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a b s t r a c t

We resum the ladder diagrams for the calculation of the en-
ergy density E of a spin 1/2 fermion many-body system in
terms of arbitrary vacuum two-body scattering amplitudes. The
partial-wave decomposition of the in-medium two-body scatter-
ing amplitudes is developed, and the expression for calculating
E in a partial-wave amplitude expansion is also given. The
case of contact interactions is completely solved for any con-
tent in partial waves and it is shown to provide renormalized
results, expressed directly in terms of scattering data parameters,
within cutoff regularization in a wide class of schemes. The
S- and P-wave interactions are considered up to including the
first three-terms in the effective-range expansion, paying special
attention to the parametric region around the unitary limit.

© 2021 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license
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1. Introduction

The study of strongly-interacting many-body Fermi systems is a major challenge in physics. It has
mplications in particle, nuclear, molecular and atomic physics as well as in condensed matter. From
he highest densities reached in natural systems at the interior of neutron stars to the dilute systems
f ultracold fermion atoms in optical traps. The use of cold atomic Fermi gases, whose interactions
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can be manipulated by means of a magnetic field near a Feshbach resonance, has made possible to
study these systems over many strength scales [1], including both the strong and weak interacting
regimes (attractive and repulsive ones) by fine-tuning the S-wave scattering length a0. In this way,
he smooth crossover between the Bardeen–Cooper–Schrieffer (BCS) superfluidity (a0 < 0) [2,3]
o the molecular Bose–Einstein Condensate (BEC) [4,5] (a0 > 0) could be settled and studied by
hanging the sign of a0 while keeping it large in modulus. In between, the scattering length diverges
nd we have the so-called unitary limit (a0 = ∞) [6–8]. Denoting by kF the Fermi momentum of
he system and by R the range of the interactions, the unitary limit takes place when |kFa0| → ∞

nd RkF → 0, so that one can neglect higher order terms in powers of kF from the effective-range
xpansion (ERE) [9] in S-wave,2 as well as the higher partial waves. Its properties have been studied
n great detail experimentally during the last years [10–12].

In the unitary limit there is scale invariance [13], which implies that the only energy scale that
s available is the Fermi energy EF of a free Fermi gas, EF = k2F/2m, and the physics is said to be
niversal without depending on any interaction parameter [1,14]. As a result the energy per fermion
¯ = E/N is proportional to EF ,

Ē = ξ
3k2F
10m

, (1)

here ξ is the so-called Bertsch parameter. According to experimental determinations from ultra-
old fermion atoms ξ = 0.370(5)(8) [12]. Similarly, the critical temperature (TC ) for the superfluid
ransition and the binding energy of a pair of fermions are also proportional to EF .

The theoretical calculation of the number ξ is a non-perturbative problem. Numerical calcula-
ions within quantum Monte Carlo Methods [15,16] provide ξ ≈ 0.38, which is compatible with the
xperimental determinations in Refs. [11,12]. In particular Ref. [17] gives the value 0.372 ± 0.005
mploying auxiliary-field quantum Monte Carlo method. Interesting results are also provided by a
erturbative expansion in the number of spatial dimensions d that can be developed around the
ven values d = 4 or 2 [18,19]. Here the small parameter is ϵ = 4 − d or d − 2, respectively,
eing finally fixed to 1 in order to reach d = 3 spatial dimensions. Calculations are performed up
o next-to-leading order in Ref. [18] with the result ξ ≈ 0.475. By considering simultaneously the
xpansion around d = 4 and d = 2 and connecting them to d = 3 by the use of interpolators [19,20]
smaller value ξ = 0.377 ± 0.014 is concluded in the next-to-next-to-leading order calculation of
ef. [20]. Density functional theory has also been applied for the study of the unitary limit [21–24].
The many-body calculations within perturbation theory [25] are well-known since long, giving

ise to the low-density expansion for a hard-sphere scattering in the classical papers by Huang, Yang
nd Lee [26,27] in powers of the hard-sphere radius. These calculations on a systematic low-density
xpansion for the ground-state energy were extended later on to higher orders in Ref. [28–31], and
ederived within the context of effective field theory (EFT) in Ref. [32]. However, for larger scattering
engths the perturbative expansion in powers of a0kF fails and, in particular, these expressions
annot be used in the unitary limit |a0kF | → ∞. This is closely the case for neutron matter due
o the large and negative neutron–neutron (nn) scattering length ann = −18.95 ± 0.40 fm [33],
uch that |ann| ≫ m−1

π , with the pion mass denoted by mπ and whose inverse controls typically
the longest range of strong interactions. At the same time kF is several times mπ in the region of
interest for such systems [34,35].

In such circumstances one possibility to reach a finite result for a0kF → ±∞ (i.e. meaningful for
large scattering lengths in general) is to resum the two-body interactions in the medium. According
to the Brueckner theory [36–39] one sums over particle–particle intermediate states, in which the
two particles always have momenta above the Fermi momenta (in short we say that they lie above
the Fermi sea), while they are allowed to rescatter any number of times. This theory was generalized
by Thouless in Ref. [40] to allow for two-fermion intermediate states below the Fermi sea (or
hole–hole states). He also introduced the notation of ladder diagrams to refer to the associated

2 This definition of the unitary limit can be considered analogously to any other partial-wave amplitude taken as
reference, cf. Section 6.
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Feynman graphs, so that both particle–particle and hole–hole intermediate states interact between
two consecutive rungs of the ladder series.

The ladder resummation at zero temperature is undertaken e.g. in Refs. [34,41–43] with in-
edium propagators accounting for Pauli blocking without including self-energy effects. Remark-
bly, an algebraic renormalized form for this resummation is obtained by Kaiser in Ref. [42] for the
ase of a pure contact S-wave interaction between two spin 1/2 fermions. It was shown in Ref. [40]
hat the ladder resummation converges above the critical temperature for describing the normal
atter. In the case of zero temperature (T = 0) this implies that in the unitary limit this kind
f resummation cannot describe the true superfluid ground state which happens below a critical
emperature [11].3 Indeed, the BCS theory shows that interactions of fermion pairs with null total
pin and momentum contribute a finite amount to the energy per particle, which of course does
ot occur in the ladder resummation (cf. Eq. (2.13)). This is indeed the case in Ref. [42] where the
ertsch parameter found ξ ≃ 0.507 is close to the experimentally measured value in Ref. [11] by
xtrapolating to T = 0 the results above TC . The connection between the ladder resummation in
any-body calculations and the density-functional theory has been discussed in [23,24]. Since |ann|

s very large compared to the range of strong interactions, around 1 fm, the sophisticated many-body
alculations in dilute neutron matter, including quantum Monte Carlo techniques [46,47], are of
nterest in relation with the unitary limit yielding a value ξnn ≃ 0.5, with the subscript nn referring
o neutron matter. The effective-range in S-wave is expected to provide sizeable contributions to
he energy per particle in realistic neutron matter [17,48], as we also check here in Section 6.1.
here is an ongoing effort in EFT to study the properties of nuclear and atomic systems whose
wo-body subsystems are near the unitary limit, with the binding energy of the three-body system
hat is conjectured to establish essentially the relevant scale for the low-energy observables, like
he energy per particle [13,49].

The extension of the ladder resummation of Ref. [42] so as to account for the contributions of
n S-wave effective-range (r0) was addressed by the same author in Ref. [43], where due to off-
hell effects, the arctangent-function formula obtained was conjectured and checked up to some
inite order with diagrammatic methods. The extension to treat a P-wave scattering volume a1 was
iscussed in the same Ref. [43] as well.
In this work we undertake the generalization of the ladder resummation of Refs. [42,43] in the

alculation of Ē at zero temperature so as to include arbitrary many higher orders in the ERE of a
iven partial-wave amplitude (PWA), as well as any number of PWAs. In order to achieve this result
e have found crucial to use the derivation of many-body field theory achieved in Ref. [50], since

t offers a reordering of the diagrams involved in the calculation of Ē that allows the solution of the
on-trivial combinatoric problem [42,43] associated with a general expression for the resummation
f ladders diagrams including both particle–particle and hole–hole states.
The case of contact interactions is further studied and renormalized results for Ē are obtained,

eing expressed directly in terms of vacuum scattering parameters. We proceed by considering a
eneric cutoff regularization scheme characterized by the evaluation of loop integrals in powers of
momentum cutoff Λ, as in Ref. [51]. Within this language dimensional regularization (DR) is a
articular case in which all cutoff powers are absent. Kaiser [42,43] performs his calculations in DR
nd obtains that the value of the Bertsch parameter in the unitary limit depends of the order in
hich the limit a0 → ∞ and r0 → 0 are taken. If a0 → ∞ is taken first and then r0 → 0 the
ertsch parameter increases to 0.876 [43], that is very different to the value ξ ≈ 0.51 obtained
reviously in [42], with r0 = 0 first and then letting a0 → ∞. For P-waves Ref. [43] obtains that in
he limit a1 → ∞ the energy per particle Ē ≃ −EF , which indicates an overwhelming attraction. In
Ref. [52] it was shown that to resum separately the particle–particle intermediate states, on the one
hand, and the hole–hole ones, on the other hand, implies a dependence for the effects of including

3 Needless to say, many-body theory for infinite systems at T = 0 has long been extensively applied to describe
non-)perturbative interacting electrons and nucleons, describing ground-state properties, fermion correlations and pairing,
ransport properties, interactions with external particles and probes, phase transitions as a function of increasing density
rom gaseous to liquid and (Wigner) solids governed by the Coulomb interactions, supersolids (dipole–dipole interactions),
tc. For classical textbooks the reader can consult e.g. [25,44,45].
3
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r0 on the value taken for the renormalization scale of the power-divergence subtraction scheme
used [53]. Then, one wonders whether a renormalization issue by using DR is affecting the results
of Ref. [43] concerning the unitary limit when r0 ̸= 0 in S wave, and the P waves with a1 ̸= 0. This
uestion is addressed in detail in Sections 6.1 and 6.2 where renormalized solutions employing
cutoff regulator are obtained, and we show that: (i) The results are independent of the cutoff

cheme used, (ii) they are perturbative regarding the S-wave effective range r0, and (iii) one cannot
btain renormalized results in P-wave with only the scattering volume and the effective range is
lso needed. Furthermore, we also include up to three terms in the ERE, one parameter more in S
ave and two more in P wave than Ref. [43]. For the case of a vanishing P-wave effective range,

1 = 0, we find that Ē ≃ −EF in the limit a1 → ∞, similarly as in Ref. [43].
The contents of the article are presented as follows. In the next Section 2 we introduce the in-

edium quantum field theory and apply it to the evaluation of the Fock and Hartree contributions
ithin the ladder approximation for an arbitrary fermion–fermion scattering amplitude in vacuum.
n important point discussed in Section 2.3 is that the resulting energy density is real, that is
ot a trivial resulting property because both particle–particle and hole–hole contributions are
esummed. The formalism of partial-wave amplitudes to calculate the energy density and the in-
edium scattering amplitude is derived along Sections 3 and 4, respectively. Several applications
f this formalism for contact interactions are developed in Section 6 to calculate the energy density
y considering S- and P-wave potentials with couplings renormalized with cutoff regularization
n order to match the effective-range expansion up to some order. In particular, we pay special
ttention to the impact of including the effective range. Some more technical material is relegated
o the Appendices A and B, while in Appendix C we apply our generic formalism in DR for the S
nd P waves. As a by product, we algebraically reproduce Kaiser’s results there given in Ref. [43].4
e discuss the emergence of poles in the border of the Fermi seas of two in-medium fermions

nteracting in S wave, a characteristic feature for pairing, in Appendix D. Finally, the values for the
cattering length and effective range in P wave giving rise to unacceptable resonant poles with
ositive imaginary part in the complex-p plane are characterized in Appendix E.

. Resummation of ladder diagrams for the energy density E

We develop in this work a calculation of the energy density E by resumming the ladder diagrams
or the in-medium two-fermion interactions. Our derivation is based on the many-body formalism
f Ref. [50], which we denote as the in-medium many-body quantum field theory, whose main
oints are briefly reviewed next.

.1. Basics of the in-medium many-body formalism of Ref. [50]

Ref. [50] calculates the generating functional Z [J] of in-medium Green functions with external
ources J ’s. The Lagrangian of the system consists of the pure bosonic Lagrangian in vacuum, Lφ ,
nd the bilinear fermion operators that are encoded globally as ψ̄Dψ . The operator D is then split as
0 −A, where D0 is the free fermion Lagrangian, iγ µ∂µ−m (with m the physical fermion mass) and
he operator A incorporates the boson–fermion interactions. The bosons could either correspond to
light degrees of freedom, e.g. pions in nuclear physics, as well as to heavier ones. The latter, when
taking their masses to infinity, generate the contact multi-fermion interactions. This statement is
analogous to the essence of the Hubbard–Stratonovich transformation [54,55].

Within a path integral formulation, the main result of Ref. [50], with non-relativistic kinematics
or the fermions, can be expressed as

eiZ [J]
=

∫
[dU] exp

(
i
∫

d4xLφ + Tr
∫

d3p n(p)
(2π )3

∫
d3xd3ye−ipx logF (x, y)eipy

)
, (2.1)

where the trace is taken over spin and other internal indices, like isospin ones for nucleons.
The integration over the boson fields is represented by the matrix field U . The right-hand side

4 Appendix C is specially suited for a pedagogical illustration of the methods exposed.
4
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dependence of the equation on the external sources J is implicit through Lφ and A. The function
(p) selects the in-medium fermions through a factor θ (kFα−|p|) for each fermion species α, where
Fα is the corresponding Fermi momentum and θ (x) is the Heaviside or step function. We explain

next other symbols appearing in this equation.
The non-local operator F is

F (x, y)αβ = δ(x − y)δαβ − i
∫

dt
∫

dt ′eiH0t
[
A[I − D−1

0 A]
−1](x, y)αβe−iH0t ′ , (2.2)

and it stems from the integration of the fermion fields in the path integral. The operator D−1
0 is the

nverse of D0, and in momentum space it is given by

iD−1
0 (p) =

i
p0 − E(p) + iϵ

, (2.3)

orresponding to the vacuum non-relativistic propagator of a fermion. In Eq. (2.2) H0 is the free-
ermion Hamiltonian associated to ψ̄D0ψ , and e±iH0t acts on the one-particle intermediate states
made of in-medium fermions with momentum |p| < kFα . As a result of it these states are multiplied
by e±iE(p)t , E(p) = p2/2m, which ultimately drives to energy conservation after integrating in t and
t ′ in Eq. (2.2).

For simplicity, although the generalization is possible, we do not take into account possible
polarization phenomena in the medium and then take the Fermi momenta independent on the spin
of the fermions. In the case of isospin symmetry in nuclear matter it is convenient to introduce the
2 × 2 diagonal matrix n(p) in the isospin space to single out the states within the Fermi seas, defined
by

n(p) =

(
θ (kF1 − |p|) 0

0 θ (kF2 − |p|)

)
. (2.4)

Next, logF in Eq. (2.1) is expanded in powers of A[I − D−1
0 A], and then it results

eiZ [J]
=

∫
[dU] exp

[
i
∫

dxLφ − i
∫

dp
(2π )3

∫
Tr
(
A[I − D−1

0 A]
−1

|(x,y)n(p)
)
dx dy eip(x−y) (2.5)

−
1
2
(−i)2

∫
dp

(2π )3

∫
dq

(2π )3

∫
Tr
(
A[I − D−1

0 A]
−1

|(x,x′)n(q)A[I − D−1
0 A]

−1
|(y′,y)n(p)

)
× eip(x−y)e−iq(x′−y′)dx dx′ dy dy′

+ · · ·

]
.

Compared to Ref. [50] we use now Pauli spinors normalized to 1. In this way, the factor 2E(p) present
in the denominator of Eq. (8) in Ref. [50], which in the non-relativistic limit would become 2m, does
not appear in Eq. (2.1) because the change of normalization compared to the Dirac spinors used in
Ref. [50]. There is also another trivial change in the definition of the operator F (x, y) in Eq. (2.2)
compared to its analogous one in [50], because in the non-relativistic limit instead of the Dirac
Gamma matrix γ 0 one has the 2 × 2 identity matrix. Finally, iD−1

0 (p) in Eq. (2.3) is the standard non-
relativistic propagator of a fermion, being the non-relativistic limit of its analogous one in Ref. [50]
(except for a global factor 2m because of the change of normalization already alluded to). Notice
also that the vertex operator A in the non-relativistic case can be built to absorb the relativistic
corrections [56,57].

