑚 × 𝑛 matrix in the real field.
We know that the matrix 𝑋𝑇𝑋 is a positive semi-definite symmet-
ric squared matrix. As a consequence of the spectral Theorem and
Sylvester’s Theorem [41], matrix 𝑋𝑇𝑋 is a diagonalizable matrix whose
eigenvalues are all non-negative real values {𝜆𝑖 ≥ 0}. Ordering these
eigenvalues {𝜆1 ≥ 𝜆2 ≥⋯ 𝜆𝑛 ≥ 0}, the 𝜎𝑖 =

√
𝜆𝑖 is called the ith singular

value of the matrix 𝑋. Besides, the factorization of the matrix 𝑋 can
be expressed as 𝑋 = 𝑈Σ𝑉 𝑇 , where 𝑈 ∈𝑚,𝑚(ℝ), 𝑉 ∈𝑛,𝑛(ℝ) are or-
thogonal matrices and the matrix Σ ∈𝑛,𝑛(ℝ) is build with the singular
values of 𝑋, in descending order, in its principal diagonal, called the
singular value decomposition of the matrix 𝑋.

3.2.2. Ensembles

Ensemble methods improve the predictive performance of single ML
models, based on combinations of different training models. They as-
sume that the contribution of several base ML models, named learners,
can enhance the prediction ability and even overcome the robustness

and generalization capacity of more complex ML methods [42]. Usu-

A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

ally, learners are simple ML methods, especially decision trees or linear
regressors.

Decision Tree Regressors [43,44] (DTR) are ML methods that build
a tree graph that follows branching decision paths through the data
to provide a prediction. In decision trees for regression, the threshold
parameters that split the data are calculated from the whole training
data set following a specific criterion, such as looking for the best gain
of information possible in the current node. Extremely randomized trees
[45] (ETR) differ from classic decision trees in the way they are built
that choose the best split among a randomly selected set of features.
Decision trees are not ensemble methods themselves but are used in
ensemble methods as learners. This is the case of extra tree regressors,
random forest, or AdaBoost, we briefly comment.

Random Forest [46] (RFR) is the most renowned bagging-like tech-
nique for both classification and regression problems. It specifically uses
regression trees as learners and differs from the pure bagging technique
in that the topology of the trees varies among them. Trees of the ensem-
ble, the forest, may have different lengths or topology, or use different
input variables which greatly increase the variability of the learners.
Its main advantage lies in its generalization capacity, achieved by com-
pensating the errors obtained from the predictions of the different re-
gression trees. Once the regression trees have been generated, and each
has obtained its prediction, an averaging scheme is taken into account
for the final prediction [46]. Extremely randomized trees [45] (ETsR)
have an extra level of randomness compared with random forests. After
choosing a random subset of candidate features for each node, thresh-
olds are drawn at random for each candidate’s feature instead of looking
for the most discriminative thresholds as a random forest does. Then,
the best of these randomly-generated thresholds is selected.

Adaptive Boosting (AB) [47] is the widest-used boosting technique
in the history of ensemble learning. As with all boosting methods, Ad-
aBoost proposes to train the learners sequentially, in such a way that
each new learner requires that the previous learner had been trained
before. Each base learner has the same topology in the queue and fo-
cuses on the data that was mispredicted by its predecessor, to iteratively
adapt its parameters and achieve better results. In this way, learners are
dependent on them. In boosting, all the learners use the whole training
dataset for computing their parameters, i.e., there is no bootstrap sam-
ple step.

3.2.3. Back-propagation-based

Back-propagation-based methods are those supervised ML methods
that allow the application of any training iterative method, such as the
gradient descent method, taking advantage of the sequential architec-
ture. A sequential topology of the architectures allows for reducing the
number of calculations in each iteration. Almost all feed-forward Ar-
tificial Neural Networks (ANNs) are back-propagation-based methods.
In this work, we detail both the multi-layer perceptron (MLP) and the
Convolutional Neural Network (CNN).

An MLP [48] is a kind of ANN which has been successfully used
in classification and regression problems. The MLP is a feed-forward
network composed of an input layer, several hidden layers, and a fi-
nal output layer, all sequentially placed. Each layer is composed of a
collection of neurons that are connected to the neurons of the consec-
utive layer through weighted links. The weight values are calculated
from a sufficiently large database of input-output pairs minimizing the
error between the output given by the MLP and the corresponding ex-
pected output in the training set. The number of hidden layers and their
neurons are also parameters to be optimized [49,50].

Convolutional Neural Network (CNN) [51] is also a kind of ANN
that has been extensively applied to computer vision. As MLPs, they are
feed-forward networks and are composed of an input layer, several hid-
den layers, and a final output layer, all sequentially placed. However,
contrary to MLPs, each layer is not fully connected to its predecessor.
Layers calculate the mathematics operation of convolution through sev-
9

eral kernels that characterize them and with the output data of the
Digital Signal Processing 144 (2024) 104270

previous layer. Training CNNs usually requires a huge amount of data
since it is common to place several CNN layers sequentially and the
number of parameters quickly grows.

3.3. ML algorithms comparison

In this section, we evaluate the results obtained on the synthetic
database described in Section 3.1 using the different ML algorithms
considered in Subsection 3.2 as pre-trained models (in Level 3). Note
that we are comparing here ML models that specifically solve the seg-
mentation problem, without considering the formatting and scale part
of the system, which is appropriate for tuning real problems.

We use several metrics to model the segmentation error. Over the
defined encoding, the segmentation vector is a binary vector with the
size of the system’s throughput. Thus, the first metric is the MSE, i.e.,
the Mean Square Error of the prediction, and measures the distance
between the expected output and the predictor output on a quadratic
scale. The second is the MAE, i.e. Mean Absolute error. It measures
the distance between the expected output and the input on a linear
scale. We also use the R2 metric (also known as the coefficient of de-
termination or Pearson’s coefficient squared), which is a metric that
measures the proportion of the variance in the dependent variable that
is explained by the independent variables. Finally, we also make use of
WindowDiff (WD) [52], which measures the proportion of frames for
which the predicted and actual outputs differ. It is a popular evaluation
metric for segmentation problems and is designed to obtain segmenta-
tion metrics in the same coding in which we have included this problem.
This metric is widely used in segmentation problems, especially, in text
and topic segmentation [53].

Regarding the implementation of the ML methods described above,
we have used the Scikit-learn (Sklearn) toolkit for Python [54] to im-
plement the majority of the ML algorithms in this comparison, except
for CNN, MLP, and SVD algorithms. Sklearn is an open-source library
that provides a comprehensive set of algorithms for classification, re-
gression, clustering, and dimensionality reduction. CNN and MLP algo-
rithms were implemented using TensorFlow [55] and Keras [56], while
SVD was implemented using NumPy [57].

