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J. M. Alarcón *

Universidad de Alcalá, Grupo de Física Nuclear y de Partículas, Departamento de Física y Matemáticas,
28805 Alcalá de Henares (Madrid), Spain

J. A. Oller †

Departamento de Física, Universidad de Murcia, E-30071 Murcia, Spain

(Received 22 July 2021; revised 27 March 2022; accepted 26 October 2022; published 28 November 2022)

We consider a spin-balanced degenerate gas of spin-1/2 fermions whose dynamics is governed by low-energy
P-wave interactions characterized by the scattering volume a1 and effective momentum r1. The energy per parti-
cle Ē in the many-body system is calculated by resumming the ladder diagrams comprising both particle-particle
and hole-hole intermediate states, following the novel advances recently developed by us in Ann. Phys. (NY) 437,
168741 (2022). This allows us to obtain a renormalized result for Ē within generic cutoff regularization schemes,
with Ē directly expressed in terms of the scattering parameters a1 and r1, once the cutoff is sent to infinity. The
whole set of possible values of a1 and r1 is explored, looking for minima in the energy per particle with Ē given as
described. They are actually found, but a further inspection reveals that the associated scattering parameters give
rise to resonance poles in the complex momentum plane with positive imaginary part, which is at odds with the
Hermiticity of the Hamiltonian. We also determine that these conflictive poles, with a pole-position momentum
that is smaller in absolute value than the Fermi momentum of the system, clearly impact the calculation of Ē . As
a result, we conclude that unpolarized spin-1/2 fermionic normal matter interacting in P-wave is not stable. We
also study three universal parameters around the unitary limit. Finally, the whole set of values for the parameters
a1, r1 is characterized according to whether they give rise to unallowed poles and, if so, by attending to their pole
positions relative to the Fermi momentum of the system explored.
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I. INTRODUCTION

The stability of liquids, whether classical or quantum me-
chanical, stems from the competition between kinetic energy
(temperature) and repulsive and attractive forces [1,2]. Near
the absolute zero, attractive forces allow the constituent parti-
cles to stay close to each other—forming bound states—while
repulsion, usually at short distances [3], avoids the collapse of
the system in the thermodynamic limit. In the quantum case,
it was recently shown theoretically [4], and subsequently ob-
served experimentally [5–7], that certain bosonic systems can
stably liquify at low temperatures thanks to one of the compet-
ing interactions arising from quantum fluctuations. Fermions,
on the other hand, obey the Pauli principle, which acts as a
natural mechanism for short-distance repulsion [8]. Therefore,
attractive interactions on their own may stabilize fermionic
quantum liquids.

Over the past decade or so, there have been tremendous ad-
vances in the manipulation and characterization of low-energy
atom-atom interactions in the P-wave channel [9–14], their
S-wave counterparts being well controlled and understood
for some time now [15]. The effective low-energy P-wave
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interactions can be tuned essentially at will, including near
resonance, where it may become the dominant interaction in
the system, and certainly does for spin-polarized systems.
An important, yet difficult question due to the nonpertur-
bative nature of the interaction, is whether fermions near a
P-wave resonance can form a stable liquid. In Ref. [16] a
polarized degenerate gas of identical fermions is studied near
an isotropic or anisotropic Feshbach resonance [9], and a
controlled expansion is developed for the case of narrow reso-
nances characterized by |kF /r1| � 1. A much richer structure
of phases is predicted [16] as compared with the case of
S-wave interactions.

In this work, we consider instead the case of a spin-
balanced, or unpolarized, degenerate Fermi gas interacting
in P wave and address the question whether such system
can be stable. Because of the Pauli exclusion principle the
P-wave interactions of two fermions take place necessarily in
the triplet spin channel. For the P wave in a spin-balanced
Fermi system to be more relevant at low energies than the S
wave a suppression is required for the spin singlet interactions
in which the S wave takes place. It is beyond the scope of
our research to determine which conditions could drive to
this situation both in the laboratory or in nature. Nonetheless,
we consider that it is an interesting theoretical question to
pursue whether such system can bind. It is also worth noticing
that P-wave interactions provide important contributions to
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the equation of state of fermionic systems in nature which
naturally occur unpolarized, like neutron matter [17,18] that
is of key importance in astrophysics for the study of neutron
stars. Indeed, the interest in these objects has been boosted by
the recent observation of gravitational waves emitted from the
coalescence of a compact binary made by a black hole and a
neutron star [19].