In Eq. (2.5) each term in the sum containing at least a factor n(p) is called an in-medium
generalized vertex (IGV). For interpreting them let us introduce the symbol Γ as in Ref. [50],
corresponding to the non-local vertex

Γ ≡ −iA[I − D−1
0 A]

−1
= −iA

∞∑
n=0

(D−1
0 A)n . (2.6)

In this way, every IGV in Eq. (2.5) is composed of Γ vertices which are mutually joined by single

Fermi-sea insertions, that can be easily recognized by the factors of n(p), times a definite numerical

5
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coefficient provided by the log series

log(1 + ε) = ε −
ε2

2
+
ε3

3
−
ε4

4
+ · · · =

∞∑
n=1

(−1)n+1 ε
n

n
, (2.7)

and then n Γ vertices within an IGV are accompanied by the factor (−1)n+1/n.
Eq. (2.5) gives rise to Feynman rules such that the associated propagators for the fermion lines

are either in-medium insertions of on-shell Fermi-seas, connecting Γ vertices, or fermion vacuum
ropagators D−1

0 joining vacuum vertices A. In the following, a pure vacuum fermion propagator is
epicted as a solid line and a Fermi-sea insertion is drawn by a double line with one of them in
ed (online). A vacuum propagator corresponds to iD−1

0 (p), written explicitly in momentum space in
q. (2.3), and an in-medium insertion implies the factor n(p)(2π )δ(p0−p2/2m), since the baryons are
n-shell in the in-medium insertions. In both cases one has to integrate over the intermediate four-
omentum

∫
d4p/(2π )4. In addition, each vertex coming from the fundamental bilinear Lagrangian

ensity ψ̄Dψ , and drawn as a filled circle, implies to multiply by the factor −iA. Notice that these
ertices emerge by expanding in powers of D−1

0 A the non-local Γ vertices, Eq. (2.6), which are
rawn as empty circles. In addition, one also has to keep in mind that boson (and source) lines can
merge from the A vertices. Putting together all these pieces standard Feynman diagrams emerge
eady for its evaluation. For a more extensive discussion on this many-body formalism we refer to
he original Ref. [50], and to Ref. [58] where the first practical applications in perturbation theory
ere developed for several important observables.

.2. Fock and Hartree diagram contributions to E

We first discuss the contributions to the in-medium energy density E by resumming the Fock
adder diagrams, that involve the exchange part of the fermion–fermion scattering amplitude. The
ock diagrams correspond to IGVs without external lines that stem from Eq. (2.5). In this respect,
et us notice that the effective in-medium Lagrangian in Eq. (2.5) is given by the exponent of the
ntegrand in this equation.

A two-fermion intermediate state in which the two fermions belong to Fermi seas is indicated by
d, and the total number of them in a Feynman diagram is denoted by d. A generic Fock diagram in
hich all the Fermi-sea insertions belong to ϕd’s is represented in Fig. 1(a), where the two-fermion
xchange interaction at the end of the iterative process is indicated by the angle lines at the end of
he top line and at the beginning of the bottom one. In more detail, every wiggly line in Fig. 1(a)
temming from a Γ vertex (depicted by an empty circle) and ending in another one represents
he insertion of the vacuum T-matrix tV , which gives rise to the scattering of the two on-shell
ermions belonging to ϕd. The vacuum scattering amplitude tV results because each Γ vertex can
e expanded in a geometric series in powers of D−1

0 A involving only vacuum fermion propagators,
s explicitly shown in Eq. (2.6). The connection of the resulting bilinear vertices A by boson lines
an be interpreted as an interaction potential V , that is schematically depicted in Fig. 2 by a vertical
ashed line joining two filled squares. The potential is then iterated by the two-fermion vacuum
ntermediate states as shown in the same figure.

The Fock diagrams can be represented more conveniently in a cartwheel diagram like in Fig. 1(b),
here the vertices paired by a tV appear in opposite sides of a radius (plotted as a solid line). This
ype of circular diagrams is more convenient for visualizing the geometry of the Fock diagrams and
heir symmetries.

Now, according to the expansion of the in-medium Lagrangian in Eq. (2.5) (namely, the exponent
n its integrand), it is clear that the diagram of Fig. 1, having 2d Fermi-sea insertions because there
re d ϕd intermediate states, is accompanied by a factor (−1)2d+1/2d = −1/2d, which results from
he expansion of log(1 + ε) in Eq. (2.7). Let us indicate by Ld the loop associated with the insertion
f a ϕd intermediate state (an explicit formula is derived below and given in Eq. (2.22)). Then, the
esult for Fig. 1 can be written as

−
1
2d

tV Ld . . . tV L̄d   , (2.8)
d factors tV

6
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Fig. 1. The figure (a) represents a Fock diagram for the calculation of E where all the Fermi-sea insertions make up
ntermediate states of the type ϕd in which the two fermions belong to their Fermi seas. The angle lines at the end
nd beginning of the top and bottom lines, respectively, indicate that only the exchange part of the fermion–fermion
nteraction is kept for a Fock diagram. The wiggly lines connecting two empty circles (Γ vertices) in (a) correspond to
the vacuum two-fermion scattering amplitude tV . The diagrams (a) and (b) are equivalent to each other. In the diagram
(b) the connected vertices are those in opposite sides of the radii in the circle.

Fig. 2. Iteration of the vacuum two-fermion intermediate states giving rise to the scattering amplitude tV in vacuum. The
illed squares on both sides of a vertical dashed line schematically represents a generic fermion–fermion potential V that
results because of the exchange of boson lines between vertices A joined by vacuum fermion propagators D−1

0 .

he last loop associated to ϕd is barred because this is a Fock diagram with only the exchange-
article part of tV at the end of its iteration in Fig. 1(a).
We consider next the contributions in which at least one of the two fermions in some of

he intermediate states belongs to a Fermi sea and the other corresponds to a vacuum fermion
ropagator. These mixed intermediate states are denoted by ϕm and their total number is m. A

contribution involving d ϕd’s and m ϕm’s is represented by Fdm. In this notation the contribution of
Eq. (2.8) is Fd0.

A general contribution involving n Fermi-sea insertions and d ϕd intermediate states, has m =

n − 2d mixed intermediate states of type ϕm. Our starting point is a primordial diagram with n
Γ vertices that are connected only through Fermi-sea insertions, which is represented as a ring
in Fig. 3(a). We insert vacuum fermion propagators in the diagram to complete the mixed ϕm
intermediate states by expanding an adequate number of Γ vertices to the right.5 There are typically
different possibilities involving p ≤ m Γ vertices and each of them is indicated by the n-tuple

5 Notice that the primordial diagram is not necessarily a cartwheel diagram since n could be odd. Once the Γ vertices
re expanded then it is such.
7
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Fig. 3. In (a) we plot the primordial diagram with only Fermi-sea insertions connecting the Γ vertices. The generation
f vacuum propagators by expanding some of the Γ vertices is analyzed in (b) for the case d = 1 and n = 5. Below each
iagram we give the 5-tuple in counterclockwise sense with the first Γ vertex identified as the top one immediately to

the left of the vertical diameter. This 5-tuple indicates how to expand each of the 5 Γ vertices in the primordial diagram
or n = 5, as explained in the text.

xΓ1 , xΓ2 , . . . , xΓn ), where xΓi gives the number of vacuum vertices that result by expanding the ith
vertex in the primordial diagram. As an example, the different possibilities for the case with
= 5 and d = 1 are represented in Fig. 3(b), in which extra diagrams that are related by cyclic
ermutations to the ones shown are not plotted. We recognize diagrams in which: (i) A Γ vertex
ives rise to 3 vacuum propagators; (ii) a Γ vertex does so with 2 vacuum propagators and another
vertex with only one; (iii) three Γ vertices contribute each with one vacuum propagator.
Let us imagine first that all the xΓi are equal, i = 1, . . . , n. The equality n = 2d + nxΓi implies

hat n = 2d/(1 − xΓi ) and then xΓi = 0 since they are either 0 or natural numbers, and the latter
ption is ruled out because n is a finite natural number. Thus, we end with the contribution Fd0

already discussed and given by Eq. (2.8).
The following points fix the combinatorial problem for the calculation of Fdm, m ≥ 16:
• Given an allowed configuration of vertices (xΓ1 , xΓ2 , . . . , xΓn ), we have taken one out of the

n Γ vertices as the first one, and then realize the configuration corresponding to the n-tuple. This
could have been done analogously if any other of the n Γ vertices were taken as the first one.
Thus, the representative configuration taken for the considered n-tuple is multiplied by a factor n
that cancels the factor 1/n from the log expansion in Eq. (2.5). Geometrically this is clear from the

6 Having m > 0 allows one to distinguish between processes related by rotations of angle π/(d + m) in the circle
representing a Fock contribution.
8
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Fig. 4. Symmetrization process of the dϕd two-fermion intermediate states by taking cyclic permutations among them,
corresponding to rotations in the circles by multiples of π/(d + m). The filled angular segments correspond to different
dispositions of Lm separated by insertions of tV . The arrow is drawn for reference.

related cartwheel diagrams, because the cyclic permutations between the Γ vertices correspond to
rotations of angle a multiple of π/(d + m).

• By considering the different allowed n-tuples one is reproducing all the set of possible
rearrangements of the m mixed ϕm intermediate states among the d ϕd ones. All these possibilities
lso include the mutual exchange in the mixed intermediate states between the vacuum propagator
nd the in-medium insertion. The loop associated to such symmetrized mixed intermediate state is
enoted by Lm.7 This top bottom symmetry implies that the sum over all these contributions has
o be divided by two.

Again this fact can be most easily seen by employing the cartwheel diagrams and performing
rotation by 180 degrees (so that one exchanges the two medium insertions in the at least one

equired ϕd intermediate state). For explicit examples just consider the action of this rotation on
he diagrams in Fig. 3(b).

• We also symmetrize with respect the d ϕd two-fermion intermediate states by taking the
cyclic permutations of their positions in the Feynman diagram. All these diagrams correspond

o the n-tuples that are related to each other by cyclic permutations and are already taken into
ccount in the first point. We depict this symmetrization process in Fig. 4, where the arrow is drawn
or reference. The filled areas correspond to possible different numbers of Lm loops separated by
nsertions of tV which, by rotating the circles successively by multiples of the basic angle π/(d+m),
an be moved cyclically along the circles accomplishing the mentioned symmetrization process. This
mplies that one has to multiply by 1/d this symmetrized contributions to avoid double-counting
nd, then, a factor −1/2d multiply their sum in Fdm, the same as for Fd0 given in Eq. (2.8).
For instance, if we consider a diagram in which all the Lm are consecutive we would have

xplicitly

Fdm = −
1
2
tV LmtV . . . tV Lm  

mLm

tV Ld . . . tV L̄d  
d Ld

(2.9)

= −
1
2d

(
tV LmtV . . . tV LmtV Ld . . . tV L̄d + tV LdtV LmtV . . . tV LmtV Ld . . . tV L̄d  

d−1 Ld

+ · · ·

+tV LdtV . . . tV Ld  
d−1 Ld

tV LmtV . . . tV LmtV L̄d
)
.

• The final step is to realize that every Lm is multiplied by a tV and that one could place any
number of these mixed states in between two ϕd ones. As a result, between two consecutive Ld
loops we have the series

tm = tV
∞∑

m=0

(LmtV )m = (t−1
V − Lm)−1 . (2.10)

7 Its definition also includes the extra minus sign associated to the accompanying Fermi sea insertion, cf. Eqs. (2.5)
and (2.7), and its explicit expression is given in Eq. (2.16).
9
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Fig. 5. (a) Generic Hartree diagram involving ϕd and ϕm intermediate states. (b) Hartree diagram with d = m = 2.

herefore, tm is an in-medium on-shell two-fermion scattering amplitude that results by iterating
V between symmetrized intermediate states of the type ϕm (expressed as the loop function Lm).

We then conclude that the result for the sum over the Fock diagrams, which we call EF , is given
y

EF = −
1
2
Tr

([
∞∑
d=1

(tmLd)d−1

d

]
tmL̄d

)
. (2.11)

ith the trace taken in the momentum, isospin and spin spaces.
We now consider the contributions to E from the diagrams of the Hartree type, EH , that involve

he direct part of the fermion–fermion scattering amplitude. Fig. 5(a) represents a generic Hartree
iagram with d ϕd and m ϕm intermediate states, being its contribution called Hdm. These diagrams
esult by connecting two IGVs of the type given in Eq. (2.5) through the exchange of the vacuum
-matrices tV (depicted by wiggly lines). The fermion lines comprising an intermediate state lie
acing each other, and only intermediate states of the type ϕm or ϕd are plotted. In Fig. 5(b) we
onsider the specific case with d = 2 and m = 4.
The expression for the total contribution due to the Hartree diagrams, EH , can be easily obtained

from Eq. (2.11) for EF , by exploiting the difference in a minus sign between the direct and exchange
parts of the fermion–fermion interaction amplitude, because of the Fermi statistics. Thus,

EH =
1
2
Tr

([
∞∑
d=1

(tmLd)d−1

d

]
tm ¯̄Ld

)
. (2.12)

he last loop associated to ϕd is double-barred because this is a Hartree diagram and only the direct
part of tV enters at the end of its iteration in Fig. 5(a).

Let us show how the result in Eq. (2.12) arises directly. First, we notice that any contribution
rom a Hartree diagram is multiplied by a factor 1/2 because of the Dyson series or, in other words,
ecause of the expansion up to quadratic order of the exponential in Eq. (2.5). Secondly, we denote
y n1 and n2 the number of Fermi-sea insertions of the outer and inner rings in a Hartree diagram,
espectively, and then we have the factor 1/2n1n2. Similarly to the Fock case we can also introduce
he idea of a primordial diagram representing schematically the IGVs for the inner and outer rings,
o that only Fermi-sea insertions connect Γ vertices. Vacuum fermion propagators needed to give
ise to the ϕm intermediate states stem from the expansion of these Γ vertices to the right. As a
esult, a set of arrangements of Fermi-sea insertions and vacuum propagators generating the needed
ϕd and m ϕm intermediate states arises. Each of the arrangements is associated to the pair of tuples
xΓ1 , xΓ2 , . . . , xΓn1 ) and (xΓ1 , xΓ2 , . . . , xΓn2 ), for the outer and inner IGVs, respectively.

Let us consider the Feynman diagrams contributing to Hdm in which all the fermion propagators
n the inner ring are Fermi-sea insertions, so that n2 = d + m. The n1 Fermi-sea insertions in the
uter ring give rise all of them to ϕd intermediate states, and then n1 = d. There are n2 cyclic
ermutations between the vertices in the inner ring which obviously give the same result, so that
10
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these diagrams amount to n2 times one of them. Henceforth, we pick up the expected symmetry
factor n2/(2dn2) = 1/2d, that can be recognized already in Eq. (2.12) for EH . Of course, the same
actor arises if we exchange the outer and inner rings between them, and then n1 = d+m, n2 = d.
here are other diagrams contributing to Hdm that can be generated from the one analyzed by
xchanging the vacuum propagator and the Fermi-sea insertion comprising every ϕm intermediate
tate between the different rings. Diagrammatically it is clear that all these diagrams generate the
m loops associated to the top-bottom symmetrized mixed intermediate states, and that the same
ymmetry factor 1/2d stays put. Indeed, if we have for Hdm that n1 = d + m1 and n2 = d + m2
m1, m2 > 0), clearly any two Γ vertices in the rings of the primordial diagram can be taken
s the first ones when considering two possible n1- and n2-tuples. Therefore, one picks up the
umerical factor n1n2/(2n1n2d) = 1/2d after symmetrizing with respect to the d ϕd intermediate
tates, similarly as done for the Fock case in Fig. 4. It is important to take into account that each
m is multiplied by a tV and that any number of mixed intermediate states interacting by tV are
llowed in between two Ld loops, so that the same in-medium scattering amplitude tm, given in
q. (2.10), arises also for the Hartree contribution. Then, Eq. (2.12) results.
The sum EF +EH corresponds to −iEL , with EL the energy density resulting by the sum of the

artree and Fock diagrams.8 Thus, EL obtained by resumming the ladder diagrams is given by

EL =
i
2
Tr

(
∞∑
d=1

(tmLd)d

d

)
(2.13)

= −
i
2
Tr log [I − tmLd] . (2.14)

.3. EL is real

Though EL must be real, this property is not obvious from its expression given in Eq. (2.14)
ecause of the complex nature of the operators tm and Ld involved, and the explicit presence of the
maginary unity. This subsection is dedicated to demonstrate it and, along the way, we also give
he explicit formulae for the unitarity loop functions Ld and Lm, together with the integral equation
IE) satisfied by tm.

.3.1. Lm, Ld and integral equation for tm
In the subsequent we consider that there is only one Fermi momentum, called kF . This is the case

f interest for addressing the properties of normal matter at null temperature at around unitarity.
.g. experiments typically have one fermion component, like alkali atoms of 6Li or 40K in optical
raps, or neutrons in nature giving a neutron-matter system. For symmetric nuclear matter, even
hough there are neutrons and protons, the Fermi momenta are also the same. The general case
ith different Fermi momenta will be addressed in Ref. [59].
Given two fermions of four-momenta k1 and k2 we define

a =
1
2
(k1 + k2) , (2.15)

p =
1
2
(k1 − k2) ,

and the inverse relation is k1 = a + p , k2 = a − p . For on-shell fermions k0i = E(ki) = k2
i /2m.