Fig. 9(a) shows the comparison of the proposed ML models’ per-
formance on the synthetic database, taking into account MSE, MAE,
R-squared (R2 or R2, note that 1 − R2 has been represented) and WD
for the whole range of noise variances considered, while 9(b) shows the
average model’s performance for all variances considered.

We can observe that some models (Lasso, ElasticNet, and LassoLars)
do not seem to converge, or are not adequate to solve the problem. The
models that achieve the best performance, for all metrics considered,
seem to be SVR, MLP, and Ridge regression. Both Backpropagation and
QP-based models solve the problem, while Ensemble-based models do
not seem to achieve high performance, with AdaBoostRegressor being
the best of them. Note that CNN can solve the problem, but does not
achieve the best segmentation metric (WD), although MSE and MAE are
above most regressors.

Regarding the behavior of the models as a function of noise variance,
we can see that all metrics perform worse when the noise variance is
increased, as expected. However, it is interesting to note that Bayesian
Ridge is not able to converge if there is no noise in the training ma-
trices. Moreover, the Backpropagation-based models do not achieve an
outstanding score for the noise-free case, but it is the simplest linear re-
gressor that can solve this case, achieving perfect scores and proving
that this is a problem that is possible to solve with a multilinear model.
When the input matrices are noisy, multilinear models can solve the
problem, however, they are not the best (although feasible) solutions in
terms of performance.

For further testing the ML models considered, we have performed
the same experiment with a standardization (or normalization) of the
data [58]. Within the same model, we train a classical standardizer

that subtracts the mean of the training data values and divides it by

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 9. Models’ performance comparison when no data standardization is considered for each variance (a) and all variances (b).

Fig. 10. Performance improvement (boost) of the models for each metric as a function of the standardization of the input data and noise variance.
the standard deviation. This may improve the performance of some of
the regressors, but may also reduce the performance of others. Fig. 10
shows the performance improvement if the standardizer is added to the
proposed approach. We can see that for most models it is not critical.
However, there is a slight improvement for models that achieve very
good performance (SVR, MLP, and CNN), so it is advisable to introduce
the Standardizer for these cases. On the contrary, note that for the LSVR,
the segmentation (WD) improves and the MAE worsens, so we must be
careful if we decide to implement this regressor with data standardiza-
tion. Also, for models such as SVD and one of the BR cases, the MAE
10

worsens, so the standardizer is not recommended.
Given the results, we can conclude that the best-performing and
most stable models are Support Vector Regression, MultiLayer Percep-
tron, and Ridge regression. Ridge is the best model in the less noisy
cases, SVR is the best ML model in the noisiest cases, and MLP results
in an intermediate solution of both previous cases.

Regarding the computation time for each ML algorithm, note that
the SVR takes a long time to train, especially for cases where noise vari-
ance and throughput are high. On the other hand, MLP does not take
such an excessive time to train, and Ridge regression computation time
is extremely low. This is also extrapolated to the processing time. Ridge

is the fastest of all methods compared, while MLP is an intermediate

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 11. Error behavior as a function of variance and system throughput for values of 8, 16, and 32.
solution between SVR and Ridge, also in terms of the algorithm’s com-
plexity. In addition, we performed an analysis of the model’s behavior
as a function of the throughput. Fig. 11 shows that the performance
metrics worsen linearly with model throughput; and that they increase
exponentially with noise variance for all cases. The noise-free case is
an outlier since many of the models have difficulties converging to a
solution. Thus, it is sufficient to select a model that does not exhibit
instabilities. It is important to choose the right throughput for the prob-
lem to be solved since we can slightly worsen the performance of the
system if we choose a higher throughput or we may be losing informa-
tion about the data, and we may be performing too many calculations
for a too-small throughput. After a first analysis, we have seen that a
throughput 𝑇 = 16 adequately solves most problems without increasing
the error too much.

Consequently, from these experiments on synthetic databases, we
establish that the best regressors for this problem are the SVR with
Standardization, MLP with Standardization, and Ridge regression with-
out Standardization. All three models are candidates to be implemented
in the approach as pre-trained models for segment prediction and SVR
is the best one in terms of performance.

3.4. Transferability study

Once we have selected the models that best fit in the pre-training
stage (SVR, MLP, and Ridge), we can assess performance when using a
pre-trained ML model for a given throughput and noise variance. We
call this parameter the Transferability of the model. Let us define the
metric Transferability (), in Equation (7), as the average of the per-
formance, given a metric 𝑚 (MAE, MSE, WD, etc.), for all parameters 𝑝
considered (i.e. 𝜎2). Note that the lower the Transferability, the better
the performance will be for different input databases.

 𝑚
𝑝

= 1
𝑁𝑝

𝑁𝑝∑
𝑖=1
𝑚𝑖,𝑝 (7)

where 𝑁𝑝 is the length of the set of parameters for a specific metric.
In this work, we evaluate the Transferability for two metrics (𝑚 =

{MSE, WD}) and six possible parameters (𝑝 = 𝜎2 = {0.0, 0.1, 0.2,0.3,0.4,
0.5}, from no-noise to a variance of 50% of the range of values), con-
sidering three different throughput scenarios (𝑇 = {8, 16, 32}), and the
results are presented in Fig. 12 for the three best-performing ML models
(a) Ridge, (b) MLP, and (c) SVR regressors. The solid blue line repre-
sents  MSE

𝜎2
𝑖

while the solid orange line represents  WD
𝜎2
𝑖

. The ML model

is trained using the training dataset for one given 𝜎2
𝑖

and tested for all
test sets for all possible 𝜎2

𝑖
, obtaining the average Transferability. Ad-

ditionally, each ML model has been trained using the training dataset
obtained by concatenating all variances’ train subsets and tested using
the test dataset obtained by concatenating all variances’ test subsets.
11

These results are presented with dashed blue and red lines for the MSE
and WD respectively. Several conclusions can be obtained from these
results. First, the Transferability (for both WD and MSE) improves as
the ML model is trained with higher noise variance. Second, the Trans-
ferability when training with a database that contains all possible noise
variances is worse than that of the model trained with higher noise
(solid lines are below dashed lines as the noise increases). This can be
explained, for example, for some techniques such as neural network reg-
ularization, as a model generalization is improved by adding Gaussian
noise [59].

Since our synthetic databases are very large and randomly gener-
ated, it is relatively frequent to find repeated data, especially for small
throughput values, therefore adding noise can reduce overfitting and
improve Transferability and generalization.

Finally, we analyze memory space occupied, performance (taking as
reference the segmentation metric), and speed at which the models can
obtain the segmentation from correlation matrices. Fig. 13 is a radar
chart showing the statistics of each model as a function of the selected
metrics. Note that a square root scale has been used to represent and dif-
ferentiate metrics among the algorithms, as numerical results are very
close (see Fig. 9).