In our study we describe elastic fermion-fermion interac-
tion in P wave by the effective-range expansion (ERE) up to
and including the scattering volume a1 and the effective mo-
mentum r1. At least two low-energy scattering parameters are
needed to end with a renormalized P-wave fermion-fermion
interaction [20,21] within cutoff regularization when sending
the cutoff to infinity. The many-body calculation of the energy
density E is based on the application of the formalism recently
developed in Ref. [20], where a compact expression is derived
by resumming the ladder diagrams for a spin-1/2 fermionic
many-body system, providing renormalized results within a
general cutoff regularization scheme after the cutoff is sent
to infinity. The theory developed in Ref. [20] rests in the
reformulation of many-body quantum field theory undertaken
in Ref. [22], which determines the generating functional of
Green’s functions in the fermionic many-body environment.
The interested reader can also consult Ref. [23] for perturba-
tive calculations up to next-to-leading order, and Ref. [24] for
a recent review, considering also nonperturbative applications.
We give here a brief account of the main features of this
approach and refer to Ref. [20] for a detailed exposition.

We would like to stress now that resumming the two-body
interactions with intermediate particle-particle and hole-hole
states, i.e., the ladder diagrams [25], is the leading interacting
contribution for the calculation of the energy density E as
required by the in-medium nonperturbative power counting
of Ref. [18] and reviewed in Ref. [24]. If the high-energy
scale of the interactions is � the expansion of in-medium
diagrams is in powers of kF /�ξ with �ξ � �, so that sub-
leading contributions suppressed by at least one extra factor of
O(kF /�ξ ). For example, for the case of neutron matter, with
pions included as explicit degrees of freedom in the theory, the
expansion scale is around

√
3π fπ � 0.5 GeV or 2.53 fm−1,

corresponding to a density of 0.55 fm−3 [24]. This is large
enough to address the equations of state for pure neutron and
symmetric neutral matter in the density regions of interest
for many applications, like for studying neutron stars [26] or
saturation of nuclear matter [18], respectively, among many
others. See Ref. [24] for a recent review. The importance to
achieve the resummation of the ladder diagrams for studying
Ē , as a starting point on top of which to build perturbative
many-body corrections, has been stressed in many instances
in the literature. Indeed, as originally explained by Thouless
in his seminal paper [25], the Brueckner theory is a partic-
ular case of the ladder resummation when the intermediate
states are only of the particle-particle type. For more recent
papers along this direction, emphasizing an effective-field
theory point of view, we can quote Refs. [18,27–32]. It also
follows from these discussions and reasons that the evaluation
of Ē within the ladder resummation is certainly an interesting
result. This calculation and its proper interpretation are the
main aim of our present research.

The ladder resummation was finally performed alge-
braically for arbitrary vacuum fermion-fermion interactions
in Ref. [20]. The case of contact interactions was explicitly
solved, providing renormalized results for a general cutoff
regularization scheme. As commented above the approach
of Ref. [20] is the basis for our present research, in which
we extend the results given in the previous reference for a
many-body system of spin 1/2 fermions that interact in P
wave. This is so because we now study the energy per particle
Ē in the whole set of scattering parameters and the Fermi
momentum kF of the system by employing two dimension-
less parameters u = tanh(−1/a1r3

1 ) and v = tanh(kF /r1) with
u, v ∈ (−1, 1). In the square (−1, 1) ⊗ (−1, 1) inside the uv
plane we find four continuum one-dimensional sets of u and v
values in which the zero-temperature equation of state exhibits
minima, which would correspond to the equilibrium energy
per particle. Other properties of these minima, like the speed
of sound and the compressibility coefficient, are calculated in
Appendix A.

However, we further scrutinize the feasibility of such min-
ima by studying the pole content of the vacuum P-wave
scattering amplitude sharing the same a1 and r1 parameters.
Unfortunately, we find that all these minima correspond to
a vacuum pole structure which includes two resonant poles
whose associated momenta have a positive imaginary part.
These configurations are excluded by general principles, since
the momenta in the resonance pole positions should have a
negative imaginary part as required by the Hermiticity of the
Hamiltonian [33].