The expression for Lm(|p|, a) is (in the following we use the notation p = |p|)

Lm(p, a) = −i
∫

d3k1
(2π )3

θ (kF − |k1|)
∫

d4k2
(2π )4

i

k02 −
|k2|2

2m + iϵ
× (2π )4δ(k1 + k2 − 2a)|k1, k2⟩⟨k1, k2|

8 This extra factor −i arises because the calculation of EF and EH is done directly from the in-medium Lagrangian
s read from Eq. (2.1).
11
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∫

d3k2
(2π )3

θ (kF − |k2|)
∫

d4k1
(2π )4

i

k01 −
|k1|2

2m + iϵ
(2π )4δ(k1 + k2 − 2a)|k1, k2⟩⟨k1, k2| (2.16)

=

∫
d3k

(2π )3
[θ (kF − |a + k|) + θ (kF − |a − k|)]

|a + k, a − k⟩⟨a + k, a − k|

2a0 −
|a+k|2

2m −
|a−k|2

2m + iϵ

= −m
∫

d3k
(2π )3

[θ (kF − |a + k|) + θ (kF − |a − k|)]
|a + k, a − k⟩⟨a + k, a − k|

k2 − (2ma0 − a2) − iϵ
.

ince the total four-momentum is conserved it follows then that a is the same for any two-fermion
ntermediate state. Furthermore, the initial state setting the trace in Eq. (2.13) is on-shell so that

2ma0 − a2 = m
(
E(a + p) + E(a − p)

)
− a2 = p2 . (2.17)

n this way, the final integral representation for Lm(p, a) in Eq. (2.16) can be rewritten as

Lm(p, a) = −m
∫

d3k
(2π )3

[θ (kF − |a + k|) + θ (kF − |a − k|)]
|a + k, a − k⟩⟨a + k, a − k|

k2 − p2 − iϵ
.

(2.18)

We have not explicitly shown the spin indices because they amount to the identity matrix in
he spin subspace of the two fermions. Namely, Lm includes implicitly the spin operator

IS =

1/2∑
σ1,2=−1/2

|σ1, σ2⟩⟨σ1, σ2| . (2.19)

f needed, like in symmetric nuclear matter, one could treat similarly other discrete indices, e.g. the
sospin ones, and there would be also an identity operator IIS in the isospin vector space,

IIS =

∑
α1,2

|α1, α2⟩⟨α1, α2| . (2.20)

Due to the fact that the total momentum is always conserved, it is convenient to simplify the
xpression for any loop function keeping in mind this fact. Then, we indicate the two-particle state
n terms only of the relative momentum k as

Lm(p, a) = −m
∫

d3k
(2π )3

[θ (kF − |a + k|) + θ (kF − |a − k|)]
|k⟩⟨k|

k2 − p2 − iϵ
⊗ IS ⊗ IIS . (2.21)

Let us continue by giving Ld(p, a), which enters in the expression for EL , Eq. (2.14). In this case
very fermion in the intermediate state belongs to Fermi-sea insertions and we have

Ld(p, a) = i
∫

d3k1
(2π )3

d3k2
(2π )3

θ (kF − |k1|)θ (kF − |k2|)(2π )4δ(k1 + k2 − 2a)|k1, k2⟩⟨k1, k2|

(2.22)

= im
∫

d3k
(2π )2

θ (kF − |a + k|)θ (kF − |a − k|)δ(k2
− p2) |a + k, a − k⟩⟨a + k, a − k|

= i
mp
8π2

∫
dk̂ θ (kF − |a + pk̂|)θ (kF + |a − pk̂|) |a + pk̂, a − pk̂⟩⟨a + pk̂, a − pk̂| .

Let us indicate the two-particle state in terms only of the relative momentum and rewrite Ld(p, a)
s

Ld(p, a) = i
mp
8π2

∫
dk̂ θ (kF − |a + pk̂|)θ (kF + |a − pk̂|) |pk̂⟩⟨pk̂| ⊗ IS ⊗ IIS , (2.23)

here the identity operators in the spaces of spin and isospin are explicitly indicated. Both operators
(p, a) and L (p, a) are symmetric under the exchange of the particles 1 ↔ 2.
m d

12
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The two operators entering in Eq. (2.10) for calculating the on-shell in-medium scattering oper-
tor tm are the vacuum T -matrix tV and the unitary loop integral Lm involving mixed intermediate
tates. The in-medium T -matrix tm is a function of the total momentum and of the final and initial
relative momenta q and p, respectively, with p2

= p2 fixed because of energy and momentum
conservation, cf. Eq. (2.17). This scattering operator is denoted either by tm(a) or simply as tm. We
an also rewrite the defining Eq. (2.10) for tm as an integral equation (IE) in the form

tm(a) = tV + tV Lm(p, a)tm(a) . (2.24)

y including explicitly all the involved arguments this IE becomes

tm(q, p, a)BA = tV (q, p)BA (2.25)

−
m
2

∑
C

∫
d3k

(2π )3
tV (q, k)BC

θ (kF − |a + k|) + θ (kF − |a − k|)
k2 − p2 − iϵ

tm(k, p, a)CA .

e have denoted here by capital letters the spin σi and other possible labels αi (e.g. isospin ones, as
aken in the discussion that follows). In this way A ≡ {σ1σ2α1α2} for the initial state, B ≡ {σ ′

1σ
′

2α
′

1α
′

2}

or the final one and then we have the intermediate-state labels C ≡ {σ ′′

1 σ
′′

2 α
′′

1α
′′

2 }. A factor 1/2 has
een included in the quadratic term in the previous equation because the two-fermion states are
ntisymmetric. Since Lm(p, a) is proportional to the identity matrix both in the spin and isospin
paces this implies that tm(a) also conserves the total spin S and isospin I of the two fermions.

.3.2. Demonstration that EL is real
In order to show that EL is real we need first a detour and conveniently relate tm and the vacuum

otential V . Eq. (2.24) for tm(a) can be solved formally as in Eq. (2.10),

tm(a) = [I − tV Lm(p, a)]−1 tV , (2.26)

The inversion of the latter gives

tm(a)−1
= t−1

V − Lm(p, a) . (2.27)

t is also the case that the vacuum T -matrix tV satisfies a Lippmann–Schwinger equation in terms
f the potential V , tV = V − VGtV . Therefore,

t−1
V = V−1

+ G(p) . (2.28)

ere G(p) is the vacuum unitarity loop function due to the intermediate states of two free fermions,
iven by

G(p) = −m
∫

d3k
(2π )3

|k⟩⟨k|

k2 − p2 − iϵ
⊗ IS ⊗ IIS . (2.29)

hen, from Eqs. (2.27) and (2.28) we can also write tm(a) as

tm(a)−1
= V−1

+ G(p) − Lm(p, a) . (2.30)

Within the notation developed so far along this section we can rewrite Eq. (2.14) as

EL = −i
∫

pdp
mπ

∫
d3a
π3 Tr (log [I − tm(a)Ld(p, a)])

= −
i
2

∑
C

∫
pdp
mπ

∫
d3a
π3

∫
d3q

(2π )3 A⟨q, C | log [I − tm(a)Ld(p, a)] |q, C⟩A , (2.31)

here C has the same meaning as set of spin and isospin indices as in Eq. (2.25). The extra factor of
/2 in the last equation is introduced due to the antisymmetrized nature of the two-fermion states,
ndicated by the subscript A in the bra and kets. The factors in the first line of Eq. (2.31) are adjusted
o that at first order in tmLd the result coincides with the plain sum over two Fermi-sea insertions
f the expected value of t (a) on the antisymmetric two-fermion states inside their Fermi seas, as
m

13
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required by the direct calculation of F10+H10 following Section 2.2.9 Let us notice that the presence
of Ld(p, a) guarantees that the two fermions in the integration over q belong to their Fermi seas.

Now, we are ready to show that EL is real. As a result of Eq. (2.30) we proceed to rewrite the
argument of the log in the expression for EL as

I − tmLd = tm(t−1
m − Ld) (2.32)

=
(
V−1

+ G − Lm
)−1 (

V−1
+ G − Lm − Ld

)
.

From the previous expression we introduce the operators A and B defined as

A = V−1
+ G − Lm , (2.33)

B = V−1
+ G − Lm − Ld .

We notice the important property that in the subspace of fermions belonging to the Fermi seas, in
which the trace of Eq. (2.13) is taken, the operators A and B satisfy

A = B† . (2.34)

To show the validity of this result we make use of the following facts: (i) We have the direct
observation that V †

= V because the potential is Hermitian. (ii) We have for G − Lm that

G − Lm = −m−

∫
d3k

(2π )3
|k⟩⟨k|

k2 − p2 + m−

∫
d3k

(2π )3
θ (kF − |a + k|) + θ (kF − |a − k|)

k2 − p2 |k⟩⟨k| (2.35)

− imπ
∫

d3k
(2π )3

δ(k2
− p2) {1 − θ (kF − |a + k|) − θ (kF − |a − k|)} |k⟩⟨k| .

he contributions on the right-hand side (rhs) of this equation that involve the Cauchy principal
alue (indicated by a dash in the integral symbol) are the Hermitian part of G− Lm, while the other
ne in the last line is anti-Hermitian. The former are denoted by R and the latter by iS, so that both
and S are Hermitian and G − Lm = R + iS. It is convenient to rearrange the expression for S so
s to introduce explicitly the particle–particle and hole–hole parts, in which the two fermions have
omenta above and below their Fermi seas, respectively. As a result, the anti-Hermitian part of
q. (2.35) becomes

iS = −i
mp
16π2

∫
dk̂
{[

1 − θ (kF − |a + pk̂|)
] [

1 − θ (kF − |a − pk̂|)
]

−θ (kF − |a + pk̂|)θ (kF − |a − pk̂|)
}

|pk̂⟩⟨pk̂| . (2.36)

n the B function we have the combination G− Lm − Ld of unitary-loop operators. Its Hermitian part
s the same, because Ld is purely anti-Hermitian, cf. Eq. (2.23). Thus,

G − Lm − Ld = −m−

∫
d3k

(2π )3
|k⟩⟨k|

k2 − p2 + m−

∫
d3k

(2π )3
θ (kF − |a + k|) + θ (kF − |a − k|)

k2 − p2 |k⟩⟨k|

(2.37)

− i
mp
16π2

∫
dk̂
{[

1 − θ (kF − |a + pk̂|)
] [

1 − θ (kF − |a − pk̂|)
]

+θ (kF − |a + pk̂|)θ (kF − |a − pk̂|)
}

|pk̂⟩⟨pk̂| ,

ith a change of sign in the hole–hole part of the anti-Hermitian part as compared with Eq. (2.36).
When taking the trace to calculate EL in Eq. (2.31) the common particle–particle term in the

anti-Hermitian parts of A and B does not give contribution. This follows because the particle–particle
part in S requires that

(a + pk̂)2 + (a − pk̂)2 = 2(a2 + p2) > 2kF 2 , (2.38)

9 It is only necessary to consider the first order in powers of tmLd since the higher orders in the expansion of the log
just correspond to iterating with coefficients well fixed given the normalization of the states used.
14
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which cannot be fulfilled. The reason is easily explained by the conservation of the total energy,
which is set by the two fermions inside their Fermi seas that enter in the trace for calculating EL .
f we call their momenta p1 and p2 then the total energy times 2m corresponds to

p2
1 + p2

2 = (a + p)2 + (a − p)2 = 2(a2 + p2) ≤ 2kF 2 , (2.39)

n contradiction with Eq. (2.38).
The next step to show that EL is real is to rewrite Eq. (2.32) as(

V−1
+ G − Lm

)−1 (
V−1

+ G − Lm − Ld
)

= (V−1
+ R + i S)−1(V−1

+ R − i S) (2.40)

=I − 2i(V−1
+ R + i S)−1S ,

nd because of the cyclic property of the trace in Eq. (2.14) we can recast the expression for EL as

EL = −
i
2
Tr log

[
I − 2iS

1
2 (V−1

+ R + i S)−1S
1
2

]
, (2.41)

here we have used that S is positive definite within the Fermi seas of the two fermions, cf.
q. (2.36) where only the last term on the rhs of this equation gives contribution.
An explicit calculation shows that I − 2iS

1
2 (V−1

+ R + i S)−1S
1
2 is a unitary operator because[

I − 2iS
1
2 (V−1

+ R + i S)−1S
1
2

] [
I + 2iS

1
2 (V−1

+ R − i S)−1S
1
2

]
(2.42)

= I − 2iS
1
2
[
(V−1

+ R + i S)−1
− (V−1

+ R − i S)−1] S 1
2

+ 4S
1
2 (V−1

+ R + i S)−1S(V−1
+ R − i S)−1S

1
2

= I − 2iS
1
2 (V−1

+ R + i S)−1 [(V−1
+ R − iS) − (V−1

+ R + iS)
]
(V−1

+ R − i S)−1S
1
2

+ 4S
1
2 (V−1

+ R + i S)−1S(V−1
+ R − i S)−1S

1
2 = I .

ne can also show similarly that
[
I + 2iS

1
2 (V−1

+ R − i S)−1S
1
2

] [
I − 2iS

1
2 (V−1

+ R + i S)−1S
1
2

]
=

I . Since a unitary operator can be diagonalized by a unitary transformation it follows that its
eigenvalues are phase factors. As a result EL ∈ R because it is given by −i/2 times the trace of
the log of this unitary operator, cf. Eq. (2.31).10

3. Partial-wave expansion

Since the total momentum P = 2a is conserved it is appropriate to factorize out in the
normalization of the two-particle states the factor (2π )3δ(P′

− P). By doing this the normalization
of the two-fermion states simplifies to

⟨p′σ ′

1σ
′

2|pσ1σ2⟩ = (2π )3δ(p′
− p)δσ ′

1σ1
δσ ′

2σ2
, (3.1)

involving only the relative momentum.11 It is also interesting to use the angular and modulus Dirac
delta functions of p separately and express the previous equation as

⟨p′σ ′

1σ
′

2|pσ1σ2⟩ =
2π2δ(p′

− p)
p2

4πδ(p̂′
− p̂)δσ ′

1σ1
δσ ′

2σ2
. (3.2)

Another simplification in the notation stems from the fact that Ld(p, a) is diagonal in the absolute
alue of the momentum, as it is clear from Eq. (2.23). As a result, the matrix elements of Ld(p, a)
an be expressed as

⟨q′β ′

1β
′

2|Ld(p, a)|qβ1β2⟩ = (2π2)2
δ(q′

− p)δ(q − p)
p4

⟨q̂′β ′

1β
′

2|L̃d(p, a)|q̂β1β2⟩ , (3.3)

10 Incidentally, this is the reason for the always appearing arctan series, first found in Ref. [42] when including only
he S-wave scattering length a0 .
11 In the subsequent we do not refer to isospin.
15



J.M. Alarcón and J.A. Oller Annals of Physics 437 (2022) 168741

r

w
A
b
a
w

so that both q′ and q have their moduli given by p which is conserved. The matrix element on the
ight-hand side of the previous equation is

⟨q̂′β ′

1β
′

2|L̃d(p, a)|q̂β1β2⟩ = i 2mpδ(q̂′
− q̂)δβ ′

1β1
δβ ′

2β2
θ (kF − |a + pq̂|)θ (kF − |a − pq̂|) . (3.4)

Nonetheless, in the following we do not distinguish between Ld(p, a) and L̃d(p, a) and directly use
the later extracting out the factor 2π2δ(q − p)/p2. In this way, we can rewrite Eq. (2.31) as

EL = −
i
2

∑
σ1,2

∫
pdp
mπ

∫
d3a
π3

∫
dp̂
4π A⟨p, σ1, σ2| log [I − tm(a)Ld(p, a)] |p, σ1, σ2⟩A . (3.5)

To settle the partial-wave amplitudes (PWAs) in the nuclear medium we introduce the states
ith definite total angular-momentum quantum numbers and p. For that we follow the Appendix
of Ref. [34], and an optimized presentation can be found in the more recent Chapter 2 of the

ook [60]. The states with total angular momentum J , total spin S, orbital angular momentum ℓ
nd third component µ of J are called |JµℓSp⟩ and comprise the partial-wave basis. Their relation
ith the plane-wave states is

|pσ1σ2⟩A =
√
4π

∑
JµℓmSσ3

(σ1σ2σ3|s1s2S)(mσ3µ|ℓSJ)Ym
ℓ (p̂)∗χ (Sℓ)|JµℓS⟩ , (3.6)

χ (Sℓ) =
1 − (−1)ℓ+S−2s1

√
2

,

A⟨p′σ1σ2|JµℓSp⟩ = χ (Sℓ)
4π

5
2 δ(p′

− p)
p2

(σ1σ2σ3|s1s2S)(mσ3µ|ℓSJ)Ym
ℓ (p̂) . (3.7)

where s1 = s2 are the spins of the two fermions, σ3 = σ1 + σ2 and m = µ − σ3 are the
third components of the total spin and the orbital angular momentum, respectively. Because of
the presence of the Clebsch–Gordan coefficients (m1m2m3|j1j2j3) one can also sum over σ3 and m,
as indicated.