The most balanced of the three models is the MLP, while the best-
performing is the SVR. The one that achieves the highest speed and the
smallest memory footprint is Ridge regression, which is the most useful
option if we want to optimize computational load and the one that
can have the greatest impact in a real deployment. On the contrary,
the SVR is a restrictive option due to its excessive computation time.
Summarizing the results, SVR takes 43.4 ms on average to compute each
of the input matrices, while MLP takes 19.41 μs and Ridge 1.89 μs per
matrix. In terms of memory, SVR loads between 313.6 kB and 4.2 GB,
MLP between 120.2 kB and 21.0 MB, and Ridge between 2.5 kB and
131.7 kB, depending on the throughput. Finally, we can conclude that
there is no optimal regressor and that we can choose between these
three solutions depending on the problem and system requirements.

4. Experiments over a real NLP problem database

In this section, we analyze the performance of the proposed ap-
proach in a real-life problem in the field of Natural Language Process-
ing (NLP). Specifically, the problem at hand consists of segmenting a
given text into different topics or stories (known as Text Segmentation

in NLP). To generate the input text, we extract information from a ran-
dom Wikipedia article and divide the text into sentences, to construct
each section/group of the input text. Therefore, we will know that all
sentences in this article are related to each other and form a group. To
ensure solid stories, we require that the articles contain a minimum of
40 words. We keep on adding groups/sections to the input text until
the total number of sentences is equal to 𝑀𝑖𝑛. Thus, the number of sec-
tions in the input text varies depending on the length of each article

randomly chosen.

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 12. Transferability performance for the best ML prediction models for (a) Ridge, (b) MLP, (c) SVR regressor, and different Throughputs. Solid orange lines
represent  WD

𝜎2
𝑖

and solid blue lines represent  MSE
𝜎2
𝑖

for 𝜎2
𝑖
= {0.0,0.1,0.2,0.3,0.4,0.5}. Dashed red and blue lines present the results when the models are trained with

a training dataset containing all noise variances, for metrics WindowDiff (WD) and MSE, respectively.
Once we have the input text, we obtain the correlation matrix (input
to our proposed model) using BERT [28] (a pre-trained language model
that uses Deep Learning Transformers [60]), by obtaining a similarity
value between each pair of sentences in the text. These similarity values
can be arranged as a square correlation matrix (size 𝑀𝑖𝑛 ×𝑀𝑖𝑛). Note
that the data in these correlation matrices match the requirement of
spatial ordering, as the sentences of a story are always spatially ordered
and appear in sequence.

The model proposed in this work will have to determine that each
Wikipedia article corresponds to a different segmented group. Failing
the segmentation if several groups are found within one article or if no
group is found at the beginning of one article.

Therefore, the Ground Truth segmentation vector is built at the time
of extracting the articles of the Wikipedia text, using the sentence num-
ber where a story starts.

Table 3 shows the information regarding the correlation matrices
constructed using Wikipedia articles. These correlation matrices are
later divided, and 70% of the samples are dedicated to training the
12

model, 20% to model parameters’ validation, and 10% to testing.
Table 3

Some example correlation matrices generated for testing the ML model in terms
of the matrix input size (Min) and the way they are generated.

Min Number of correlation matrices Generator
256 4,152 Wikipedia + BERT generated
128 8,304 Subset of 𝑀 = 256
64 16,608 Subset of 𝑀 = 128
32 33,216 Subset of 𝑀 = 64
16 66,432 Subset of 𝑀 = 32
8 132,864 Subset of 𝑀 = 16

Note that the input matrix size (𝑀𝑖𝑛) not necessarily matches the
system’s throughput (𝑇). Any other correlation matrix size where 𝑀𝑖𝑛 ≤

256 can be constructed using any of the subsets presented in Table 3.
In this case, we have chosen to implement Ridge regressor as the

pre-trained ML approach (trained on the synthetic database explained
in Subsection 3.1) that is fed with this problem’s specific database (cor-
relation matrices obtained from Wikipedia articles). It should be noted
that speed is a crucial factor in our approach for real applications since

it includes a heuristic optimization of the model, that would take too

A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 13. Qualitative comparison (using a squared-root scale) between MLP,
Ridge, and SVR regressors in terms of computational speed, memory usage,
and WindowDiff performance.

long if a slow ML model for training is chosen. Specifically, we optimize
five hyperparameters: three for the scaling function, one for the thresh-
old value, and one for the system’s throughput (𝑇 = 8, 16, or 32). This
hyperparameters’ optimization has been implemented using a Particle
Swarm Optimization (PSO) [61] algorithm and a Genetic Algorithm
(GA) [62]. The methodology we use to optimize the hyperparameters
of the model is the following: we first run the PSO algorithm and obtain
the best 5 individuals based on their fitness scores. Similarly, we ran
the GA algorithm and obtain the best 5 individuals. Then, we use the
validation dataset to assess the performance of the 10 best individuals
and select the best candidate.

Table 4 shows the 5 best sets of parameters obtained for each al-
gorithm. The results show that the GA algorithm outperforms the PSO
algorithm in finding the optimal parameter combination. The best can-
didate obtained from the GA algorithm had a higher WD performance
and lower throughput compared to the best candidates obtained from
the PSO algorithm. The parameters of the simulation were 20 epoch/it-
erations and 200 individuals for the GA, computing 100 new individuals
per epoch. The crossover rate and the mutation variance were 0.5 and
0.1 respectively, with a uniform crossover mask. Regarding the PSO al-
gorithm, the cognition and social factor were set up to 1, and the inertia
was set to 0.5 for 30 particles. The best result was obtained for the best
individual of the Genetic algorithm with a throughput 𝑇 = 32. The best
combination of parameters for the Wikipedia database suggests a 34%
of linearity and 36% of non-linearity (for parameters 𝐴 and 𝐵, respec-
tively) in the re-scale function. The sigmoid variance parameter 𝛼 took
a wide range of values, while the threshold value tends to be above 0.5
for all good candidates.

Fig. 14 shows an example realization of 14 correlation matrices for
a size 30 × 30 on the Wikipedia database. The lowest part of the figure
displays the successful predictions in green bands (True Positives), indi-
cating the correct detection of segment boundaries by our four-layered
algorithm. In contrast, the red bands indicate a new group of correlated
sentences that were not detected by the algorithm (False Negatives).
The blue bands represent predictions of new element groups when in
fact they were not present in the correlation matrix (False Positives).
The black background denotes True Negatives, where no new segment
is present in the matrix. This figure demonstrates the ability of our
approach to accurately identify segment boundaries in correlation ma-
trices, as evidenced by the high number of True Positive predictions.
While some False Negatives and False Positives are present, they are
relatively small in number and do not significantly impact the overall
13

accuracy of the algorithm. We also realize that most failures occur at
Digital Signal Processing 144 (2024) 104270

the edges of the matrices since these areas present the least context in-
formation about the predecessor or successor correlation values of the
groups.