Nonetheless, one should keep in mind that such unallowed
poles could be artifacts of the ERE that lie beyond its radius
of convergence. Then, we have still explored the possibility
that some of these conflicting poles, whose distance from
the origin of momentum establishes an upper bound for the
radius of convergence of the ERE, could lie at momenta larger
than 2kF . In this way, the presence of such forbidden poles
does not exclude that the in-medium momenta involved in
the calculation of Ē may be smaller than the ERE radius of
convergence. This has been done by evaluating the absolute
value of the ratio between kF and the resonant momentum,
and it is always found that this ratio is larger than one, so
that these poles are relevant in the momentum range of the
many-body system and clearly impact the calculation of Ē .

As a result of these considerations, we conclude that it is
not possible that a degenerate unpolarized fermionic system
interacting in P wave reaches a stable configuration in normal
matter for sufficiently low density (such that one can apply the
ERE for characterizing the scattering amplitude in vacuum).
This conclusion is complementary to that of Ref. [16] for a
single-species polarized fermion gas, where it is obtained that
the normal matter state is not stable.

The structure of the paper is as follows: After this in-
troduction we discuss in Sec. II the formalism employed to
calculate the energy density E and plot the energy per particle
Ē for the whole set of scattering parameters a1 and r1 looking
for its minima as a function of the Fermi momentum kF .
Section III is dedicated to discuss the pole structure of a
P-wave partial-wave amplitude characterized by its scattering
volume and effective momentum, and its implications for
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(a) (b)

FIG. 1. Resummation of the Hartree (a) and Fock (b) diagrams.
The black and red lines running in parallel are on-shell fermions with
momenta less than kF , and the Ld loops are given by two sets of such
lines facing each other (Hartree) or radially opposite (Fock). The
inwards single solid lines are tm, and the dots indicate extra insertions
of the interaction.

the feasibility of calculated Ē , paying special attention to its
minima. Conclusions are gathered in Sec. IV. There is also an
Appendix dedicated to other properties of the minima in Ē .

II. CALCULATION OF THE ENERGY PER PARTICLE

Reference [20] performs the resummation of the Hartree
and Fock diagrams in terms of an arbitrary vacuum T matrix,
called tV , by resumming the ladder diagrams [25], shown in
Fig. 1. This resummation includes both particle-particle and
hole-hole intermediate states interacting by insertions of tV .
We follow the notation of Ref. [20] and employ the resulting
expression for the energy density,

E = k5
F

10mπ2
− i

2
Tr ln (I − tmLd ). (1)

Above, the first term on the right-hand side is the kinetic-
energy density of a spin-1/2 Fermi gas, with fermion mass m
and Fermi momentum kF . The second term is the interaction-
energy density expressed in terms of a trace that is taken
over all two-fermion states inside the Fermi sea, that is, with
momenta under kF (this limitation is encoded in the loop
function Ld to be specified below). In Eq. (1), tm is an on-shell
two-fermion scattering amplitude that we define after some
preliminaries are introduced. A detailed derivation of this
formula is given Sec. 2.2 of Ref. [20].

The expression for Ld is

Ld (p, a) = i
mp

16π2

∑
σ1,2

∫
dk̂ θ (kF −|a+pk̂|)θ (kF −|a−pk̂|)

× |pk̂σ1σ2〉A A〈pk̂σ1σ2|. (2)

We denote by |pσ1σ2〉A an antisymmetric two-fermion state.
The two fermions have spin 1/2 and third components of spin
σi, i = 1, 2. Their relative momentum is p ≡ (p1 − p2)/2,
where pi is the momentum of the ith particle, and the total mo-
mentum is 2a ≡ p1 + p2. The Heaviside functions in Eq. (2)
guarantee that the two fermions have momentum below kF .
The total energy of the on-shell pair is 2a0 = (p2

1 + p2
2)/2m =

(a2 + p2)/m, which fixes p ≡ |p| for a given total momentum
(since a is conserved in the scattering process).