When the partial-wave expansion is inserted in Eq. (3.5) this equation becomes

EL = −
i
2

∑
σ1,2

∑
m,m′

σ3,σ
′
3

∑
ℓ,ℓ′,S
S′,J,J′

∫
pdp
mπ

∫
d3a
π3

∫
dp̂
4π A⟨p, σ1, σ2|J ′µ′ℓ′S ′p⟩  

χ (S′ℓ′)
√
4π (σ1σ2σ ′

3|s1s2S′)(m′σ3µ′|ℓ′S′J ′)Ym′

ℓ′
(p̂)

(3.8)

× ⟨J ′µ′ℓ′S ′p|log [I − tm(a)Ld(p, a)] |JµℓSp⟩ ⟨JµℓSp|p, σ1, σ2⟩A .  
χ (Sℓ)

√
4π (σ1σ2σ3|s1s2S)(mσ3µ|ℓSJ)Ym

ℓ
(p̂)∗

Next, we use the orthogonality properties,∑
σ1,σ2

(σ1σ2σ ′

3|s1s2S
′)(σ1σ2σ3|s1s2S) = δSS′δσ ′

3σ3
, (3.9)∫

dp̂Ym′

ℓ′ (p̂)Y
m
ℓ (p̂)∗ = δℓℓ′δmm′ ,∑

m,σ3

(mσ3µ′
|ℓSJ ′)(mσ3µ|ℓSJ) = δµ′µδJ ′J .

Then, Eq. (3.8) simplifies to

EL = −
2i

mπ3

∑
JµℓS

χ (Sℓ)2
∫

∞

0
pdp

∫
∞

0
a2da⟨JµℓSp|log

[
I − tm(aẑ)Ld(p, aẑ)

]
|JµℓSp⟩ . (3.10)

Where, because of rotational invariance, we have made use of the fact that if R(â) is a rotation so
that R(â)z = a then

Tr[I − tm(a)Ld(p, a)] = Tr[R(â)[I − tm(aẑ)Ld(p, aẑ)]R(â)†] = Tr[I − tm(aẑ)Ld(p, aẑ)] . (3.11)

The transformation rules of t (a) and L (p, a) under a rotation on a are derived in Appendix A.
m m
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Our final expression for the energy density E is given by the sum of the free Fermi-gas result,
free, plus EL , with

Efree = ρ
3k2F
10m

, (3.12)

ρ = g
k3F
6π2 ,

where g is the degeneracy factor. In the particular cases analyzed in this work g = 2, and in
ymmetric nuclear matter g = 4.

. Integral equation for tm(aẑ) in partial waves

Given the formal solution for tm(a) in Eq. (2.30), it is clear that this in-medium T matrix satisfies
also the operator equation

tm(a) = V − V [G(p) − Lm(p, a)]tm(a) , (4.1)

with energy E = p2/m. In components this equation gives rise to the following IE in momentum
space,

A⟨p′σ ′

1σ
′

2|tm(a)|pσ1σ2⟩A = A⟨p′σ ′

1σ
′

2|V |pσ1σ2⟩A (4.2)

+
m
2

∑
σ̃1,2

∫
d3k

(2π )3 A⟨p′σ ′

1σ
′

2|V |kσ̃1σ̃2⟩A
1 − θ (kF − |k + a|) − θ (kF − |k − a|)

k2 − p2 − iϵ

× A⟨kσ̃1σ̃2|tm(a)|pσ1σ2⟩A .

From the decomposition of the antisymmetrized plane-wave states in the partial-wave basis,
Eqs. (3.6) and Eq. (3.7), let us rewrite −V [G(p) − Lm(p, a)]tm(a) in Eq. (4.2) in terms of states in the
artial-wave basis:

m
2

∑
σ̃1,2

∫
d3k

(2π )3
V |kσ̃1σ̃2⟩A

1 − θ (kF − |k + a|) − θ (kF − |k − a|)
k2 − p2 − iϵ A⟨kσ̃1σ̃2|tm(a) (4.3)

= m
∑
σ̃1,2

∑
Jµℓm3
Sσ3

∑
J′µ′ℓ′m′

3
S′σ ′

3

∫
d3k

(2π )2
V |J ′µ′ℓ′S ′k⟩

1 − θ (kF − |k + a|) − θ (kF − |k − a|)
k2 − p2 − iϵ

⟨JµℓSk|tm(a)

× χ (Sℓ)χ (S ′ℓ′)(σ̃1σ̃2σ ′

3|s1s2S
′)(σ̃1σ̃2σ̃3|s1s2S)(m′

3σ
′

3µ
′
|ℓ′S ′J ′)(m3σ3µ|ℓSJ)Y

m′
3

ℓ′
(k̂)∗Ym3

ℓ (k̂) .

he sum over σ̃1 and σ̃2 can be readily done by taking advantage of the orthogonality properties of
he Clebsch–Gordan coefficients, Eq. (3.9), and it gives δσ ′

3σ3
δS′S , so that the total spin S is conserved

as in vacuum). In the following we choose a along the z axis because this is enough to calculate
L , cf. Eq. (3.10), and it also induces extra simplifications in the final IE for tm(aẑ). The relationship
etween tm(a) and tm(aẑ) is tm(a) = R(â)tm(aẑ)R(â)† as follows from Eq. (A.7).
Because of this choice a = aẑ it is clear that there is no dependence on the azimuthal angle of
in the integral of Eq. (4.3), because |k ± aẑ| only depends on its polar angle. Thus,∫ 2π

0
dϕY

m′
3

ℓ′
(θ, ϕ)∗Ym3

ℓ (θ, ϕ) ∝ δm′
3m3 . (4.4)

As a result µ′
= µ because µ′

= s′3 + m′

3 = s3 + m3 = µ due to the factor δm′
3m3δs′3s3

. A simplified
version of Eq. (4.3) then results

m
∑
Jµℓm3

∑
J ′ℓ′Sσ3

∫
d3k

(2π )2
V |J ′µℓ′Sk⟩

1 − θ (kF − |k + aẑ|) − θ (kF − |k − aẑ|)
k2 − p2 − iϵ

⟨JµℓSk|tm(aẑ) (4.5)

× χ (Sℓ)χ (Sℓ′)(m3σ3µ|ℓ′SJ ′)(m3σ3µ|ℓSJ)Ym3
ℓ′

(k̂)∗Ym3
ℓ (k̂) .
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Table 1
Set of conserved quantum numbers in a two-body scattering process for
a spin 1/2 many-body system with Fermi momentum kF .

Conserved: µ′
= µ S ′

= S (−1)ℓ = (−1)ℓ
′

This equation implies that parity is conserved in the sense that

(−1)ℓ = (−1)ℓ
′

. (4.6)

This result follows by changing the integration variable k to −k in Eq. (4.5) and then taking into
ccount the well-known parity property of the spherical harmonics, Ym

ℓ (−k̂) = (−1)ℓYm
ℓ (k̂).12

n Table 1 we express the quantities that are conserved in the scattering process of two fermions
ith spin 1/2 in the many-body environment with Fermi momentum kF . Compared to the vacuum
ase, the mixing between PWAs is more extreme because J and J ′ are different in general.
We are ready to derive the IE for a PWA in the many-body environment by sandwiching the

q. (4.1) between partial-wave states and using Eq. (4.5). The result is,

⟨J ′µℓ′Sp′
|tm(aẑ)|JµℓSp⟩ = ⟨J ′µℓ′Sp′

|V |JµℓSp⟩ + m
∑
J1ℓ1ℓ2
m3σ3

χ (Sℓ2)χ (Sℓ1) (4.7)

×

∫
d3k

(2π )2
Ym3
ℓ2

(k̂)∗Ym3
ℓ1

(k̂)⟨J ′µℓ′Sp′
|V |J ′µℓ2Sk⟩(m3s3µ|ℓ2SJ ′)(m3s3µ|ℓ1SJ1)

×
1 − θ (kF − |k + aẑ|) − θ (kF − |k − aẑ|)

k2 − p2 − iϵ
⟨J1µℓ1Sk|tm(aẑ)|JµℓSp⟩ .

et us recall that all the orbital angular momenta involved in the previous equation must have same
arity, i.e., (−1)ℓ

′

= (−1)ℓ = (−1)ℓ1 = (−1)ℓ2 , and that the total spin S and the third component
f angular momentum µ is conserved, Table 1. In order to solve the on-shell ⟨J ′µℓ′Sp|tm(aẑ)|JµℓSp⟩

from Eq. (4.7) we need also to find out the half-off-shell PWA ⟨J ′µℓ′Sk|tm(aẑ)|JµℓSp⟩.
Given a value of µ in Eq. (4.7) only the angular momenta which satisfy that J , J ′ and J1 ≥ |µ|

can appear in the IE. For computational purposes it is convenient to write this IE in matrix form as

tm(p′, p) = v(p′, p) +
m

(2π )2

∫
∞

0

k2dk
k2 − p2 − iϵ

v(p′, k) · A · tm(k, p) (4.8)

ith the matrices v, tm and A given by

v(p′, k)J ′ℓ′,J2ℓ2 = δJ ′J2⟨J
′µℓ′Sp′

|V |J2µℓ2Sk⟩ , (4.9)

tm(k, p)J1ℓ1,Jℓ = ⟨J1µℓ1Sk|tm(aẑ)|JµℓSp⟩ , (4.10)

AJ2µℓ2,J1µℓ1 = χ (Sℓ2)χ (Sℓ1)
∑
m3σ3

(m3σ3µ|ℓ2SJ2)(m3σ3µ|ℓ1SJ1) (4.11)

×

∫
dk̂Ym3

ℓ2
(k̂)∗Ym3

ℓ1
(k̂)
[
1 − 2θ (kF − |k − aẑ|)

]
.

The free part in [A ] can be further simplified, so that it also reads

AJ2µℓ2,J1µℓ1 = χ (Sℓ2)χ (Sℓ1)

(
δJ2ℓ2,J1ℓ1 − 2

∑
m3σ3

(m3σ3µ|ℓ2SJ2)(m3σ3µ|ℓ1SJ1) (4.12)

×

∫
dk̂Ym3

ℓ2
(k̂)∗Ym3

ℓ1
(k̂)θ (kF − |k − aẑ|)

)
.

12 For case of symmetric nuclear matter, the conservation of parity also implies that I ′ = I because Fermi statistics
requires that (−1)ℓ+S+I

= (−1)ℓ
′
+S+I ′

= −1. Then, (−1)I = (−1)I
′

and since I , I ′ are either 0 or 1 it follows that they must
e the same. Therefore, isospin (both I and i3) is conserved in the nuclear-medium scattering process with a common
ermi momentum.
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For the evaluation of EL in Eq. (3.10) one has to sum over µ. However, there are two relations
nvolving PWAs with different values of µ that can be used to reduce the burden of needed
omputations. We only enumerate them here and their demonstration is given in Appendix B. The
irst one relates the PWAs with opposite values for µ,

⟨J2 − µ1ℓ2S1p′
|tm(aẑ)|J1 − µ1ℓ1S1p⟩ = (−1)J2+J1⟨J2µ1ℓ2S1p′

|tm(aẑ)|J1µ1ℓ1S1p⟩ . (4.13)

s a consequence of this equation for µ1 = 0 one has the requirement,

(−1)J1+J2 = +1 , µ1 = 0 , (4.14)

therwise the PWA is zero.
The PWAs of tm(aẑ) also satisfy an interesting symmetry property under the exchange of the

nitial and final quantum numbers that reads

⟨J1µ1ℓ1S1p|tm(aẑ)|J2µ1ℓ2S1p′
⟩ = ⟨J2µ1ℓ2S1p′

|tm(aẑ)|J1µ1ℓ1S1p⟩ . (4.15)

his relation is particularly useful for the on-shell case with p′
= p, the one needed in the evaluation

f EL. It implies that the in-medium on-shell T matrix is symmetric under the exchange of the
iscrete labels.
The first operator equation for tm(a) was written in terms of the vacuum T -matrix tV , cf.

q. (2.10). In this regard, instead of Eq. (4.1) we could also have equally started with the operator
quation of tm(a) in terms of tV , Eq. (2.26), and proceed in a complete analogous way since V and
V are invariant operators under rotations. Therefore, in the IE of Eq. (4.7) we have to replace V by
V and remove the free part in the unitarity loop function. Then, we also have for the calculation of
he in-medium PWAs the following IE,

⟨J ′µℓ′Sp′
|tm(aẑ)|JµℓSp⟩ = ⟨J ′µℓ′Sp′

|tV |JµℓSp⟩ − m
∑
J1ℓ1ℓ2
m3σ3

χ (Sℓ2)χ (Sℓ1)
∫

d3k
(2π )2

Ym3
ℓ2

(k̂)∗Ym3
ℓ1

(k̂)

× ⟨J ′µℓ′Sp′
|tV |J ′µℓ2Sk⟩

θ (kF − |k + aẑ|) + θ (kF − |k − aẑ|)
k2 − p2 − iϵ

(m3s3µ|ℓ2SJ ′)(m3s3µ|ℓ1SJ1) (4.16)

× ⟨J1µℓ1Sk|tm(aẑ)|JµℓSp⟩ .

his IE can be written in matrix form in a completely analogous way to Eq. (4.8), with the
eplacement of V by tV and the removal of the Kronecker-delta term on the rhs of Eq. (4.12).
herefore, we can write

tm(p′, p) = tV (p′, p) +
m

(2π )2

∫
∞

0

k2dk
k2 − p2 − iϵ

tV (p′, k) · B · tm(k, p) (4.17)

ith the matrices tV and B given by

tV (p′, k)J ′ℓ′,J2ℓ2 = δJ ′J2⟨J
′µℓ′Sp′

|tV |J2µℓ2Sk⟩ , (4.18)

BJ2µℓ2,J1µℓ1 = −2χ (Sℓ2)χ (Sℓ1)
∑
m3s3

(m3s3µ|ℓ2SJ2)(m3s3µ|ℓ1SJ1) (4.19)

×

∫
dk̂Ym3

ℓ2
(k̂)∗Ym3

ℓ1
(k̂)θ (kF − |k − aẑ|) .

5. Method applied to solve the PWAs in the medium for contact interactions

We solve tV for the case of contact interactions by adapting the method developed in Section
4.1 of Ref. [61], also reviewed in Ref. [62], to the many-body environment. Instead of reproducing
it here we directly moved to solve the similar IE in Eq. (4.7) for tm(aẑ) in PWAs, which reduces
o tV in the limit in which the Fermi momentum kF → 0. The different coupled partial-waves
are called channels and are fixed by the quantum numbers in the state vector |JµℓSp⟩. To avoid
confusion in the following the PWAs in the medium and in vacuum are denoted by tm(k, p) and

ˆ
tV (k, p), respectively, and it should be understood that a = az.

19



J.M. Alarcón and J.A. Oller Annals of Physics 437 (2022) 168741

p

I
k
i

T

t
I

w
a
i
a
I
r
t

Let us develop the method that allows us to calculate tm(k, p) given a contact interacting
otential. The potential coupling the channels α and β is expressed in a polynomial expansion as

vαβ (k, p) = kℓαpℓβ
N∑

i,j=1

vαβ;ijk2(i−1)p2(j−1) . (5.1)

n this equation the Greek subscripts denote the channels and run from 1 to n and the factor kℓαpℓβ
eeps track of the right threshold behavior, which factorizes in a zero-range potential. We next
ntroduce a matrix notation and write the potential as

vαβ (k, p) = [kα]T · [v] · [pβ ] , (5.2)

[v] =

⎛⎜⎝[v11] [v12] . . . [v1n]

[v21] [v22] . . . [v2n]

. . . . . . . . . . . .

[vn1] [vn2] . . . [vnn]

⎞⎟⎠ , (5.3)

[kα]T = ( 0, . . . , 0  
N(α−1) places

, kℓα , kℓα+2, . . . , kℓα+2(N−1), 0, . . . , 0) . (5.4)

Here each [vαβ ] is an N×N of matrix elements vαβ;ij, i, j = 1, . . . ,N , and the [kα] are Nn×1 column
vectors. The solution to the IE in Eq. (4.8) can also be written in a matrix notation as

tm(k, p) = [kα]T · [t̂m(p)] · [pβ ] , (5.5)

with [t̂m(p)] a squared Nn×Nn matrix, analogous to [v] in Eq. (5.3). The fulfillment of Eq. (4.8) (also
for the full-off-shell case) implies that [t̂m(p)] must satisfy the algebraic equation

[t̂m(p)] = [v] − [v] · [G (p)] · [t̂m(p)] . (5.6)

The Nn × Nn matrix [G (p)] can be inferred from Eq. (4.8) to be

[G (p)αβ ] = −
m

(2π )2

∫
∞

0

k2dk
k2 − p2 − iϵ

Aαβ [kα][kβ ]T . (5.7)

he sought solution to Eq. (5.6) can then be expressed as

[t̂m(p)] = (I + [v][G (p)])−1
[v] , (5.8)

The (free part of the) loop functions in Eq. (5.7) are evaluated by employing a cutoff regulariza-
ion with a cutoff scale Λ, which at the end of the renormalization procedure is taken to infinity.
n general, power-like divergences of Λ appear through the regularized integrals [51]

Ln = −
m
2π2

∫
∞

0
dkkn−1

= θnΛ
n , (5.9)

where θn is a number that depends on the regularization scheme chosen. E.g. for a sharp cutoff
θn = −m/(2π2n), and for the case of dimensional regularization (DR) θn = 0.