4.1. Performance comparison with state-of-the-art algorithms

In this section, we compare our approach’s performance with sev-
eral methods proposed in the state-of-the-art, which are used to solve
the segmentation problem in correlation matrices. Specifically, we test
three types of algorithms: 1) The first one, based on Community De-
tection (CD) techniques, interprets the correlation matrix as a weight
matrix and constructs a graph accordingly. Within this first type, we im-
plement Louvain’s method [18] and Modularity Maximization [27], which
are unsupervised algorithms that require a threshold optimization to
converge. 2) We have also considered some unsupervised clustering
methods, (Correlation Clustering). Specifically, we implement Hierarchi-

cal clustering [26] and Spectral clustering [23] algorithms, the disadvan-
tage of these unsupervised methods is that they require the number of
clusters as a parameter (which is unknown sometimes). In addition, we
have added here a heuristic approach [8] specifically designed to solve
the PBMM problem in an unsupervised way, although it requires the op-
timization of 3 hyperparameters, and we have also added a comparison
with the algorithm proposed in [21] (SegCorr), which is an implemen-
tation of a statistical procedure for the detection of genomic regions of
correlated expression, used in gene expression, with only 1 hyperparam-
eter. 3) Finally, we have considered Deep Clustering based methods, in
which a training process is required, but no hyperparameter optimiza-
tion. These methods use autoencoders, which we have implemented
based on CNN (CNN-DC) or MLP (MLP-DC). The way these models clus-
ter the elements is through a 35kB MLP classifier. For all the algorithms
used in the comparison, a hyperparameter optimization based on a Grid
Search [63] has been performed with a small portion of the database,
so that in case the algorithm parameters are critical to the performance
of the algorithm they are adjusted properly to the database.

Table 5 shows the results obtained using the synthetic databases
described in Section 3, and in the Wikipedia database, for all the algo-
rithms compared. The results shown in this table are the average of the
test sets of the synthetic matrices and Wikipedia database. Note that the
graph-based (Community Detection) algorithms failed to deliver accept-
able results, even after thresholding and transforming weight values.
When the correlation matrix noise was high, the only algorithm that
performed well in the synthetic database was Modularity Maximization,
achieving a 76.12% rate. Deep clustering-based algorithms performed
below average in general, without good results either in the synthetic
matrices. On the other hand, unsupervised algorithms mainly produced
satisfactory results, with performances around 60% for the Wikipedia
database and 80% in the synthetic matrices. SegCorr obtained consis-
tent results, higher than other unsupervised methods, with 60.5% of
performance in the Wikipedia problem. Finally, the proposed approach
with Ridge regression implemented in the prediction layer, showed
the best performance for this NLP problem, with a significant 82.60%
of performance for the Wikipedia database, and 87.19% for the syn-
thetic database. Note that the difference between the results in synthetic
and real problems is small in the proposed approach, though Ridge
was trained on the synthetic database. This means that the proposed
CoSeNet model is not only robust to noise variation (transferability)
but also to scale change.

In terms of execution time, Table 5 shows the computation time (in
seconds) of each of the algorithms considered when processing 7500
matrices (7th column: “Comp. time (s./7.5 kS)” that stands for “Com-
putation time (seconds per 7.5 kilo-Samples)”). Note that The smaller
this record is, the higher the processing speed of the algorithms. The
HC and PBMM algorithms were the fastest (but not the most accu-
rate) approaches, taking 610 ms (0.61 s) for every 7500 matrices for
HC, and 210 ms (0.21 s) for PBMM. Recall that both are recursive al-

gorithms that perform fast linear operations, making them the fastest

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

Fig. 14. Example Realization of 14 matrices (size 30 × 30) obtained from the Wikipedia Database. Green bands in segmentation denote true positives, blue bands
denote false positives, and red bands denote false negatives.

Table 4

Ranked results for the best 5 individuals of the Genetic and Particle Swarm Optimization (PSO) algorithms for the validation dataset ordered by performance over
WindowDiff (WD) considering 3 different possible throughput sizes (𝑇 = 8, 16 and 32).

Ranking Algorithm WD (%) 𝐴 𝐵 𝛼 th Throughput
1st Genetic 19.52 0.34046 0.36040 0.17642 0.67790 16

2nd PSO 20.48 0.55448 0.39009 0.45960 0.93589 32
3rd Genetic 20.50 0.63856 0.00000 0.00000 0.59944 16
4th Genetic 20.51 0.76527 0.00000 0.00000 0.67117 16
5th PSO 20.52 0.55573 0.38922 0.46114 0.93540 32
6th Genetic 20.60 0.96621 0.00000 0.00000 0.81306 16
7th Genetic 20.69 0.58012 0.26236 0.53721 0.79231 16
8th PSO 51.78 0.83080 0.38923 0.46116 0.93653 32
9th PSO 53.99 0.82296 0.37121 0.46426 0.90916 32
10th PSO 54.80 0.84770 0.36758 0.49800 0.91590 32

Table 5

Baseline comparison between Community Detection (CD), unsupervised (US), Deep Clustering (DC) and our proposal in terms of performance (1 −WD) for a synthetic
database with noise variance of 0.2 (𝜎2 = 0.2) and the Wikipedia database, memory size, computational speed (Comp. time) and number of parameters (# par.) to
optimize. The best solution between state-of-the-art algorithms and the proposed CoSeNet architecture is shown in bold.

Type Model Wikipedia (%) Synthetic (%) Size Comp. time # par.

1 − WD 1 −𝑀𝑆𝐸 1 − WD 1 −𝑀𝑆𝐸 (kB) (s./7.5 kS)
CD Louvain [18] 36.16 75.60 28.18 45.80 0 8.27 1
CD MM [27] 37.28 77.23 76.12 83.59 0 24.50 1

US SegCorr [21] 60.58 91.48 76.97 86.28 0 18.30 1

US HC [26] 55.48 90.78 48.56 67.87 0 0.61 2
US SC [23] 60.94 90.22 80.21 88.31 0 15.69 2
US PBMM [8] 76.87 94.56 64.89 80.45 0 0.21 3

DC MLP-DC [64] 41.19 79.12 64.56 76.57 35.05 91.65 297
DC CNN-DC [64] 58.92 91.24 58.85 76.18 35.05 204.65 297

CoSeNet 82.60 96.83 87.19 92.47 131.7 3.13 5
among all algorithms analyzed. Ridge regression in the proposed prob-
lem achieved the best time records among the pre-trained models,
reaching 7500 matrices every 3.13 seconds (2400 matrices per second),
as we selected the fastest and lightest in-memory pre-trained model.
Other algorithms such as SegCorr and Spectral Clustering are slower,
computing around 300-410 matrices per second. The memory size of
unsupervised and graph-based algorithms was zero, as only knowledge
of the optimal parameters was required. The memory size of the clas-
sification model for Deep Clustering was 35.05kB. The memory size of
the pre-trained Ridge-based model was 131.7kB, which allows flexible
implementations for deployment.