The in-medium scattering amplitude tm(a) stems from the
iteration of tV with mixed two-fermion intermediate states in
which one of them has momentum below kF while the mo-
mentum of the other one is unconstrained. The loop function
Lm(p, a) associated with these intermediate states obeys the
expression

Lm(p, a) = − m

2

∑
σ1,2

∫
dk

(2π )3 [θ (kF − |a + k|)

+ θ (kF − |a − k|)] |kσ1σ2〉A A〈kσ1σ2|
k2 − p2 − iε

. (3)

The amplitude tm(a) satisfies the following equation,

tm(a) = tV + tV Lm(p, a)tm(a). (4)

In Fig. 1, we draw the diagrams resummed by the interacting
part of E in Eq. (1). The Hartree diagrams are shown in
Fig. 1(a) and the Fock ones in Fig. 1(b). The double lines (one
in black and another in red running parallel to each other)
are fermions inside the Fermi sea, while a single solid line
corresponds to an in-medium interaction tm. Notice that in the
Hartree diagrams two facing sets of double lines made up a
Ld , while for the Fock diagrams this is so for radially opposite
double lines. The intermediate states in Ld interact by tm, and
the three dots indicate further iterations of the product tmLd .

The evaluation of the interaction energy is done using the
partial-wave expansion developed in Ref. [20]. The states in
the partial-wave basis are denoted by |Jμ�Sp〉, with definite
total angular momentum J , third component μ, orbital angular
momentum �, and total spin S. By taking the trace in Eq. (1)
in the plane-wave basis one has

E = k5
F

10mπ2
− 2i

mπ3

∑
Jμ�S

χ (S�)2
∫ kF

0
a2da

∫ √
k2

F −a2

0
pd p

× 〈Jμ�Sp| ln (−tm(aẑ)Ld (p, aẑ))|Jμ�Sp〉, (5)

where rotational invariance allows us to take a along the z
axis. The factor χ (S�)2 selects even values for the sum S +
� because of the Pauli exclusion principle, being two in that
case.

The integral equation satisfied by the partial-wave ampli-
tudes (PWAs) in the many-body environment is more involved
than in the vacuum case because of the extra mixing be-
tween PWAs due to the dependence of scattering on the total
momenta. This extra mixing is accounted for within the for-
malism by the matrix

BJ2μ�2,J1μ�1

= −2χ (S�2)χ (S�1)
∑
m3s3

(m3s3μ|�2SJ2)

× (m3s3μ|�1SJ1)
∫

dk̂ Y m3
�2

(k̂)∗Y m3
�1

(k̂)θ (kF −|k−aẑ|).
(6)

However, μ and S are conserved in the scattering process [20].
In the previous equation Y m

� (k̂) is a spherical harmonic and
(m1m2m3| j1 j2 j3) is the Clebsch-Gordan coefficient for the
addition of the angular momenta j1 + j2 = j3.
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For the case of contact interactions it is shown in Ref. [20]
that it is possible to derive an algebraic expression for the
vacuum off-shell PWAs tV (p′, p)αβ for p, p′ bounded [this
is the case in the integral equation of Eq. (4), where p and
p′ < 2kF ]. Using a cutoff regularization in a generic scheme
these PWAs are renormalized by reproducing the effective-
range expansion (ERE) up to some order, with the cutoff
finally sent to infinity. Within a matrix notation, so that the
set of coupled PWAs is denoted by the matrix tV (p′, p), one
can show that

tV (p′, p) = 4π

m
(p′)�τ (p)(p)�,

(p)� = diag(p�1 , . . . , p�n ), (7)

and analogously for (p′)�. In the previous equation, �i (i =
1, . . . , n) is the orbital angular momentum of the n coupled
PWAs, and

τ (p)−1 = −(a)−1 + 1

2
(r)p2 +

M∑
i=2

(
v

(2i)
�

)
p2i − i(p�)2(p),

(8)

with M being the order up to which the ERE is reproduced.
In this equation (a), (r), and (v(2i)

� ) are n × n matrices corre-
sponding to the scattering length, effective range, and shape
parameters, respectively.1 We note that a minimum value of
M, depending on the PWAs studied, is needed to achieve
renormalizability. For example, in the case of P-wave scat-
tering considered here, one needs at least M = 2, as also
obtained in Ref. [21].