The renormalization process consists of reproducing the ERE up to some order for vacuum
scattering. The ERE amounts to a polynomial expansion of the n × n matrix

4π
m

(pℓ)tV (p, p)−1(pℓ) + i(pℓ)2(p) = −(a)−1
+

1
2
(r)p2 +

∑
i=1

(v(2i))p2(i+1) , (5.10)

here (a), (r) and (v(2i)) are n×n matrices corresponding to the scattering lengths, effectives ranges
nd higher-order shape parameters, respectively. Other diagonal matrices are (p), that is p times the
dentity matrix, and (pℓ) given by diag(pℓ1 , . . . , pℓn ). Once the couplings vαβ;ij, Eq. (5.1), are given
s a function of the shape parameters of the ERE and the cutoff, we finally take the limit Λ → ∞.
n this regard, we require that the resulting T matrix of PWAs be finite and independent of the
egulator-dependent numbers θn, cf. Eq. (5.9), for Λ → ∞. Reaching this limit successfully calls for
he inclusion of enough numbers of counterterms because of the factor [k ][k ]

T in the free part of
α β
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[G (p)αβ ], which gives rise to increasing power-like divergences with the orbital angular momenta,
starting with Λℓα+ℓβ+1.

Interestingly enough, in all the explicit calculations that we have performed making use of this
method for cutoff regularization (θn ̸= 0), it is found that the renormalized solution for the off-shell
vacuum PWAs tV (k, q) in the limit Λ → ∞, with k and q less than 2kF , can be written as

tV (k, q) =
4π
m

(k)ℓτ (p)(q)ℓ , (5.11)

τ (p)−1
= −(a)−1

+
1
2
(r)p2 +

M∑
i=1

(v(2i)ℓ )p2(i+1)
− i(pℓ)2(p) ,

here M is the order up to which the ERE is reproduced. It is important to remark that τ (p) is a
urely on-shell (p = mE) and that the off-shellness is incorporated in tV through its dependence on
k)ℓ and (q)ℓ.

A clarifying remark is in order. When solving a Lippmann–Schwinger equation for on-shell
cattering one has to provide also the solution for the half-off-shell tV (k, p) with k as big as Λ.
owever, in the case of the evaluation of the in-medium half-off-shell PWA tm(k, p) we need tV (p′, k)
n Eq. (4.17) with p′ and k less than 2kF and p ≤ kF , with kF/Λ → 0. For such cases the result in
q. (5.11) has always been found in our calculations for finite M as long as θn ̸= 0 (i.e. cutoff
egularization).

Solving Eq. (4.17) for tm(k, p) with tV (k, p) expressed as in Eq. (5.11) is straightforward, and this is
ndeed another more direct way to calculate tm(k, p). In all the cases that we have explicitly worked
ut in this research it perfectly agrees with the one obtained by solving directly the IE of Eq. (4.8)
ith the method discussed. This solution adopts a form analogous to that already given for tV (k, q)

n Eq. (5.11), and tm(k, p) can be written as

tm(k, p) =
4π
m

(kℓ)τm(p)(pℓ) , (5.12)

τm(p) = τ (p) − τ (p)[Gm(p)]τm(p) =
(
τ (p)−1

+ [Gm(p)]
)−1

,

[Gm(p)αβ ] = −
1
π

∫
∞

0

k2dk
k2 − p2 − iϵ

(kℓ) · Bαβ · (kℓ) .

Due to the non-linear dependence of the couplings (counterterms) vαβ;ij on the ERE parameters
up to the order considered in the matching for a general cutoff regularization, it is well known in the
literature that some of the vαβ;ij could become complex forΛ → ∞. This is discussed for the specific
case of S-wave scattering in Refs. [63–65] where the scattering length and a positive effective
range are reproduced with two counterterms (in agreement with our own findings). However, the
resulting off-shell partial-wave amplitudes from Eq. (5.11) fulfill off-shell unitarity (see Eq. (2.29)
of Ref. [66]), and they give rise to perfectly meaningful phase shifts for on-shell scattering. In this
regard, we should stress that for us the potential has just been an intermediate step of no further
use, and the real interesting point for our method is to finally dispose of the non-perturbative
Eq. (5.11) for tV (k, q), with its explicit functional dependence on k, q and p. The reason is because
from this equation we can calculate tm(k, p), without any further reference to the potential, as we
have just explained. Indeed positive effective ranges are realized in nature, and this is how our
non-perturbative method accounts for them. We give explicit examples for the application of this
method in Section 6 for the case of S- and P-wave scattering.

6. Calculation of E in S- and P-wave interacting systems and related aspects

Given an uncoupled ERE expansion p2ℓ+1 cot δ = −1/aℓ+rℓp2/2+· · ·, we always denote by aℓ, rℓ
the scattering length and effective range despite that for ℓ > 0 they have dimensions of length2ℓ+1

and length1−2ℓ, respectively. The system is said to be at unitarity [14,67,68] when the scattering
length aℓ → ∞ and p ≪ R−1, where let us recall that R is the typical range of the interactions. For
instance, for S wave this requires that p ≪ |r |

−1, while for P wave the requirement is p ≪ |r |.
0 1
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An interesting aspect to be studied is the influence of the effective range in the Fermi gases at
round unitarity. Indeed, from simple scaling arguments [69] one expects that in the ERE for a PWA
ith orbital angular momentum ℓ the first ℓ+1 terms in the expansion are relevant at low energies
nd the rest of parameters are irrelevant. To show this explicitly let us scale p → λp in the ERE and

factorize λ2ℓ+1 from the phase space term −ip2ℓ+1. It then results the naive dimensional scaling

−
1

λ2ℓ+1aℓ
+

1
2

rℓ
λ2ℓ−1 p

2
+

∑
i=1

v
(2i)
ℓ

λ2ℓ−1−2i p
2(i+1) . (6.1)

ttending to the evolution of the different terms for λ → 0 (the low-momentum limit) one obtains
he expectation claimed.13 This result can be taken to the scattering of fermions in the medium
ecause of Eq. (5.12). Therefore, it is pertinent to study the dependence of the energy density E on
he higher-order shape parameters in the ERE, even if the system is at unitarity. In this way, one
an ascertain whether there is a perturbative dependence of this magnitude on the effective range
nd even on other shape parameters.
Regarding this point, we find that P-wave results can only be renormalized in cutoff regular-

zation once both the scattering length and effective range are reproduced, as already obtained in
ef. [71]. A paradigmatic example where these results are of interest is neutron matter, where the
cattering length has a large magnitude, a0 = −18.95 fm, and the effective range r0 = 2.75 fm
s sizeable, both of them compared with the inverse of the pion mass around 1.4 fm. In ultracold
toms there is also the possibility to tune the scattering length, and also the effective range through
he dark-state optical control of Feshbach resonances [72,73].

A non-perturbative fact that we take into account when applying our formalism is to exclude
hose values of the scattering length and effective range which give rise to an unacceptable pole
ontent of τ (p), Eq. (5.11), when analytically continued to complex values of p. For instance, a pair
of resonant poles located in the complex-p plane with opposite values of their real parts and the
same positive imaginary part is a pole disposition to be excluded because it would give rise to
normalized eigenstates of the Hamiltonian with complex eigenvalues, which is not allowed for a
Hermitian Hamiltonian [74]. Another configuration that should be avoided is to have two S-wave
shallow poles along the imaginary axis with positive imaginary part, such that |p| is clearly smaller
han the inverse of the range of the interactions (one of the poles corresponds to a bound state and
he other to redundant pole [75,76]), as recently shown in Ref. [65].

In the next subsections we calculate E by employing Eq. (3.10) in the case of considering
eparately S and P waves. Each in-medium renormalized PWA calculated obeys Eq. (5.12), as it
has been obtained by direct calculation, cf. Eq. (5.8).

6.1. S waves

Given a constant potential v = c0 the vacuum scattering amplitude then reads tV =

1/c0 + θ1Λ− imp/4π)−1. The renormalization is achieved by setting c−1
0 = −m/4πa0 − θ1Λ, so

hat tV = −4π/m (1/a0 + ip)−1. The expression for τm(p) is equally simple in this case,

τm(p) =

(
−

1
a0

− ip + Gm(p)
)−1

. (6.2)

13 From a physical point of view this scaling argument is just reflecting the fact that, taking into account the typical
ange of interactions (R), the effective range rℓ depends on it as R−ℓ+1 , while the shape parameters v(2i)ℓ do so as R−2ℓ−1+2i

see Ref. [70] for explicit calculations in nucleon–nucleon scattering in which case R is settled by the inverse of the pion
ass). Notice that the exponent in the corresponding power of R is the negative of the exponent of λ for the same

erm in Eq. (6.1). Therefore, from these scaling arguments, the first ℓ+ 1 terms in the ERE in the low-momentum limit,
≪ R−1 , can give rise to large contributions, so that it is necessary to consider them.
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In terms of it, EL in Eq. (3.10) reads

EL = −
4i

mπ3

∫ kF

0
a2da

∫ √
k2F−a2

0
pdp log

(
1 −

4π/m
−

1
a0

− ip + Gm(p)
Ld

)
(6.3)

= −
4i

mπ3

∫ kF

0
a2da

∫ √
k2F−a2

0
pdp log

(
1 − a0(−ip + Gm(p) − 4πLd/m)

1 − a0(−ip + Gm(p))

)
.

xplicit expressions for the functions Gm(p) and Ld(p, aẑ) are given in the Appendix C of Ref. [34]. The
onnection with the functions there defined is Gm(p) = 4πL10,m/m and Ld(p, aẑ) = −L10,d. Regarding
he one-loop functions B1, B2, R and I introduced by Kaiser in Ref. [42] we have the relations: B1 =

0Gm(p), B2 = −4πa0Ld/m = −i2kFa0I , ℜB1 = a0kFR/π , such that a0kF (R + iπ I)/π = a0(−ip + Gm)
nd a0kF (R − iπ I)/π = a0(−ip + Gm − 4πLd/m). Then, Eq. (6.3) can be written as

EL = −
4i

mπ3

∫ kF

0
a2da

∫ √
k2F−a2

0
pdp log

(
1 − a0kF (R/π − iI)
1 − a0kF (R/π + iI)

)
, (6.4)

=
8k5F
mπ3

∫ 1

0
s2ds

∫ √
1−s2

0
κdκ arctan

(
I

(a0kF )−1 − R/π

)
,

where the dimensionless variables s = a/kF and κ = p/kF are introduced. The previous expression
is the same as the one from Ref. [42], except for the fact that this reference introduces the scattering
length with an extra minus sign. For completeness we reproduce the expressions for the functions
R and I:

R(s, κ) = 2 +
1 − (s + κ)2

2s
log

1 + s + κ

|1 − s − κ|
+

1 − (s − κ)2

2s
log

1 + s − κ

1 − s + κ
, (6.5)

I(s, κ) =

{
κ for 0 < κ < 1 − s

1−s2−κ2

2s for 1 − s < κ <
√
1 − s2 .

Several interesting expansions of Ē = E /ρ have been studied in the literature. The first [14,42,
7,68,77–80] consists of an expansion in negative powers of a0kF around unitarity,

Ē =
3kF 2

10m

{
ξ −

ζ

a0kF
−

5ν
3(a0kF )2

+ · · ·

}
. (6.6)

The first term between brackets on the rhs of the previous equation is the famous Bertsch
parameter ξ , while the others measure the deviation from the unitary limit. The expression for
ξ that follows from Eq. (6.4) is [42]

ξ = 1 −
80
π

∫ 1

0
dss2

∫ √
1−s2

0
dκκ arctan

(
π I
R

)
= 0.5066 . (6.7)

The Bertsch parameter has been measured experimentally by Ref. [11] with the value ξ =

.370(5)(8) corresponding to a superfluid phase [10]. In the latter reference it is also deduced
he value of ξ for normal matter at the unitary limit, ξn ≈ 0.45, by extrapolating the curve for
he chemical potential above the critical temperature up to zero temperature. This value is quite
lose to our calculation in Eq. (6.7). The parameters ζ and ν have been calculated by applying
quantum Monte Carlo in Ref. [81] with the values ζ = 0.901(2) and ν = 0.49(2). Our results
obtained for normal matter look very different, ζ = −0.116 and ν = −0.30. The difference in
sign reflects a different qualitatively behavior of our results as a function of 1/a0kF compared with
others corresponding to a superfluid near the unitary limit. This is explicitly shown in Fig. 6 where
we plot E /Efree as a function of −1/(a0kF ) by the solid line and compare it with other calculations.
The dashed lines come from the density-functional theory of Ref. [22] (the upper one implements
ξ = 0.44 and the lower ξ = 0.37), the points correspond to different Monte-Carlo simulations:
0 0
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Fig. 6. Behavior of E/Efree as a function of −1/akF . The results in our study are plotted by the solid line. The upper and
ower dashed lines are the results of Ref. [22] with ξ0 = 0.44 and ξ0 = 0.37, respectively. The circles [77], triangles [78]
nd squares [82] are Monte-Carlo calculations.

ircles [77], triangles [78] and squares [82]. We also notice that our results and the others presented
n Fig. 6 rapidly converge outside the unitary limit.

The algebraic expressions derived for ζ and ν in Ref. [42], and their numerical values thereof,
obtained by expanding directly the integrand in Eq. (6.4) are not right. This is due to the emergence
of an in-medium pole singularity in the S-wave amplitude in Eq. (6.2) sitting at the border of the
Fermi seas of the two interacting fermions (namely, for κ =

√
1 − s2 and s ∈ [0, 1]). This issue is

iscussed in Appendix D.
An interesting point is to include the effective range in the calculation of E and determine

ow it modifies the unitary limit. A pertinent question is whether its effects are perturbative, in
ine with the scaling arguments in Eq. (6.1) and as obtained in Ref. [69] or, on the contrary, they
lter dramatically the unitary limit according to the DR calculations of Ref. [43] and Appendix C.
herefore, this digression elaborates on including a scale at unitarity in connection with the range
f the interactions. In the case of 6Li cold-atom experiments r0 ≈ 4.7 nm and the gas can be cooled
t densities of 1/kF ≈ 400 nm, so that r0kF ≈ 0.01 and this is a small parameter. However, for
eutron matter with rn = 2.75(11) fm [43,83,84] and kF ∼ 1 mπ then r0kF ∼ 3, and it could impact

considerably the limit a0 → ∞, cf. Fig. 8.
We start by considering the contact S-wave potential

v(k, p) = c0 +
1
2
c2(k2 + p2) , (6.8)

nd then apply the method in Section 5 to obtain renormalized scattering amplitudes by reproduc-
ng given values of a0 and r0. The resulting in-medium tm(k, p) in the limit Λ → ∞ reads from
q. (5.12),

tm(k, p) =
4π/m

−
1
a +

1
2 r0p

2 − ip + Gm(p)
. (6.9)

et us stress that this result is worked out in cutoff regularization, θi ̸= 0 for i = 1, . . . , 4, being
he result independent of the particular finite values taken by these parameters. However, this is
ot the same as taking the potential in Eq. (6.8) and solving for E in DR as in Ref. [43]. Within
ur general formalism we can also proceed with DR, which is done in Appendix C, and reproduce
aiser’s results [43]. In the same Appendix we also include v(2)0 , one more order considered in the
RE as compared with Ref. [43].
We present along the main text the results with cutoff regularization since we consider it as

he correct physical regularization and renormalization procedure for non-perturbative calculations.
he point is that the use of DR is not justified a priori for non-perturbative calculations [63], because
f the lose of track of new divergences when iterating the potential that are set to zero in DR, while
24
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Fig. 7. Dependence of the Bertsch parameter on r0kF , ξ (r0kF ). Our result is the solid line, the dashed line corresponds to
he density-functional theory applied in Ref. [86] with ξ0 = 0.3897 and ηe = 0.127, and we also show the circles from
ef. [48], the squares from Refs. [15,16], and the gray area that stems from Ref. [52].

n cutoff regularization they are kept explicitly. Several examples of nonsensical results by using DR
n the non-perturbative calculations of scattering amplitudes with zero-range potentials are given
n Ref. [63]. We also have in mind the implementation of non-perturbative QFT in lattice gauge
heories [85], where the spacing a of the grid provides the cutoff and the limit a → 0 has to be
erformed.
Now, when Eq. (6.9) is implemented in Eq. (3.10), the following result is obtained

EL = −
4k5F i
mπ3

∫ kF

0
a2da

∫ √
k2F−a2

0
pdp log

(
1 − a0r0k2Fκ

2/2 − a0kF (R/π − iI)
1 − a0r0k2Fκ2/2 − a0kF (R/π + iI)

)
,

=
8k5F
mπ3

∫ 1

0
dss2

∫ √
1−s2

0
dκκ arctan

(
a0kF I

1 − a0r0k2Fκ2/2 − a0kFR/π

)
. (6.10)

The result in Eq. (6.10) for E is clearly perturbative with respect to r0, and for r0 → 0 one recovers
E as given by the unitarity limit in Eq. (6.4). This conclusion is in agreement with Ref. [69], that also
obtained that r0 is perturbative concerning its role in the bulk viscosity of Fermi gases interacting
in S-wave.