5. Conclusions

In this work, we have proposed a novel approach (CoSeNet) for
solving problems related to the segmentation of correlation matrices.
14

The CoSeNet approach uses Machine Learning (ML) algorithms to pre-
dict the points that separate groups of elements in correlation matrices.
However, the main problem is that these models usually require fixed
correlation matrix input sizes. This challenge is solved in the proposed
architecture with a first “formatting” level. The second problem found
is that each function used in a different problem to quantify the corre-
lation between elements has different properties, therefore the scale of
the input matrix is different. This challenge is solved by “scaling” the
values (at the second level of the proposed architecture) to have a pre-
trained and ready-to-use model. Finally, in the third layer, we propose
the use of a pre-trained model based on different ML approaches which
may optimize memory, computational usage, and system performance.
The whole multi-algorithm architecture constitutes a pre-trained system
that can perform segmentation for any correlation matrix, regardless of
the nature of the correlation function and its size.

Extensive experiments have demonstrated the superior performance
of the proposed approach in synthetic databases. We have shown that a

Ridge Regression algorithm obtains an excellent trade-off between per-

A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

formance, memory size, and speed, improving the processing speed and
in-memory size by 4 orders of magnitude over the SVR, and 1 order of
magnitude over the MLP, with a performance loss of less than 3%. In
addition, a real problem has been proposed based on the correlation
that a Natural Language Model (BERT) provides between sentences for
text segmentation, which is one of the fields where it is useful to seg-
ment correlation matrices. Unlike most state-of-the-art algorithms, the
proposed architecture can work with different scales and input sizes
with high performance and speed. Using this real problem, we have
also presented a performance comparison of segmentation obtained
with other state-of-the-art models, improving 5.43% the MSE over the
second-best tested algorithm and 36.35% the WD performance. The pro-
posed approach has been completely programmed in Python, and it is
freely available to be used and adapted for different correlation ma-
trix segmentation problems and can be compared with alternative new
approaches.

The application of this model is to divide a correlation matrix into
its possible segments. However, a large number of ordered clustering
problems can be transformed into identifying segments in a correlation
matrix, making it a potential problem-solving tool. For example, apart
from the NLP problem, SME Portfolio Segmentation works with corre-
lation matrices, and this model is able to identify the segments of such
matrices. For cis-regulatory modules, there is a function that correlates
DNA features. The values can be arranged into a correlation matrix,
and gene regions can be identified by CoSeNet. In summary, whenever
there is a clustering problem with ordered entities, this model is fast
and efficient in segmenting groups of entities.

5.1. Model limitations and further work

Regarding the main limitations of the proposed model, note that its
performance is highly dependent on the correlation function generated
by the input matrices, which is highly dependent on the problem it-
self and its applicability. Due to the proposed model architecture, the
noise characteristics that affect the segmentation are only variance and
the non-linearity of the correlation method. That is why we have in-
cluded in the architecture a specific layer capable of correcting the
non-linearity of the matrices, as long as the user has a dataset that
can allow fine-tuning the model parameters. Unfortunately, the noise
variance itself is insurmountable, and it is the most limiting aspect to
obtaining better results in general.

As possible improvements to the proposed model, filter banks that
correct specific types of noise in the input correlation matrices could be
introduced as part of an initial pre-processing step. This filtering would
greatly facilitate the task of segment prediction. New scaling functions
could also be proposed to improve the non-linearity correction. Regard-
ing the ML model implemented, it is hard to find a model with a better
trade-off than Ridge regression because it is a linear regressor that runs
with simple matrix multiplication, and has a perfect hit rate for seg-
menting correlation matrices without noise. Any further analysis with
Deep Learning approaches, for example, will be carried out at the ex-
pense of hardly extending the computational cost of the algorithm.

Code

The proposed multi-algorithm architecture code (CoSeNet and data
for the experiments) used in this paper are available at: https://github .
com /iTzAlver /CoSeNet.

CRediT authorship contribution statement

Alberto Palomo Alonso: software and coding, experiments, paper
writing.

Silvia Jiménez Fernández: conceptualization, paper writing, fund
raising, supervision.
15

Antonio Portilla Figueras: supervision, fund raising;
Digital Signal Processing 144 (2024) 104270

David Casillas Pérez: paper review and writing, supervision.
Sancho Salcedo Sanz: conceptualization, supervision, paper writing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

We have shared the code, data and experiments at Github and we
have provided the link in the paper

Acknowledgments

This work has been supported by Universidad de Alcalá - ISDEFE

Chair of Research in ICT and Digital Progress. This research has also
been partially supported by the project PID2020-115454GB-C21 of the
Spanish Ministry of Science and Innovation (MICINN).

References

[1] F. Yuan, K. Li, C. Wang, J. Shi, Y. Zhu, Fully extracting feature correlation between
and within stages for semantic segmentation, Digit. Signal Process. 127 (2022)
103578.

[2] L. Zhang, X. Wu, On the application of cross correlation function to subsample dis-
crete time delay estimation, Digit. Signal Process. 16 (6) (2006) 682–694.

[3] Y. Yang, X. Mao, Y. Hou, G. Jiang, 2-D DOA estimation via correlation matrix re-
construction for nested l-shaped array, Digit. Signal Process. 98 (2020) 102623.

[4] E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applica-
tions, IEEE Trans. Pattern Anal. Mach. Intell. 35 (11) (2013) 2765–2781.

[5] C.-G. Li, C. You, R. Vidal, Structured sparse subspace clustering: a joint affinity learn-
ing and subspace clustering framework, IEEE Trans. Image Process. 26 (6) (2017)
2988–3001.

[6] J. Du, A. Karimi, Y. Wu, F.R. Korosec, T.M. Grist, C.A. Mistretta, Automated vessel
segmentation using cross-correlation and pooled covariance matrix analysis, Magn.
Reson. Imaging 29 (3) (2011) 391–400.

[7] Z. Dong, T. Fang, J. Li, X. Shao, Weakly supervised fine-grained semantic segmen-
tation via spatial correlation-guided learning, Comput. Vis. Image Underst. (2023)
103815.

[8] A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández, J.A. Portilla-Figueras,
S. Salcedo-Sanz, A flexible architecture using temporal, spatial and semantic
correlation-based algorithms for story segmentation of broadcast news, IEEE/ACM
Trans. Audio Speech Lang. Process. 31 (2023) 3055–3069.

[9] C.-X. Nie, Dynamics of cluster structure in financial correlation matrix, Chaos Soli-
tons Fractals 104 (2017) 835–840.