In terms of this expression, and using an analogous matrix
notation for the set of PWAs in the many-body environment,

tm(p, p) = 4π

m
(p�)[τ (p)−1 + [Gm(p)]]−1(p�),

[Gm(p)] = − 1

π

∫ ∞

0

k2dk

k2 − p2 − iε
(k�)B(k�). (9)

Notice that the integral over k in [Gm(p)] is bounded because
of the Heaviside function in Eq. (6) with a � kF , cf. Eq. (5),
such that k < 2kF .

Now we proceed to apply the previous formalism to a
fermion liquid interacting via a spin-independent P-wave po-
tential in momentum space,

v(k, p) = k · p[d0 + d2(k2 + p2)], (10)

with the parameters d0 and d2 given in terms of the cutoff to
reproduce the ERE up to and including the effective range. For
this one-channel interaction the ERE simplifies since (a), (r),
and (v2i

1 ) in Eq. (8) are just numbers equal to a1, r1, and v2i
1 ,

respectively, as the scattering in vacuum is uncoupled. Had we
used dimensional regularization, as in Refs. [28,29], instead
of cutoff regularization [34], a renormalized result is possible
reproducing only the scattering volume. However, as we argue
in Ref. [20], we interpret it as an artifact of dimensional

1Depending of the PWAs the dimension of the entries in (a), (r),
etc. are different.

regularization in nonperturbative calculations because, as it is
well known, the power-like divergences are set to zero in this
particular regularization method.2

In the case of a P-wave interaction (� = 1) of two identical
fermions, Fermi statistics requires that S = 1, i.e., the spin-
triplet channel is selected, and for each μ only the PWAs with
J � |μ| contribute. For μ = 0 we have the mixing between
the PWAs 3P0 and 3P2, while 3P1 does not couple. In the
case with μ = ±1 the mixing is between 3P1 and 3P2, and
for μ = ±2 only the 3P2 contributes. One can solve directly
for tm(p, p) in this case and in terms of it calculate the energy
density E by applying Eq. (1). The evaluation of the trace of
the ln is performed by diagonalizing the matrix in its argument
which is possible because it is a unitary matrix [20].

We study the energy per particle Ē = E/ρ, where ρ =
k3

F /3π2 is the number density, as a function of the scattering
volume a1 and the effective momentum r1. The dimensionless
variables

x = −1/a1r3
1 ,

y = kF /r1 (11)

are introduced so that

Ē = 3k2
F

10m
f (x, y) = r2

1
3y2

10m
f (x, y). (12)

To look for the minima of Ē when varying kF for given values
of a1 and r1 it is advantageous to consider the new coordinates

u = tanh (x),

v = tanh (y), (13)

and then the whole xy plane is compressed to the finite extent
(−1, 1) ⊗ (−1, 1) in the uv-plane. The minimum of Ē has to
be searched along the v axis because when kF changes u stays
put. We look for them numerically in steps of 10−3 in the v
variable for a given u. Numerical inaccuracy prevents us from
taking smaller steps, which could a priori limit our search for
potentially narrow minima.

The energy per particle, in kelvin, Ē/kB, with kB being the
Boltzmann constant, is plotted in Fig. 2 in the uv plane. The
filled dots in the same figure mark the positions of the minima.
The value of Ē in absolute terms results by taking, for con-
creteness, |r1| = 0.28 a−1

B [13] and m for 6Li scattering, with
aB being the Bohr radius.3 Notice that, for the given values
of x and y the sign of r1 does not affect Ē since, as indicated
above, Ē = r2

1
3y2

10m f (x, y). In Fig. 2, we observe four branches
of minima within the whole set of parametric values for a1

and r1, two with Ē > 0 and the other two with Ē < 0. Among
all of them, and within our numerical precision, only one
branch can approach arbitrarily close to the unitary limit at
u = v = 0 (i.e., |a1|, |r1| → ∞ and kF → 0), although never
strictly on it. This is the longest branch in the top-right corner

2See also Refs. [35,36] for further discussions and more examples
in vacuum scattering.