The explicit dependence on r0 of ξ can be calculated from Eq. (6.10) by taking the limit a0 → ∞.
Having included a scale related with the range of the interactions then ξ becomes a function of kF
hrough the dimensionless parameter r0kF . The result for ξ (kF ) is then,

ξ (kF ) = 1 −
80
π

∫ 1

0
dss2

∫ √
1−s2

0
dκκ arctan

(
π I

πr0kFκ2/2 + R

)
. (6.11)

e depict ξ (kF ) as a function of kF r0 in Fig. 7, where it is clear the smooth dependence on this
arameter. The Taylor series of ξ (kF ) up to quadratic order in powers of r0kF that has been proposed
n the literature [13,16,86,87] reads,

ξ (kF ) = ξ0 + ηer0kF + δe(r0kF )2 + · · · (6.12)

uantum Monte-Carlo simulations give the reference values ηe = 0.127, δe = −0.055 [16] and
e = 0.12(3) [17], which are universal parameters. The numerical values that we obtain from the
xpansion of ξ (kF ) in Eq. (6.11) are ηe = −8.59 · 10−2, and δe = 6.45 · 10−2.14 These values reflect
he r0kF dependence of the solid line near the origin as seen in Fig. 7. First, one has a decrease of

14 These values cannot be obtained by expanding the integrand of Eq. (6.11) in powers of r0kF because the Leibniz rule
annot be applied, as explained in Appendix D.
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Fig. 8. E/Efree for neutron matter as a function of −a0kF . Our results including only a0 are plotted by the lowest lying
olid line. The other two solid lines overlap each other and correspond to our results including consecutively r0 and v(2)0 .
he dashed line is the density-functional theory result from Ref. [22] with ξ0 = 0.3897, r0 = 2.75 fm and ηe = 0.127.
he squares correspond to the quantum Monte Carlo calculation of Ref. [47].

(r0kF ) when the linear term dominates and then an increase when the quadratic terms become
more important. Afterwards our results and those from the density-functional theory calculation
in Ref. [86] (dashed line) run rather closely. We also show in Fig. 7 by the empty circles the
results of Ref. [48], by the squares the low-density calculation of Refs. [15,16], and by the gray
area the calculation in Ref. [52], where the width of the band is due to the dependence on the
renormalization scale chosen.

We also consider the contributions to E from v
(2)
0 , the next shape parameter in the ERE, and

determine its impact on E . For evaluating this case we consider the contact potential

v(k, p) = c0 +
1
2
c2(k2 + p2) +

1
2
c4(k4 + p4) . (6.13)

ere we have taken into account the main result of Ref. [88], which shows that there is only
ne new operator for every higher order in the low-energy expansion of the potential for contact
nteractions. This is then completely consistent with the ERE where only one new coefficient is
dded by increasing the expansion in p2 one more order. By applying the method of Section 5 we
an solve for a renormalized tm(k, p) so that its contribution to EL is a straightforward extension
f Eq. (6.10) that reads

EL =
8k5F
mπ3

∫ 1

0
dss2

∫ √
1−s2

0
dκκ arctan

(
a0kF I

1 − a0r0k2Fκ2/2 − a0v
(2)
0 k4Fκ4 − a0kFR/π

)
, (6.14)

hich is perturbative in v(2)0 . The dependence of ξ (kF ) on this parameter is easily obtained by taking
he limit a0 → ∞ in the previous equation,

ξ (kF ) = 1 −
80
π

∫ 1

0
dss2

∫ √
1−s2

0
dκκ arctan

(
I

r0kFκ2/2 + v
(2)
0 k3Fκ4 + R/π

)
. (6.15)

Taylor expansion in powers of r0kF and v(2)k3F of the previous equation gives the first contribution
rom v

(2)
0 as v(2)0 k3Fγe. Numerically, we obtain that γe = −0.164.15

For the case of neutron matter with only the S-wave interactions we plot next E /Efree in Fig. 8
s a function of −akF . We show our results by the solid lines. The lowest one stems from the

15 This value cannot be obtained by expanding the integrand of Eq. (6.15) in powers of v(2)0 k3F because the Leibniz rule
annot be applied, as explained in Appendix D.
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Fig. 9. Our results for the energy per particle of pure neutron matter calculated with different orders in the ERE: The
lowest solid line only includes a0 , the highest line includes a0 and r0 , and the solid line in the middle considers the
ontributions from a0 , r0 and v(2)0 . The dots correspond to the result of Akmal et al. [89].

ontributions of only a0. The other two lines overlap each other within the scale of the figure and
nclude consecutively r0 and v(2)0 (with values r0 = 2.75 fm and v(2)0 = −0.50 fm3 [84]). The density-
unctional theory result from Ref. [22] with ξ0 = 0.3897, r0 = 2.75 and ηe = 0.127 fm is plotted by
he dashed line. We also give the quantum Monte-Carlo approach of Ref. [47] with a finite-range
-wave interaction by the squares.
Fig. 9 shows our results for the energy per particle Ē of neutron matter as a function of the

ensity ρ. The lowest, upper and middle solid lines include a0, r0 and v(2)0 consecutively, with
hese parameters taking the values given already for the 1S0 partial-wave amplitude. The dots are
the results from Ref. [89] using variational chain summation methods and sophisticated nucleon–
nucleon potentials. From this figure it is clear the sizeable impact of r0 on Ē providing extra
repulsion, that is reduced to some extent by the inclusion of v(2)0 .

We also study the Tan contact parameter C [80], which is related to the contact density
parameter C by C/(NkF ) = 3π2C/k4F , such that [90]

C = 4πma20
dE

da0
. (6.16)

y taking numerically the derivative with respect to a0 in Eq. (6.14) (the derivative with respect to
0 under the integral symbol is not correct, cf. Appendix D) we then have the solid line in Fig. 10
hat shows C as a function of 1/a0kF with r0 = v

(2)
0 = 0. The upper and lower dashed lines are the

esults from the density-functional theory of Ref. [22] with r0 = 0 and ξ0 = 0.37, 0.44, respectively.
The dotted and dash-dotted lines are the theoretical results from Refs. [91] and [92], respectively.
The black dots are the experimental measurements of Ref. [93]. It is interesting to notice that our
results are the only theoretical ones that do not increase for a0 → ∞, as it is also the case for
the experimental points. Next, we plot in Fig. 11 the dependence of our results (solid line) for the
contact density parameter in the unitary limit as a function of r0kF . We also include the dashed
lines from Ref. [22] with the upper one using the value ξ0 = 0.37 and the lower ξ0 = 0.44, both
taking ηe = 0.127.

We now elaborate on the pole content and its feasibility that results by having included first r0
together with a0, and then additionally v(2)0 . The poles in the complex-p plane of τ (p) when taking
the ERE up to and including r0 correspond to the zeros of −1/a0 + r0p2/2− ip which are located at
p = (i±

√
2r0/a0 − 1)/r0. Regarding the specific cases studied in Figs. 7–9 and 11 by using Eq. (6.10),

given that we consider the unitary limit or the case |a0| ≫ r0 for neutron matter, the problematic
pole dispositions to be avoided (discussed just before the present Section 6.1), and associated with
a positive effective range [65], do not affect our results because:
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Fig. 10. Dependence of the Tan density contact parameter on 1/a0kF . Upper (lower) dashed lines are from Ref. [22] with
0 = 0.37 (ξ0 = 0.44) and r0 = 0. The dotted and dash-dotted lines are the theoretical results from Refs. [91] and [92],
espectively. The dots are the measurements of Ref. [93]. The solid line corresponds to our calculation.

Fig. 11. Dependence of the density contact parameter C on r0kF for a0 → ∞. Our results are given by the solid line and
he upper and lower dashed lines come from Ref. [22] with ξ0 = 0.37 and 0.477, respectively, and ηe = 0.127.

(i) In the unitary limit 2r0/a0 → 0, and for our results, Figs. 7 and 11, it does not really matter
hich is the sign of a0 → ∞ so that we can always avoid having a redundant bound state when
< 2r0/a0 < 1 by taking a0 → −∞ for r0 > 0.
(ii) For the case of neutron matter, considered in Figs. 8 and 9, one has that a0 < 0 and r0 > 0, so

hat 2r0/a0 < 0, and neither the presence of two resonant poles with positive imaginary part nor of
redundant low-energy second pole lying along the positive momentum imaginary axis occur [65].
nstead, one has a bound and a virtual state.

Concerning Eq. (6.14) involving also the shape parameter v(2)0 we recall that we use the values
or S-wave neutron–neutron scattering a0 = −18.95 fm, r0 = 2.75 fm, and v(2)0 = −0.5 fm [33,84]
to get the results shown in Figs. 8 and 9. For determining the pole content of τ (p) in this case we
ave solved numerically the zeros of −

1
a0

+
1
2 r0p

2
+ v

(2)
0 p4 − i p in the complex-p plane and we

ave found an acceptable disposition of poles located at: p1 = −i 0.0706mπ , p2 = i 0.9627mπ , and
p = (±2.50075 − i 0.4460)m , in units of the pion mass denoted by m .
3,4 π π
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Fig. 12. Dependence of E/Efree with −1/(a1k3F ) for r1 = 0. The region for negative values of −1/a1k3F is shaded because
t gives rise to an unacceptable pole content in vacuum scattering. See the text for details.

.2. P waves

Let us consider a P-wave spin-independent zero-range potential given by

V (k, p) = k · p
(
d0 +

1
2
d2(k2 + p2)

)
. (6.17)

t is necessary at least to include two counterterms in order to achieve renormalization of the PWAs
ith cutoff regularization, in agreement with our discussion in Eq. (6.1) about the fact that the

irst ℓ + 1 parameters in the ERE are non-perturbative. The need of at least two counterterms for
enormalizing P-wave scattering is also deduced within EFT in Ref. [71] dedicated to the study of
α scattering at low energies. There, a dimeron field was introduced [94] to solve the partial-wave
mplitude in vacuum.
We follow the method explained in Section 5 and by considering only d0 in Eq. (6.17) fixed

o reproduce the scattering length a1 as a function of Λ the resulting PWA vanishes as Λ → ∞.
owever, this is not the case in DR where only one counterterm is enough to end with finite non-
rivial results as worked out in Ref. [43], and in Appendix C.2 within our present formalism where
e reproduce the results of [43]. We do not dwell any more on them in the main text since we
onsider that the suitable process for non-perturbative QFT is to perform a cutoff regularization, as
t has been discussed above.

The partial-wave projection of the potential in Eq. (6.17) for all the PWAs 3P2, 3P1 and 3P0 is16

v(k, p) =
kp
3
(d0 +

1
2
d2(k2 + p2)) . (6.18)

he factor 1/3 can also be seen to stem from the fact that in a Lippmann–Schwinger equation only
the longitudinal component of the unitarity loop function, proportional to pipj, is iterated. Thus, of
he three possible states of orbital polarization only one is picked up.

With the matrix notation of Eq. (5.3) the partial-wave projected potential reads

v(k, p) = [k]T · [v] · [p] , (6.19)

[v] =

(
d0 d2/2
d2/2 0

)
,

[k]T = (k, k3) ,

16 This can be obtained by inverting Eq. (3.6), or from Eq. (2.31) in Ref. [62] implemented without including the isospin
ndices and with the matrix element ⟨k, σ ′σ ′

|V |pẑ, σ σ ⟩ = δ ′ δ ′ (d +
1 d (k2 + p2))kp cos θ ′ .
1 2 1 2 σ1σ1 σ2σ2 0 2 2
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Fig. 13. Dependence of E/Efree with r1/kF for a1k3F = ∞.

nd similarly for [p]. Now we apply the method of Section 5 to calculate tm. To study the
enormalization of the resulting PWAs we then set the Fermi momentum to zero and the matrix
G ] in Eq. (5.7) only retains its free part, [Gf ], which is diagonal in the channel indices α and β . This
atrix is given by

[Gf ] = −m
∫

d3k
(2π )3

[k][k]T

k2 − p2 − iϵ
, (6.20)

nd it is evaluated with cutoff regularization. Taking the matrices [G ] and [v] into Eq. (5.8) we then
ave the following expression for all the PWAs in vacuum stemming from the potential in Eq. (6.19),

tV (k, p) = [k]T
(
[v]−1

+ [Gf ]
)−1

[p] =
4π
m

kp
−

1
a1

+
1
2 rp

2 − ip3
+ O(Λ−1) . (6.21)

or on-shell scattering our resulting P-wave partial-wave amplitude is the same as the one obtained
ith cutoff regularization including a dimeron field in [71].
We are then ready to apply Eq. (5.12) for calculating tm(k, p), and E in terms of it. There is an

mportant novelty compared to the vacuum case concerning the fact that the 3P2, 3P1 and 3P0 PWAs
ix in the medium despite having different J , and this mixing depends on the value of µ. Because
f the property in Eq. (4.13) we have to calculate explicitly the P-waves only for µ = 0, 1 and 2.
or the latter value only the 3P2 contributes and it is uncoupled. When µ = 1 we have the coupling
etween the 3P2 and 3P1 PWAs. For µ = 0 because of the property in Eq. (4.14) the 3P1 decouples
rom the 3P2 and 3P0, and the latter ones are coupled. Therefore, at most we have the scattering of
wo coupled channels.

Once this process is accomplished we then proceed with the calculation of EL by applying
q. (3.10). One has to sum over the allowed values of µ (in all cases here ℓ = S = 1) and then

for each µ we proceed with the diagonalization of the matrix I − tm(p, p)Ld(p, aẑ), calculate the
log of the eigenvalues, sum over them and perform the double integration. These technicalities are
treated and exemplified in full detail in the Appendix C.2 to which we refer for further discussions
on this respect. There, Kaiser’s results [43], obtained using dimensional regularization and tensorial
methods for a P-wave interaction keeping only the scattering length, are reproduced within the
general formalism derived in our work.

In discussing our results for values of ERE parameters we discard those regions in the parametric
space that drives to resonant poles in tV lying in the upper part of the complex-p plane, similarly
as already explained for S waves. We first consider our results with r1 = 0 and plot E /Efree as a
function of −1/a1k3F in Fig. 12. The poles are located at the three cubit roots of (i/a1)1/3, with two
of them being resonant poles and lying in the upper half complex-p plane for a1 > 0. Therefore, we
should exclude the results for negative −1/a k3 in Fig. 12, and this is why this region is shaded. We
1 F
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Fig. 14. Three dimensional plot of E/Efree as a function of −1/(a1k3F ) and r1/kF .

o not completely remove it for comparison with Ref. [43], where an analogous figure is plotted
ncluding the region with a1 > 0 too. We consider next the limit a1 → ∞ and show the dependence
of E /Efree on the dimensionless parameter r1/kF in Fig. 13. It has a convex form around a minimum
for r1/kF ≈ −0.6. Regarding Fig. 14 calculated for |a1| → ∞ all the values of r1/kF are kept because
he results do not really depend on the sign of a1 → ∞ and by adjusting it appropriately one can
void the resonant pole positions with positive imaginary part.17
Next, we draw a three-dimensional plot of E /Efree as a function of the dimensionless parameters

1/a1k3F and r1/kF in Fig. 14. In the parametric space of (a1, r1) we find a region that is excluded be-
ause P-wave resonant poles with positive imaginary part occur in τ (p). As deduced in Appendix E,
his region corresponds to −1/a1k3F < 0 and r1 > −(54/|a1|k3F )

1/3. We also show another three-
imensional plot in the limit a1 → ∞ again by plotting E /Efree as a function of r1/kF and v(2)1 kF
n Fig. 15. The long-distance limit kFR ≪ 1 (with R the range of the interactions) corresponds to
v
(2)
1 |kF ≪ 1 and |r1|/kF ≫ 1 in which the shape of the surface is rather structureless. In Fig. 15 the
xcluded region is the part of the top left quadrant such that v(2)1 > 0 and r1 < −1/2v(2)1 , and we
efer again to Appendix E for its derivation. Let us finish this section by clarifying that we have not
ntroduced an expansion for Ē like that in Eq. (6.6) for the S wave interactions because its direct
application to P waves is not possible as the relevant dimensionless parameters are 1/a1r31 and
kF/r1, and both have to be taken into account in a power expansion around a1 → ∞ and R → 0.