[10] J.-P. Onnela, A. Chakraborti, K. Kaski, et al., Dynamic asset trees and portfolio anal-
ysis, Eur. Phys. J. 30 (B) (2002) 285–288.

[11] B. Mosk, L. Pangallo, S.M. Zema, Cross-Asset Correlations in a More Inflationary
Environment and Challenges for Diversification Strategies, European Center Bank.
Eurosystem, 2022.

[12] K. Noto, M. Craven, A specialized learner for inferring structured cis-regulatory mod-
ules, Bioinformatics 7 (528) (2006).

[13] M. Petti, A. Verrienti, P. Paci, L. Farina, SEaCorAl: identifying and contrasting the
regulation-correlation bias in RNA-Seq paired expression data of patient groups,
Comput. Biol. Med. 135 (C) (aug 2021).

[14] M.Z. Belmecheri, M. Ahfir, I. Kale, Automatic heart sounds segmentation based on
the correlation coefficients matrix for similar cardiac cycles identification, Biomed.
Signal Process. Control 43 (2018) 300–310.

[15] M.E.J. Newman, Fast algorithm for detecting community structure in networks,
Phys. Rev. E 69 (2004) 066133.

[16] C. Wikarmpapraharn, E. Kositsakulchai, Relationship between ENSO and rainfall in
the central plain of thailand, Kasetsart J.: Nat. Sci. 44 (2010) 744–755.

[17] R.N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B, Condens.
Matter Complex Syst. 11 (1) (1999) 193–197.

[18] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of commu-
nities in large networks, J. Stat. Mech. Theory Exp. 2008 (10) (2008) P10008.

[19] S.E. Schaeffer, Graph clustering, Comput. Sci. Rev. 1 (1) (2007) 27–64.
[20] H.-H. Tam, Identifying the Significant Change of Gene Expression in Genomic Series

Data for Epistasis Peaks, Springer US, New York, NY, 2021, pp. 245–264, Ch.
[21] E.I. Delatola, E. Lebarbier, T. Mary-Huard, F. Radvanyi, S. Robin, J. Wong, Segcorr

a statistical procedure for the detection of genomic regions of correlated expression,
BMC Bioinform. 18 (1) (2017) 333.

[22] M. Tumminello, T. Aste, T. Di Matteo, R.N. Mantegna, A tool for filtering informa-

tion in complex systems, Proc. Natl. Acad. Sci. 102 (30) (2005) 10421–10426.

https://github.com/iTzAlver/CoSeNet
https://github.com/iTzAlver/CoSeNet
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibE0EE48FC74E520EB29CA28F2B2F5285As1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibE0EE48FC74E520EB29CA28F2B2F5285As1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibE0EE48FC74E520EB29CA28F2B2F5285As1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibCA30EC2FF7FCBF9401BDDA12E5182D19s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibCA30EC2FF7FCBF9401BDDA12E5182D19s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibC62A2AA3850AEEAD75E65F0E26C3A973s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibC62A2AA3850AEEAD75E65F0E26C3A973s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib58BB08D4B764BDA74577017C21333CF4s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib58BB08D4B764BDA74577017C21333CF4s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib8FA3868A39EC9006E10AAC894F6DBA00s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib8FA3868A39EC9006E10AAC894F6DBA00s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib8FA3868A39EC9006E10AAC894F6DBA00s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib06E9AC9005197237C6727EAF6AC2BD0Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib06E9AC9005197237C6727EAF6AC2BD0Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib06E9AC9005197237C6727EAF6AC2BD0Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib270E827D0D57BD3CD0066E8025E38A2Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib270E827D0D57BD3CD0066E8025E38A2Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib270E827D0D57BD3CD0066E8025E38A2Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib1BD9E7557EB3A055D844C1AB17CDE5BAs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib1BD9E7557EB3A055D844C1AB17CDE5BAs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib1BD9E7557EB3A055D844C1AB17CDE5BAs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib1BD9E7557EB3A055D844C1AB17CDE5BAs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib853F217708F82D2B677B7D035179E672s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib853F217708F82D2B677B7D035179E672s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibB88326C897285A2BDDF2161BB4503D4Es1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibB88326C897285A2BDDF2161BB4503D4Es1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibDB916314B1B2DDA1A096108BA5035DEEs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibDB916314B1B2DDA1A096108BA5035DEEs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibDB916314B1B2DDA1A096108BA5035DEEs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibAF4CC9E27F39AD3AF80491BD90FD3F04s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibAF4CC9E27F39AD3AF80491BD90FD3F04s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD1C7CD40DDC7BF4E8340BB8060B6A023s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD1C7CD40DDC7BF4E8340BB8060B6A023s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD1C7CD40DDC7BF4E8340BB8060B6A023s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib2A0574AC2C9796058CECEFB4099B888Cs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib2A0574AC2C9796058CECEFB4099B888Cs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib2A0574AC2C9796058CECEFB4099B888Cs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib4E2C29696A8FD22488323200761F8317s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib4E2C29696A8FD22488323200761F8317s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib759B83FEA9E2E249BB43A8B78FAA4500s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib759B83FEA9E2E249BB43A8B78FAA4500s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib6AE1DDB50EE21D95DA6A5A7647AF827Bs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib6AE1DDB50EE21D95DA6A5A7647AF827Bs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib770682AEB79712677C22EE8CB90B78F6s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib770682AEB79712677C22EE8CB90B78F6s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib935F2DA6F93F63BB54647137C7E846C9s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibEE4A4CE50C20BCA7BF58B9BD30D11189s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibEE4A4CE50C20BCA7BF58B9BD30D11189s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib05A9C83149C04CECE3A5AA92F63F3B28s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib05A9C83149C04CECE3A5AA92F63F3B28s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib05A9C83149C04CECE3A5AA92F63F3B28s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibB38459277E823028FD4EF07E3A3A40F0s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibB38459277E823028FD4EF07E3A3A40F0s1

Digital Signal Processing 144 (2024) 104270A. Palomo-Alonso, D. Casillas-Pérez, S. Jiménez-Fernández et al.

[23] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in:
Advances in Neural Information Processing Systems, 2001, pp. 849–856.

[24] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (3) (2010) 75–174.
[25] J.R. Hershey, Z. Chen, J. Le Roux, S. Watanabe, Deep clustering: discriminative em-

beddings for segmentation and separation, in: 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 31–35.

[26] M.H. Chehreghani, Hierarchical correlation clustering and tree preserving embed-
ding, ArXiv (2020).

[27] F. Zamani Esfahlani, Y. Jo, M.G. Puxeddu, H. Merritt, J.C. Tanner, S. Greenwell, R.
Patel, J. Faskowitz, R.F. Betzel, Modularity maximization as a flexible and generic
framework for brain network exploratory analysis, NeuroImage 244 (2021) 118607.