3Within our conventions the effective range is multiplied by a factor
−2 compared with Ref. [13].

054003-4



ULTRACOLD SPIN-BALANCED FERMIONIC QUANTUM … PHYSICAL REVIEW C 106, 054003 (2022)

FIG. 2. The energy per particle Ē in units of kelvin is plotted in
the uv plane. The positions of the minima are also indicated by the
dots on top of the surface.

in Fig. 2. Indeed, as we have checked explicitly, the minimum
for u = 0 happens at kF = 0. The other branches only occur
for values of |u| large enough that, for a given r1, implies
a maximum value for |a1|, and stay away from the unitary
limit.4 Other properties of the minima of Ē are discussed in the
Appendix A. They are relegated there because the presence
of these minima is very much affected by untenable pole
structures associated with the ERE used for their calculation,
as discussed in Sec. III.

Let us consider closely the interesting unitary limit with
x = 0 and work out the leading behavior in powers of y
of f (0, y) = Ē 10m

3k2
F

, as introduced above. To calculate E we
have the dimensionless combination 1 − tmLd inside a ln,
cf. Eq. (1). In k3

F τ (kF ) we can extract a global dimension-
less factor y3 = (kF /r1)3 and the rest adopts the form [x +
1
2 y2 + v

(2)
1 r1y4 − iy3 + O(y4)]−1, with x = 0 in the unitary

limit. We indicate the real and imaginary parts of tm as trm,
tim, respectively, and Ld is written as iLi

d . Therefore, trmLi
d

is proportional to y while 1 − itimLi
d behaves as 1 + O(y2),

so that arctan[trmLi
d/(1 + timLi

d )] ∼ y. We can then write Ē =
3k2

F
10m (1 + ξ1y) for x = 0 and |y| � 1. Because of the nonper-
turbative contribution of the effective-range parameter the
unitary limit depends on the order in which the limits x → 0
and y → 0 are taken. Following an analogous procedure as be-
fore it results that for |y/x| � 1 the function f (x, y) behaves
as (1 + ξ2y3/x + ξ3y5/x2), where both ξ2 and ξ3 are universal
since the higher-order shape parameters in the ERE, starting
from v

(2)
1 , are O(y7). Our calculation predicts the following

4We expect that temperature would not affect our results on Ē
shown in Fig. 2 as long as it is much smaller than Ē expressed in
kelvin degrees. This is the case in ultracold fermionic atom experi-
ments where temperature is typically around a few tens of μK (the
only possible exception would be to stay almost on top the unitary
limit where Ē also tends to vanish). The values of Ē along the minima
can be better read from Figs. 7 and 8.

values for these universal parameters:

ξ1 = −6.4054, ξ2 = −0.9549, ξ3 = 0.2049. (14)

At this point we would like to dedicate some discussions
to the corrections to our results for normal matter based on
resumming the ladder diagrams in Fig. 1 for arbitrary vacuum
interactions. For that we apply the power-counting developed
in Ref. [18], and more recently reviewed in Ref. [24]. This
power counting requires us to resum the two-body interactions
with intermediate particle-particle and hole-hole states as the
leading interacting contribution for the calculation of the en-
ergy density E . If the high-energy scale of the interactions
is � the expansion of in-medium diagrams is in powers of
kF /�ξ with �ξ � �, so that subleading contributions sup-
pressed by at least one extra factor of O(kF /�ξ ). For example,
for the case of neutron matter the expansion scale is around√

3π fπ � 0.5 GeV or 2.53 fm−1, corresponding to a density
of 0.55 fm−3 [24]. Therefore, according to the power count-
ing of Ref. [18], ξ1 and ξ2 above should not receive further
contributions from more complicated in-medium Feynman di-
agrams. Thus, our study around the unitary limit of the energy
per particle for small values of kF is particularly interesting
and solid.

III. CONSTRAINTS FROM THE POLE STRUCTURE
IN VACUUM

The secular equation for the poles of τ (p) in the uncoupled
P-wave scattering reads

− 1

a1
+ 1

2
r1 p2 − ip3 = 0. (15)

This equation was already studied in the Appendix E of our
previous paper [20] and applied for specific sets of values of
the scattering parameters in P wave. Here we explore it for the
full set of a1 and r1 parametric values, already considered in
Fig. 2 for the calculation of Ē .