7. Conclusions

We have presented the derivation of the resummation of the ladder diagrams for the evaluation
of the energy density E of a spin 1/2 fermion many-body system in terms of arbitrary vacuum
two-body interactions. All in-medium two-body intermediate states are accounted for. In standard
many-body notation this means that we have resummed this iteration by taking into account both
particle–particle and hole–hole intermediate states. In our derivations it has been essential to use
the formulation of many-body quantum field theory from Ref. [50] because of the resulting frame-
work in which the many-body theory is organized. This fact provides us with a rearrangement of the
diagrams involved in the calculation of Ē that allows the solution of the non-trivial combinatoric
problem associated. The resulting expression provides a real value for E because of in-medium

17 This is clear from Appendix E, cf. Eqs. (E.2) and (E.3), because if |a1| → ∞ it is enough to choose that the sign of
is opposite to that of r , such that the product r α → −∞. In such situation no resonant poles are generated.
1 1 1 1
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Fig. 15. E/Efree as a function of r1/kF and v(2)1 kF .

nitarity, as we prove. At the practical level, since it is usually the case that the two-body finite-
ange interactions are studied in partial waves, it is interesting to express E in a partial-wave
mplitude expansion. This requires a special treatment in the many-body environment because of
xtra mixing among the partial-wave amplitudes due to the breaking of rotational invariance within
he relative degrees of freedom. The reason is because the scattering amplitudes also depend on the
otal momentum. The necessary formalism for the partial-wave expansions has been worked out in
etail.
The case of contact interactions has been fully solved, providing explicit renormalized results

ithin a cutoff regularization in a wide class of schemes. First concrete examples have been
onsidered involving S- and P-wave interactions and including up to the first three terms in the
ffective-range expansion, namely, aℓ, rℓ and v

(2)
ℓ with ℓ = 0 or 1. Special attention has been payed

to the study of the parametric region around the unitary limit (in normal matter). It is shown that
the effective range in S waves, r0, plays there a perturbative role as expected. We also study the
S-wave contributions to E for neutron matter and the Tan density contact parameter C. The case of
a spin-independent P-wave interaction is also analyzed and we show that the effective range r1 is
needed together with the scattering length a1 to obtain renormalized results. We have given several
plots for E /Efree where we show its dependence with −1/a1k3F for r1 = 0, and then move to the
limit a1 → ∞ and give it as a function of the dimensionless parameter r1/kF . We also plot E /Efree
as a function of −1/a1k3F and r1/kF . The next shape parameter v(2)1 is also considered and we plot
E /Efree within the plane r1/kF and v(2)1 kF in the limit a1 → ∞. In all cases interesting non-trivial
shapes for E /Efree are found.

We have largely generalized the previous Kaiser’s pivotal analyses in Refs. [42,43], regarding the
resummation of the ladder series. Apart from what was mentioned previously, it is worthwhile to
list here for concreteness the attainment of several other important achievements of this work, as
explained along the paper:

(i) We have derived a general formula for the resummation of the ladder series expressed in
terms of arbitrary fermion–fermion interactions in vacuum.

(ii) We have developed a partial-wave expansion for calculating the general formula referred in
(i).

(iii) We can consider any number of partial waves contributing, either separately or simultane-
ously.

(iv) For every partial wave we can include any number of terms in the effective-range expansion.
(v) We can apply our method with cutoff regularization in a generic scheme obtaining always

scheme independent renormalized results.
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(vi) We can also work out the case with dimensional regularization (the one used by Kaiser ex-
clusively in Refs. [42,43]). However, this method is generally not correct for non-perturbative
calculations as discussed in the manuscript.

(vii) We have shown that the ansatz used by Kaiser [43] to resum the ladder series when including
up to the effective range in S waves is correct.

Our present work is based on the many-body formalism of Ref. [50] similarly as Ref. [34,95,96].
In this regard, our results here relate Refs. [34] and Refs. [42,43], with the former also handling long-
range interactions at the price of some extra approximations. As a concluding remark, we consider
that further applications of this powerful approach should be pursued in many-body systems, like
nuclear matter or ultracold trapped atoms and ions.
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Appendix A. Technical material on rotational symmetry

Let us first study the transformation of Lm(p, a) and Ld(p, a) under a rotation R on the vector a.
One has that

Lm(p, Ra) = RLm(p, a)R† , (A.1)

Ld(p, Ra) = RLm(p, a)R† . (A.2)

We first notice the trivial fact that IS is invariant under any rotation since

RISR†
= IS , (A.3)

o that we do not show IS explicitly in the following. We proceed with the derivation in detail for
m(p, Ra), and for Ld(p, Ra) we quote the final result because the procedure is completely analogous.

Lm(p, Ra) = −m
∫

d3k
(2π )3

[
θ (kF1 − |Ra + k|) + θ (kF2 − |Ra − k|)

] |k⟩⟨k|

k2 − p2 − iϵ
(A.4)

= −m
∫

d3k
(2π )3

[
θ (kF1 − |a + R−1k|) + θ (kF2 − |a − R−1k|)

] |k⟩⟨k|

k2 − p2 − iϵ
.

e perform next the change of integration variable R−1k → k and take into account that |Rk⟩ =

R|k⟩. Thus, Eq. (A.1) results. Analogous steps also lead to Eq. (A.2).
We use now Eq. (A.1) to study the transformation properties of tm(a) under a rotation of a. We

lso take into account the rotational invariance of the vacuum T -matrix tV ,

RtVR†
= tV . (A.5)

ultiplying both sides of Eq. (2.24) by R and R† to the left and right, respectively, we have that

Rtm(a)R†
= tV + RtV Lm(p, a)tm(a)R† (A.6)
= tV + tV Lm(p, Ra)Rtm(a)R† ,

o that Rtm(a)R† and tm(Ra) satisfy the same IE and then they must coincide,

t (Ra) = Rt (a)R† . (A.7)
m m
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Appendix B. Some symmetry properties of the PWAs in the many-body environment

We proceed with the demonstration of the relations in Eqs. (4.13)–(4.15). To demonstrate the
quality

⟨J2−µ1ℓ2S1p′
|tm(aẑ)|J1−µ1ℓ1S1p⟩ = (−1)J2+J1⟨J2µ1ℓ2S1p′

|tm(aẑ)|J1µ1ℓ1S1p⟩ , (B.1)

let us write down the IE of Eq. (4.7) for the PWAs with −µ1,

⟨J2 − µ1ℓ2S1p′
|tm(aẑ)|J1 − µ1ℓ1S1p⟩ = ⟨J2 − µ1ℓ2S1p′

|V |J1 − µ1ℓ1S1p⟩ (B.2)

+

∑
J4ℓ3ℓ4m3σ3

χ (S1ℓ3)χ (S1ℓ4)
m

(2π )2

∫
k2dk

k2 − p2 − iϵ
⟨J2 − µ1ℓ2S1p′

|V |J2 − µ1ℓ3S1k⟩

× ⟨J4 − µ1ℓ4S1k|tm(aẑ)|J1 − µ1ℓ1S1p⟩(m3σ3 − µ1|ℓ3S1J2)(m3σ3 − µ1|ℓ4S1J4)

×

∫
dk̂Ym3

ℓ3
(k̂)∗Ym3

ℓ4
(k)
[
1 − θ (kF − |k + aẑ|) − θ (kF − |k − aẑ|)

]
.

The next step is to take into account that the matrix elements of V are independent of µ1 and use
the symmetry properties of the Clebsch–Gordan coefficients

(−m1 − m2 − m3|j1j2j3) = (−1)j1+j2−j3 (m1m2m3|j1j2j3) , (B.3)

so that

(m3σ3 − µ1|ℓ3S1J2)(m3σ3 − µ1|ℓ4S1J4) = (−1)J2+J4 (−m3 − σ3µ1|ℓ3S1J2)(−m3 − σ3µ1|ℓ4S1J4) ,
(B.4)

where we have used that (−1)ℓ3+ℓ4 = +1 because of Eq. (4.6). The sum over the dummy indices
m3 and σ3 is symmetric around 0, so that by exchanging their signs simultaneously the only change
is in the angular integration. But this does not introduce any change in the final result because of
the well-known property of the spherical harmonics

Ym
ℓ (k)∗ = (−1)mY−m

ℓ (k) . (B.5)

Therefore,∫
dk̂Y−m3

ℓ3
(k̂)∗Y−m3

ℓ4
(k)
[
1 − θ (kF − |k + aẑ|) − θ (kF − |k − aẑ|)

]
=

∫
dk̂Ym3

ℓ3
(k̂)Ym3

ℓ4
(k)∗

(B.6)
×
[
1 − θ (kF − |k + aẑ|) − θ (kF − |k − aẑ|)

]
.

However, the integrand in the previous equation is real, and by taking its complex conjugate, we
recover again the original expression in Eq. (B.2). We can then rewrite it as

⟨J2 − µ1ℓ2S1p′
|tm(aẑ)|J1 − µ1ℓ1S1p⟩ = ⟨J2µ1ℓ2S1p′

|V |J1µ1ℓ1S1p⟩ (B.7)

+

∑
m3σ3J4ℓ3ℓ4

χ (S1ℓ3)χ (S1ℓ4)
m

(2π )2

∫
k2dk

k2 − p2 − iϵ
⟨J2µ1ℓ2S1p′

|V |J2µ1ℓ3S1k⟩

× ⟨J4 − µ1ℓ4S1k|tm(aẑ)|J1 − µ1ℓ1S1p⟩(−1)J2+J4 (m3σ3µ1|ℓ3S1J2)(m3σ3µ1|ℓ4S1J4)

×

∫
dk̂Ym3

ℓ3
(k̂)∗Ym3

ℓ4
(k)
[
1 − θ (kF − |k + aẑ|) − θ (kF − |k − aẑ|)

]
,

where we have taken into account again that the matrix elements of V between PWAs are µ
independent because it is an scalar operator. Let us multiply both sides of Eq. (B.7) by (−1)J2+J1

and then we conclude that (−1)J2+J1⟨J2 − µ1ℓ2S1p′
|tm(aẑ)|J1 − µ1ℓ1S1p⟩ satisfies the same IE as

⟨J2µ1ℓ2S1p′
|tm(aẑ)|J1µ1ℓ1S1p⟩, which implies Eq. (B.1). Notice that when multiplying

⟨J µ ℓ S p′
|V |J µ ℓ S p⟩ by (−1)J1+J2 we get the same result because the matrix element is
2 1 2 1 1 1 1 1
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proportional to δJ1J2 . Furthermore, for the matrix element of tm(aẑ) inside the integrand since the Ji
re integers it results that (−1)J1+J2 (−1)J2+J4 = (−1)J1+J4 .
For the demonstration of the symmetric relation in Eq. (4.15),

⟨J1µ1ℓ1S1p|tm(aẑ)|J2µ1ℓ2S1p′
⟩ = ⟨J2µ1ℓ2S1p′

|tm(aẑ)|J1µ1ℓ1S1p⟩ , (B.8)

we start with the IE for ⟨J1µ1ℓ1S1p|tm(aẑ)|J2µ1ℓ2S1p′
⟩, cf. Eq. (4.7),

⟨J1µ1ℓ1S1p|tm(aẑ)|J2µ1ℓ2S1p′
⟩ = ⟨J1µ1ℓ1S1p|V |J2µ1ℓ2S1p′

⟩ (B.9)

+

∑
J4ℓ3ℓ4m3σ3

χ (S1ℓ3)χ (S1ℓ4)
m

(2π )2

∫
∞

0

k2dk
k2 − p2 − iϵ

⟨J1µ1ℓ1S1p|V |J1µ1ℓ3S1k⟩

× ⟨J4µ1ℓ4S1k|tm(aẑ)|J2µ1ℓ2S1p′
⟩(m3σ3µ1|ℓ3S1J1)(m3σ3µ1|ℓ4S1J4)

×

∫
dk̂Ym3

ℓ3
(k̂)∗Ym3

ℓ4
(k̂)[1 − θ (kF − |k + aẑ|) − θ (kF − |k − aẑ|)] .

ecause of time-reversal invariance the matrix elements of V in PWAs are symmetric. In addition,
ince the product of the two spherical harmonics is real we take its complex conjugate. Then, we
an rewrite Eq. (B.9) as

⟨J1µ1ℓ1S1p|tm(aẑ)|J2µ1ℓ2S1p′
⟩ = ⟨J2µ1ℓ2S1p′

|V |J1µ1ℓ1S1p⟩ (B.10)

+

∑
J4ℓ3ℓ4m3σ3

χ (Sℓ3)χ (Sℓ4)
m

(2π )2

∫
∞

0

k2dk
k2 − p2 − iϵ

⟨J4µ1ℓ4S1k|tm(aẑ)|J2µ1ℓ2S1p′
⟩

× ⟨J1µ1ℓ3S1k|V |J1µ1ℓ1S1p⟩(m3σ3µ1|ℓ3S1J1)(m3σ3µ1|ℓ4S1J4)

×

∫
dk̂Ym3

ℓ4
(k̂)∗Ym3

ℓ3
(k̂)[1 − θ (kF − |k + aẑ|) − θ (kF − |k − aẑ|)] ,

hich is the same IE as the one satisfied by ⟨J2µ1ℓ2S1p′
|tm(aẑ)|J1µ1ℓ1S1p⟩ as we wanted to show.

n order to arrive to this conclusion we have used the fact that the IE for tm(a) of Eq. (4.1) can also
e written as

tm(a) = V − tm(a)[G − Lm(p, a)]V . (B.11)

ppendix C. Calculations employing dimensional regularization

Here we discuss the calculation with DR of the S-wave and P-wave potentials up to O(p4) and
(p2), respectively.

.1. S waves

We take the potential in Eq. (6.13),

v(k, p) = c0 +
1
2
c2(k2 + p2) +

1
2
c4(k4 + p4) , (C.1)

nd proceed with the calculation of tm(k, p) by applying the method of Section 5. The coefficients in
he expansion of the potential in powers of k2 and p2 are denoted in this case vij, which is enough
ince it is uncoupled. Therefore, the only non-zero coefficients are

v11 = c0 , v12 = v21 =
1
2
c2 , v13 = v31 =

1
2
c4 . (C.2)

ext one needs to implement the matrix [G ], Eq. (5.7), given in this case by

[G ] = −
m

(2π )3

∫
∞

0

d3k
k2 − p2 − iϵ

⎛⎝1 k2 k4

k2 k4 k6
4 6 8

⎞⎠(1 − 2θ (kF − |k − aẑ|)
)
. (C.3)
k k k
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In DR the calculation of the free part of [G ], called [Gf ], is straightforward because
∫

∞

0 dDkkn = 0
or n ≥ 0. The result is

[Gf ] = −i
mp
4π

⎛⎝1 p2 p4

p2 p4 p6

p4 p6 p8

⎞⎠ . (C.4)

pplying Eq. (5.8) with [Gf ] one obtains for tV (k, p) the following expression

tV (k, p) = [k]T
(
[v]−1

+ [Gf ]
−1)−1

[p] (C.5)

= v(k, p)
(
1 − i

mp
4π
v(p, p)

)−1
.

ndeed, the last formula is a general one for any uncoupled vacuum PWA calculated with DR. Taking
he explicit expression for v(k, p) we have

tV (k, p) = (c0 +
1
2
c2(k2 + p2) +

1
2
c4(k4 + p4))

(
1 − i

mp
4π

(c0 + c2p2 + c4p4)
)−1

. (C.6)

he matching with the ERE expansion, Eq. (5.10), of the on-shell tV (p, p) up to O(p4) is straightfor-
ard and then

m
4π

c0 = −a0 , (C.7)

m
4π

c2 = −
a20r0
2

,

m
4π

c4 = −
a20
4
(a0r20 + 4v(2)0 ) .