[28] K.L.J. Devlin, M.-W. Chang, K. Toutanova, Bert: Pre-Training of Deep Bidirectional
Transformers for Language Understanding, 2018.

[29] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser.
B, Methodol. 58 (1) (1996) 267–288.

[30] A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal
problems, Technometrics 12 (1) (1970) 55–67.

[31] H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat.
Soc., Ser. B, Stat. Methodol. 67 (2) (2005) 301–320.

[32] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, Ann. Stat.
32 (2) (2004) 407–499.

[33] D.J. MacKay, Bayesian interpolation, Neural Comput. 4 (3) (1992) 415–447.
[34] M.E. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Mach.

Learn. Res. 1 (Jun) (2001) 211–244.
[35] Y.C. Pati, R. Rezaiifar, P. Krishnaprasad, Orthogonal matching pursuit: recursive

function approximation with applications to wavelet decomposition, in: Proceedings
of 27th Asilomar Conference on Signals, Systems and Computers, vol. 1, IEEE, 1993,
pp. 40–44.

[36] S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans.
Signal Process. 41 (12) (1993) 3397–3415.

[37] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.
[38] J. Platt, Probabilistic outputs for support vector machines and comparisons to regu-

larized likelihood methods, Adv. Large Margin Class. 10 (1999) 61–74.
[39] A.J. Smola, B. Schölkopf, A tutorial on support vector regression, Stat. Comput.

14 (3) (2004) 199–222.
[40] S. Salcedo-Sanz, J.L. Rojo-Álvarez, M. Martínez-Ramón, G. Camps-Valls, Support

vector machines in engineering: an overview, Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 4 (3) (2014) 234–267.

[41] S. Axler, Linear Algebra Done Right, Springer Science & Business Media, 1997.
[42] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, CRC Press, 2012.
[43] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression

Trees, CRC Press, 1984.
[44] L. Rokach, O. Maimon, Decision trees, in: Data Mining and Knowledge Discovery

Handbook, Springer, 2005, pp. 165–192.
[45] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 (1)

(2006) 3–42.
[46] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[47] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and

an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119–139.
[48] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-

propagating errors, Nature 323 (6088) (1986) 533–536.
[49] S. Haykin, N. Network, A comprehensive foundation, Neural Netw. 2 (2004) (2004)

41.
[50] C.M. Bishop, et al., Neural Networks for Pattern Recognition, Oxford University

Press, 1995.
[51] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.
[52] L. Pevzner, M.A. Hearst, A critique and improvement of an evaluation metric for

text segmentation, Comput. Linguist. 28 (1) (2002) 19–36.
[53] B. Dadachev, A. Balinsky, H. Balinsky, On automatic text segmentation, in: Pro-

ceedings of the 2014 ACM Symposium on Document Engineering, DocEng ’14,
Association for Computing Machinery, New York, NY, USA, 2014, pp. 73–80.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python, J.
Mach. Learn. Res. 12 (2011) 2825–2830.

[55] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.

Wattenberg, M. Wicke, Y. Yu, X. Zheng TensorFlow, Large-Scale Machine Learning
on Heterogeneous Systems, software available from tensorflow.org, 2015.

[56] F. Chollet, et al., Keras, 2015.
[57] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cour-

napeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer,
M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P.
Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T.E.
Oliphant, Array programming with NumPy, Nature 585 (7825) (2020) 357–362.

[58] K. Pearson, On lines and planes of closest fit to systems of points in space, Philos.
Mag. 2 (11) (1901) 559–572.

[59] H. Noh, T. You, J. Mun, B. Han, Regularizing Deep Neural Networks by Noise: Its
Interpretation and Optimization, 2017.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. u. Kaiser,
I. Polosukhin, Attention is all you need, in: I. Guyon, U.V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Infor-
mation Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[61] J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of the IEEE In-
ternational Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 1942–1948.

[62] J. Del Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das, P.N.
Suganthan, C.A.C. Coello, F. Herrera, Bio-inspired computation: where we stand and
what’s next, Swarm Evol. Comput. 48 (2019) 220–250.

[63] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, in: Pro-
ceedings of the 24th International Conference on Neural Information Processing
Systems, 2012, pp. 1324–1332.

[64] M. Caron, P. Bojanowski, A. Joulin, M. Douze, Deep clustering for unsupervised
learning of visual features, CoRR, arXiv :1807 .05520 [abs], 2018.

Alberto Palomo-Alonso was born in 1998 in Alcalá de Henares, Spain. He received
the B.S. and M.S. degrees in Telecommunication Engineering from Universidad de Alcalá,
Spain, in 2020 and 2022, respectively. He is currently working towards his Ph.D. degree in
Natural Language Processing at the department of Signal Processing and Communications
of Universidad de Alcalá. His current interests are related to the development of Machine
Learning, hybrid, statistics and RL algorithms, and their applications in Natural Language
Processing and other fields of Technology and Science.

David Casillas-Pérez received the B.S. degree in Telecommunication Engineering in
2013, and the M.S. and Ph.D. degrees in Electronic Control Systems and the Ph.D. de-
grees in Electronic Control Systems in 2014 and 2019, respectively, all from Universidad
de Alcalá, Spain. He is currently an Assistant Professor at the Department of Signal Pro-
cessing and Communications, Universidad Rey Juan Carlos, Madrid, Spain. His research
is focused on the development of Machine Learning algorithms with applications in dif-
ferent fields such as Computer Vision, Mobile Communi- cation Systems or Renewable
Energy Systems.

Silvia Jiménez-Fernández was born in Madrid, Spain, in 1976. She received the
B.S. degree (1999), and the Ph.D. degree (2009) in Telecommunications Engineering
from Universidad Politécnica de Madrid, Spain. She is currently an Associate Professor
at the Department of Signal Processing and Communications, where she carries out re-
search mainly on the application of Signal Processing and Machine Learning techniques
for mobile communication systems and other research areas such as Renewable Energy
Systems.

Jose A. Portilla-Figueras was born in Santander, Spain, in 1976. He received the
B.S. degree (1999), and the Ph.D. degree (2004) in Telecommunications Engineering from
Universidad de Cantabria, Spain. He is currently a Full Professor at the Department of Sig-
nal Processing and Communications. His current research interests are focused on mobile
communications systems, 5G systems and the development of Machine Learning algo-
rithms with application in Telecommunication Engineering problems.

Sancho Salcedo-Sanz was born in Madrid, Spain, in 1974. He received the B.S degree
in Physics from Universidad Complutense de Madrid, Spain, in 1998, the Ph.D. degree in
Telecommunications Engineering from the Universidad Carlos III de Madrid, Spain, in
2002, and the Ph.D. degree in Physics from Universidad Complutense de Madrid in 2019.
He spent one year in the School of Computer Science, The University of Birmingham, U.K,
as postdoctoral Research Fellow. Currently, he is a Full Professor at the Department of
Signal Processing and Communications, Universidad de Alcalá, Spain. He has co-authored
more than 225 international journal papers in the field of Machine Learning and Soft-
Computing. His current interests deal with Soft-computing techniques, hybrid algorithms
and neural networks in different applications of Science and Technology.
16

http://refhub.elsevier.com/S1051-2004(23)00365-2/bibEC3B37C999D97146DE1F8C1D4D8A2E41s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibEC3B37C999D97146DE1F8C1D4D8A2E41s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib4B26BD399E0D562D4BB6EAA87592CCAAs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibBA4C4E4387A63A6EDBA459B79A57080Ds1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibBA4C4E4387A63A6EDBA459B79A57080Ds1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibBA4C4E4387A63A6EDBA459B79A57080Ds1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibCD462042E5F331908896686501444C1Es1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibCD462042E5F331908896686501444C1Es1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibCD462042E5F331908896686501444C1Es1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib3DE0746A7D2762A87ADD40DAC2BC95A0s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib3DE0746A7D2762A87ADD40DAC2BC95A0s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib0C07F9CBFDEA69E08722EC4A1FD97EC7s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib0C07F9CBFDEA69E08722EC4A1FD97EC7s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibBA4532E7B18155802BE1B25D06DFBE55s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibBA4532E7B18155802BE1B25D06DFBE55s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib70E2E233E28EB82259DC016DD84B27C1s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib70E2E233E28EB82259DC016DD84B27C1s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib519A644E35ECA696F2F575D1E196866Bs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib519A644E35ECA696F2F575D1E196866Bs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib6ECD45C349F946C237C673FD39E5941Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib23022720D3A8DBC6B900A41411D9891As1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib23022720D3A8DBC6B900A41411D9891As1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib69043DBE42139EDDDEE0D56693BE94EDs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib69043DBE42139EDDDEE0D56693BE94EDs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib69043DBE42139EDDDEE0D56693BE94EDs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib69043DBE42139EDDDEE0D56693BE94EDs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib66E7FE641C8CE10AFD8191D5049F018Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib66E7FE641C8CE10AFD8191D5049F018Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibFB0B008BB442532AF06AA901E3DA482Cs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib27BBAC156554D59FE3E7C636B3258F14s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib27BBAC156554D59FE3E7C636B3258F14s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib21F4BA7B50B19ED15673AC7D09C9E7E5s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib21F4BA7B50B19ED15673AC7D09C9E7E5s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibF99FCF5E64C5BF019771D22330F704E0s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibF99FCF5E64C5BF019771D22330F704E0s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibF99FCF5E64C5BF019771D22330F704E0s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibA6CD64303050E64004DCA0BEF7CF8CF0s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibE736E5911E3B300C4CB1393164BF58B1s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib25ED26E7636178C31EA3FFAC3794DA57s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib25ED26E7636178C31EA3FFAC3794DA57s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibBB83FDD12883FAAE45EE462716BDB7F1s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibBB83FDD12883FAAE45EE462716BDB7F1s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibACF94CFF0AF729592C1809A80BAF3A06s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibACF94CFF0AF729592C1809A80BAF3A06s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibAD63BC6E3C36DF844D32998319271336s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib79FC08912E8EDECE3FD52EA4B404BCECs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib79FC08912E8EDECE3FD52EA4B404BCECs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib27E94B0B35B67745000E9A326F99BFBDs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib27E94B0B35B67745000E9A326F99BFBDs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibE884F68B35A7C39C64A7DDA4CDEC50D8s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibE884F68B35A7C39C64A7DDA4CDEC50D8s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib917A643512356519D8CA86A8F3C9AC3Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib917A643512356519D8CA86A8F3C9AC3Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibDC27EB94C773F24746A96FC0013D6A0Ds1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibDC05B006EC46C9FC6118396BF2EC3EDCs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibDC05B006EC46C9FC6118396BF2EC3EDCs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibB0964CF6A1EE920AA69ACCCEEC3F1EB4s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibB0964CF6A1EE920AA69ACCCEEC3F1EB4s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibB0964CF6A1EE920AA69ACCCEEC3F1EB4s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibB689B2EA49A19D7EE762E576BA17557Fs1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD842B808AAE8AF025205A3F75E093F20s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD842B808AAE8AF025205A3F75E093F20s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD842B808AAE8AF025205A3F75E093F20s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD842B808AAE8AF025205A3F75E093F20s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibD842B808AAE8AF025205A3F75E093F20s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib6822B01E74D86D53289B4217DFBC1525s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib6822B01E74D86D53289B4217DFBC1525s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibE655A012CC8EE9332A245AF42C39E56Es1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bibE655A012CC8EE9332A245AF42C39E56Es1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib48EFBB839D43A1C18F895F73030EB309s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib48EFBB839D43A1C18F895F73030EB309s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib48EFBB839D43A1C18F895F73030EB309s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib48EFBB839D43A1C18F895F73030EB309s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib5E57C7DD149F05FFA31272B0F9DF812Ds1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib5E57C7DD149F05FFA31272B0F9DF812Ds1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib957BA367725CB3313236F53DE5083337s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib957BA367725CB3313236F53DE5083337s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib957BA367725CB3313236F53DE5083337s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib6E3FFFC49C77757A9AA1343B083FA223s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib6E3FFFC49C77757A9AA1343B083FA223s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib6E3FFFC49C77757A9AA1343B083FA223s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib66F66AECEB8A2595359EBB0A589D0107s1
http://refhub.elsevier.com/S1051-2004(23)00365-2/bib66F66AECEB8A2595359EBB0A589D0107s1

	CoSeNet: A novel approach for optimal segmentation of correlation matrices
	1 Introduction
	2 CoSeNet: proposed multi-algorithm architecture
	2.1 Input data, problem encoding and output data
	2.2 Level 1, layer 1: Formatting the input data
	2.3 Level 2, Layer 1: Scaling layer
	2.4 Level 3: Prediction of the segmentation
	2.5 Level 2, Layer 2: Overlap and threshold layer
	2.6 Level 1, Layer 2: Reconstruction of the final solution matrix

	3 Evaluation of pre-trained ML prediction models
	3.1 Synthetic databases
	3.2 Machine-learning models considered
	3.2.1 QP-based
	3.2.2 Ensembles
	3.2.3 Back-propagation-based

	3.3 ML algorithms comparison
	3.4 Transferability study

	4 Experiments over a real NLP problem database
	4.1 Performance comparison with state-of-the-art algorithms

	5 Conclusions
	5.1 Model limitations and further work

	Code
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