With these expressions for the couplings

tV (p, p) = −
4π
m

(
1

a0 +
1
2a

2
0r0p2 + a20(v

(2)
0 +

1
4a0r

2
0 )p4

+ ip

)−1

. (C.8)

The kF dependence of the matrix elements of [G ], Eq. (C.3), can be written in terms of the basic
ntegrals

Jn =
m
4π3

∫
d3k k2nθ (kF − |k − aẑ|) =

m
4π3

∫
d3k (k + aẑ)2nθ (kF − k) , (C.9)

In =
m
4π3

∫
d3k

k2 − p2 − iϵ
k2nθ (kF − |k − aẑ|) =

n−1∑
l=0

p2(n−1−l)Jl + p2nI0 ,

uch that

[G ]jl = −i
mp2(j+l)−3

4π
+ Ij+l−2 . (C.10)

For the basic I0 integral we have the relation

[G ]11 = −i
mp
4π

+ I0 =
mkF
4π

(
R
π

+ i I) , (C.11)

where we have related I0 with the functions R and I of Ref. [42], also used in Section 6.
To calculate tm(p, p) we just have to express the couplings as in Eq. (C.7) in terms of the ERE

parameters and apply Eq. (5.8) with [G ] as in Eq. (C.10). Then,

tm(p, p) = [p]T [t̂m(p)][p] =
4π
m

(
W−1

0 +
4π
m

I0 − ip
)−1

, (C.12)

W−1
=

A
, (C.13)
0 B
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T
r
a
c
E

a
O
p
s
f
a
w
f

C

I

A = −28(−30π + a20k
3
F (10r0 + a0k2F r

2
0 (3 + 5s2 + 5κ2) + 4k2Fv

(2)
0 (3 + 5s2 + 5κ2)))2 ,

B = 5a0π (1260π (4 + 2a0k2F r0κ
2
+ a0k4F (a0r

2
0 + 4v(2)0 )κ4)

+ a30k
5
F (60a0k

2
F r

3
0 (3 + 7s2(2 + s2) − 7κ4)

+ 240k2F r0v
(2)
0 (3 + 7s2(2 + s2) − 7κ4) + 4r20 (21(3 + 5s2)

+ 14a0k4F (5 + 45s2 + 63s4 + 15s6)v(2)0

+ 15(−7 + 2a0k4F (3 + 7s2(2 + s2))v(2)0 )κ2
− 42a0k4F (3 + 5s2)v(2)0 κ

4
− 210a0k4Fv

(2)
0 κ

6)

+ a20k
4
F r

4
0 (5(7 + 9κ2)

+ 21(5s6 − 5s2(−3 + κ2)(1 + κ2) − κ4(3 + 5κ2) + s4(21 + 5κ2))) + 16k4Fv
(2)2
0 (5(7 + 9κ2)

+ 21(5s6 − 5s2(−3 + κ2)(1 + κ2) − κ4(3 + 5κ2) + s4(21 + 5κ2))))) .

ere we have used the dimensionless variables s = a/kF and κ = p/kF , already introduced in
ection 6.1.
Applying Eq. (3.10), and recalling that 4πLd/m = 2iIkF , as discussed in Section 6.1, we then have

hat

ĒL = −
4i

mπ3

∫ kF

0
a2da

∫ √
k2F−a2

0
pdp log

(
1 −

4π/m
W−1

0 +
4π
m I0 − ip

Ld

)
(C.14)

= −
8k5F
mπ3

∫ 1

0
s2ds

∫ √
1−s2

0
κdκ arctan

(
π I

π
kF
W−1

0 + R

)
. (C.15)

If in Eq. (C.7) we take v(2)0 = −a20r0/4 then c4 = 0 and the potential reduces to v(k, p) =

c0 + c2(k2 + p2)/2. The expression for W−1
0 simplifies to

W−1
0 = −

20(−3π + a20r0k
3
F )

2

3a0π (a30r
2
0k

5
F (3 + 5s2 − 5κ2) + 30π (2 + a0r0k2Fκ2))

. (C.16)

he case up to including r0 was studied by Kaiser in [43] to ascertain the effects of the effective
ange on E and employing DR as here. The expression for W−1

0 times π/kF , cf. Eq. (C.15), is the same
s his function Ω−1

0 and we reproduce his results, confirming the correctness of his combinatorial
onjecture on the proper resummation of the potential to calculate Ē and getting the arctan as in
q. (C.15).
We would like to stress that the proper results are those obtained with cutoff regularization of

ny sort (θn ̸= 0), as derived in Section 6.1, due to the non-perturbative nature of the calculations.
f course, for perturbative ones, DR is perfectly suited, see also Ref. [63] for related discussions. In
articular, our results in Section 6.1 clearly show that the inclusion of r0 is a perturbative effect,
uch that the corrections due to the effective range vanishes as r0 → 0, and one recovers the result
or a0 → ∞ with r0 = 0. The opposite conclusion reached in Ref. [43], so that the two limits
0 → ∞ and r0 → 0 do not commute, comes entirely from the use of DR in the calculation. This is
hy lima0→∞ ξ (kF )|r0 ̸=0 = 0.876 compared with the value lima0→∞ ξ (kF )|r0=0 = 0.507, as follows

rom Eqs. (C.14) and (C.16).

.2. P waves

We consider the P-wave spin-independent potential given in Eq. (6.17) with d2 = 0,

V (k, p) = k · pd0 . (C.17)

ts partial wave projection for 3P0, 3P1 and 3P2 can be read from Eq. (6.18),

v(k, p) =
d0 kp . (C.18)

3
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Instead of cutoff regularization as in Section 6.2 we proceed with DR and reproduce the results
already obtained in Ref. [43]. However, while this reference develops a specific method for the
resummation of the ladder diagrams for the P-wave potential of Eq. (C.17), we obtain it as a
particular case of our general method, cf. Eq. (3.10) and Section 5.

For vacuum scattering in our present case the free part of the unitarity loop function is just
−imp3/4π and [v] = d0/3. Then, we apply Eq. (5.8) with [G (p)] → −imp3/4π in order to calculate
tV (k, p) with the result

tV (k, p) =
kp

3
d0

− imp3
4π

. (C.19)

he reproduction of the ERE with a1 the scattering volume implies

d0 = −
12π
m

a1 . (C.20)

o simplify the notation we introduce the constant α1 ≡ (−a1)1/3.
In order to work out tm(p, p) in the medium by applying Eq. (5.8) we need the full unitarity loop

unction [GJ2µ1,J1µ1(p)], Eq. (5.7), expressed in terms of AJ2µ1,J1µ1, Eq. (4.12),

AJ2µ1,J1µ1 = 2

(
δJ2J1 − 2

∑
m3σ3

(m3σ3µ|11J2)(m3σ3µ|11J1)
∫

dk̂|Ym
1 (k̂)|

2
θ (kF − |k − aẑ|)

)
.

(C.21)

ere we have taken into account that S = ℓ = 1 and χ (11)2 = 2.
Let us also recall that because of the symmetry relations in Eq. (4.13) we only need to obtain

xplicitly the PWAs for µ = 2, 1 and 0, and for the latter in addition (−1)J2 = (−1)J1 , cf. Eq. (4.14).
he different coupled values of the total angular momentum as a function of µ are: J2 = J1 = 2 for
= 2; J2, J1 = 1 or 2 for µ = 1; J2, J1 = 0 or 2 or J2 = J1 = 1 for µ = 0. Thus, either we have one

r two-coupled channel scattering.
We derive in detail the coupled channel case of µ = 1 and for the other cases, since they can

e worked out in complete analogy, just give their contributions to EL . The two possible values of
3 and σ3 for µ = 1 are 0 or 1. With respect to ẑ we have for m3 = 0 the longitudinal angular

ntegration∫
dk̂|Y 0

1 (k̂)|
2
θ (kF − |k̂ − aẑ|) , (C.22)

nd for m3 = ±1 the transversal one∫
dk̂|Y 1

1 (k̂)|
2
θ (kF − |k̂ − aẑ|) . (C.23)

he two basic in-medium integrals that one needs here in connection with the two previous
quations are

C∥ =
2m
π

∫
∞

0
dk

k4

k2 − p2

∫ 1

−1
d cos θ cos2 θ θ

(
kF −

√
k2 + a2 − 2ak cos θ

)
, (C.24)

C⊥ =
2m
π

∫
∞

0
dk

k4

k2 − p2

∫ 1

−1
d cos θ sin2 θ θ

(
kF −

√
k2 + a2 − 2ak cos θ

)
.

In terms of the real functions R⊥(s, κ), I⊥(s, κ), R∥(s, κ) and I∥(s, κ) introduced by Kaiser in Ref. [43],
cf. Eqs. (27)–(30) in this reference, we have

C∥ =
mk3F
3π

{
R∥(s, κ) + iπ (I∥(s, κ) + κ3)

}
, (C.25)

C⊥ =
2mk3F {R⊥(s, κ) + iπ (I⊥(s, κ) + κ3)

}
.

3π
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When inserted in [GJ211,J111] this function becomes

[G211,211] = [G111,111] =
mk3F
8π2

{
R⊥ + R∥ + iπ (I⊥ + I∥)

}
, (C.26)

[G211,111] = [G111,211] =
mk3F
8π2

{
R⊥ − R∥ + iπ (I⊥ − I∥)

}
.

e are interested in the eigenvalues λ∥ and λ⊥ of ([v]−1
+ [G ])−1 which read

λ∥ =
4πk−3

F /m
(α1kF )−3 + π−1R∥ + iI∥

, (C.27)

λ⊥ =
4πk−3

F /m
(α1kF )−3 + π−1R⊥ + iI⊥

.

Notice that the argument of the log in the calculation of EL , Eq. (3.10), is ([v]−1
+[G ])−1([v]−1

+[G ]−
2Ld) = ([v]−1

+[G ])−1([v]−1
+[G ])∗, because of Eq. (2.34), so that its eigenvalues are e−2iφa , where

a is the principal argument of the eigenvalues in Eq. (C.27) and a =∥ or ⊥. Then, the contribution
o EL per particle from µ = ±1, Ē

µ=±1
L , is

Ē
µ=±1
L = −

48k2F
mπ

∫ 1

0
dss2

∫ √
1−s2

0
dκκ

(
arctan

I∥
(α1kF )−3 + π−1R∥

+ arctan
I⊥

(α1kF )−3 + π−1R⊥

)
. (C.28)

For the other values of µ we have with similar notation,

Ē
µ=±2
L = −

48k2F
mπ

∫ 1

0
dss2

∫ √
1−s2

0
dκκ arctan

I⊥
(α1kF )−3 + π−1R⊥

, (C.29)

Ē
µ=0
L =

1
2

(
Ē
µ=±2
L + Ē

µ=±1
L

)
.

Summing over all the values of µ the total result is

ĒL = −
72k2F
mπ

∫ 1

0
dss2

∫ √
1−s2

0
dκκ

(
arctan

I∥
(α1kF )−3 + π−1R∥

+2 arctan
I⊥

(α1kF )−3 + π−1R⊥

)
, (C.30)

which is the one obtained in Ref. [43]. Let us recall that our conclusions on the impact of the P
waves in EL are those derived in Section 6.2 making use of cutoff regularization (with the cutoff
sent to infinity) in an unspecified scheme.

Appendix D. Poles in the in-medium S wave

The algebraic expressions for ζ and ν (and their numerical values after performing the integra-
tions) provided by Kaiser in Ref. [42] by expanding the integrand in Eq. (6.4) are not right, as we have
checked numerically (e.g. when used in Eq. (6.6) they fail to reproduce Ē around the unitary limit).
athematically this is due to fact that the conditions for the application of the Leibniz rule (Theorem
0.39 of Ref. [97]) for differentiation with respect to (a0kF )−1 under the signs of integration in

Eq. (6.4) are not met. Therefore, one has to use the integral representation of Ē in Eq. (6.4) and after
the integration evaluate the derivatives at the unitary limit. The singularity stems from the fact that
one finds a pole of τm(p), Eq. (6.2), at the border of the integration region, where κ =

√
1 − s2 and

∈ [0, 1], when R(s,
√
1 − s2) = π (a k )−1 (notice also that I(s,

√
1 − s2) = 0). The solution can be
0 F
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κ

s

T

Fig. 16. Pole of the in-medium S wave including the scattering length, Eq. (6.2), at the border of two Fermi surfaces,
=

√
1 − s2 , s ∈ [0, 1], as function of (a0kF )−1 < 2/π . The total momentum is 2skF and the relative momentum is κkF .

obtained by solving the transcendental equation

κ = tanh
(
1
κ

[
1 −

π

2a0kF

])
, κ ∈ [0, 1] . (D.1)

In the unitary limit the solution is κ =
√
1 − s2 = 0.833557 and then s = 0.552434. The fact that

̸= 0 implies that the fermionic pair has a non-vanishing total momentum equal to 2skF .
More generally Eq. (D.1) has solution as long as (a0kF )−1 < 2/π . Notice that for (a0kF )−1 > 2/π

the tanh in the right-hand side of Eq. (D.1) becomes negative, which cannot be because κ ∈ [0, 1].
We plot in Fig. 16 the resulting values for κ and s as a function of (a0kF )−1. We notice an interesting
continuous transition as (a0kF )−1 grows from −∞ up to 2/π , from a Cooper-pair like situation [98]
with total momentum 2skF = 0 and relative momentum κkF = kF , passing through the unitary
limit in which 2skF ≈ 1.11kF , κkF ≈ 0.88kF , up to (a0kF )−1

= 2/π where 2skF = 2kF and κkF = 0.
Since this pole singularity in tm happens exactly at the boundary of the two Fermi seas the total
energy of the pair is always equal to the Fermi energy, (s2 + κ2)k2F/m = EF . It is also worth noticing
that for 0+ < a0kF < π/2 there is no pole that could spoil a perturbative low-density calculation
of E [32].

Appendix E. Poles in the vacuum P wave

Let us consider the ERE in P wave up to including the effective range r1, Eq. (6.21), and look for
its poles in the complex-p plane by determining the zeros of −1/a1 + r2p2/2− ip3. We include the
auxiliary variables

α1 = sign(a1)|a1|1/3 =
a1

|a1|
2
3
, (E.1)

t =
r1α1

3 · 2
2
3
,

u(t) =
t

(1 + t3 +
√
1 + 2t3)

1
3
.

he square and cubic roots in the function u(t) are defined such that z1/2 = |z|1/2 exp(i arg z/2) and
z1/3 = |z|1/3 exp(i arg z/3), respectively, with arg z ∈ (−π, π] and arg(−1) = π . Denoting the real
and imaginary parts of u as u and u , respectively, we can write the pole positions p , i = 1, 2, 3,
r i i
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Table 2
Sign of Im p2,3 for t > −1/21/3 giving rise to a real u(t) and resonant
poles p2 and p3 . The signs of a1 and α1 are the same.
sign(r1a1) (sign(r1), sign(a1)) sign(Im p2,3)

+ (+,+) +

(−,−) −

− (+,−) −

(−,+) +

as

p1 = −
ir1
6

(1 + u +
1
u
) =

r1ui

6(u2
r + u2

i )
(u2

r + u2
i − 1) − i

r1
6(u2

r + u2
i )

(
(1 + ur )(u2

r + u2
i ) + ur

)
,

(E.2)

p2 =
r1
6

(
e−i π6 − ei

π
6 +

ei
π
6

u
− ue−i π6

)

= −
r1(ui +

√
3ur )(u2

r + u2
i − 1)

12(u2
r + u2

i )

+ i
r1

12(u2
r + u2

i )

(
ur + (−2 + ur )(u2

r + u2
i ) −

√
3ui(1 + u2

r + u2
i )
)
,

p3 =
r1
6

(
−ei

π
6 + e−i π6 −

e−i π6

u
+ uei

π
6

)

= −
r1(ui −

√
3ur )(u2

r + u2
i − 1)

12(u2
r + u2

i )

+ i
r1

12(u2
r + u2

i )

(
ur + (−2 + ur )(u2

r + u2
i ) +

√
3ui(1 + u2

r + u2
i )
)
.

t is clear that u is real for t > −1/21/3 and then p2 and p3 are two resonant poles with the same
maginary part and opposite real parts. For t < −1/21/3 it results that |u(t)| = 1 since

|u(t)3| =

√
t6

(1 + t3)2 − 1 − 2t3
= 1 , (E.3)

Thus, it follows from Eq. (E.2) that all the pi are purely imaginary since then u2
r + u2

i = 1.
We are interested in the forbidden regions of the parameter space (a1, r1) that drives to resonant

oles with positive imaginary part that could happen for t > −1/21/3. For real u the imaginary parts
f p2,3 can also be written from Eq. (E.2) as

Im p2,3 =
r1
12u

(1 − u)2 . (E.4)

hen, for u > 0, which happens for r1α or r1a1 > 0, the forbidden regions are those with r1 > 0. In
he case of u < 0 with −1/21/3 < t < 0, i.e. for 0 > r1α1 > −(54)1/3, it is not allowed a negative
1. In terms of the dimensionless variables −1/a1k3F and r1/kF used in Fig. 14 this implies that the
egions that are forbidden are the top left quadrant and 0 > r1/kF > −(54/|a1|k3F )

1/3 in the bottom
eft quadrant. We give the signs of Im p1,2 for t > −1/21/3 in Table 2 as a function of the signs of
1 and a1.

We also considered for generating Fig. 15 the case with a1 = ∞ and finite r1 and v(1)2 . In this
2 (2) 4 3
ase, the pole positions are given by the zeros of r1p /2 + v1 p − ip . Apart from the double zero
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T
p

R

at p = 0 there are two other zeros when r1/2 + v
(2)
1 p2 − ip = 0 , at the positions

p1,2 =
i

2v(2)1

±
1

2v(2)1

√
−1 − 2r1v

(2)
1 . (E.5)

he region to be excluded because of the appearance of resonant poles with positive imaginary
arts in their associated momenta stems from the conditions (i) v(2)1 > 0 and (ii) r1 < −1/2v(2)1 .
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