Another important aspect not discussed in Ref. [20] is the
possibility that a priori forbidden pole dispositions could drive
to an acceptable calculation of Ē . The reason is because the
unallowed poles that stem from the use of the ERE should
occur at values of p beyond the radius of convergence of the
ERE. So, if kF is small enough so that 2kF is smaller than the
radius of convergence of the ERE, one could still use that cal-
culation for Ē even if the ERE generates unacceptable poles in
the complex p plane beyond its radius of convergence. Notice
that in the calculation of tm, Eq. (4), in-medium momenta k
up to 2kF are involved in the function Lm(p, a) of Eq. (3).

The zeros in Eq. (15) are

p1 = − ir1

6
(1 + z + z−1),

p2 = r1

6
(−i + eiπ/6z−1 − e−iπ/6z),

p3 = r1

6
(−i − e−iπ/6z−1 + eiπ/6z), (16)
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TABLE I. Pole structure for the different regions in t and r1. The
values that are excluded are those with a boldface letter in them and
happen for tr1 > 0 or, equivalently, a1 > 0. In the table, PR (NR) is
a positive (negative) residue, and b.s.(v.s.) is a bound (virtual) state
pole.

Case r1 < 0 r1 > 0

t < −1/21/3 p1 v.s. b.s. PR
p2 b.s. PR v.s.
p3 b.s. NR v.s.

t = −1/21/3 p1 = p2 Double b.s. pole Double v.s. pole
p3 v.s. b.s. PR

−1/21/3 < t < 0 p1 v.s. b.s. PR
Positive Im p2,3 Negative Im p2,3

0 < t p1 b.s. PR v.s.
Negative Im p2,3 Positive Im p2,3

where

α1 ≡ a1/3
1 = |a1|1/3sgn(a1),

t ≡ α1r1

3 22/3
= α1r1

1081/3
,

z ≡ t

(1 + t3 + √
1 + 2t3)1/3

. (17)

From these definitions we have that z ∈ R, for t � −1/2
1
3 .

One can also work out straightforwardly the residues of the
P-wave S matrix at the different poles, which read

lim
k→pi

(k − pi )S1(k) = lim
k→pi

(k − pi )
2ik3

− 1
a1

+ 1
2 r1k2 − ik3

= −2p3
i

(pi − pk )(pi − pl )
, (18)

with k, l �= i. It is well known since Heisenberg’s papers on
the S matrix that the residue of iS�(k) at the bound-state
poles must be positive. There is a factor i in front of the
S matrix because 2π iResS�(pn) = ∮

dkS�(k)|pi = |Ci|2, inte-
grating around the bound-state pole pi in a counterclockwise
sense, where Ci is a normalization constant multiplying the
bound-state wave function [37]. Hence, the residue of iS�(k)
must be positive at the bound-state pole. In the following we
introduce the shorter notation Resi to refer to the residue of
iS(k) at the ith pole position, cf. Eq. (18).5

Our interest for the residue as a disclaimer for the accep-
tance or rejection of a bound-state pole rests on whether Resi

is positive or negative, respectively. In this sense we can drop
the factor ip3

i in Resi because it is positive for a bound-state

5The requirement Resi > 0 is equivalent to demand that the residue
of the P-wave scattering amplitude be positive, i.e., the coupling
square g2 of a bound state to the continuum must be positive. The
relation is Resi = g2/2Im pi, with Im pi � 0 for a bound-state pole.

TABLE II. Uncoupled nucleon-nucleon P-wave PWAs with pos-
itive a1, giving rise to excluded pole structures when considering the
ERE up to and including a1 and r1. We give a1, r1, t < −1/21/3 the
conflictive bound-state pole p3 and its residue τ3 for each PWA.

2S+1LJ a1 [fm3] r1 [fm−1] t p3 [fm−1] τ3 [fm2]

1P1 2.759 −6.54 −1.926 i 0.352 −1.035
3P1 1.536 −8.40 −2.059 i 0.412 −0.668

pole.6 Then, we introduce the quantity τi defined as

τi = Resi

ip3
i

= −2

(pi − pk )(pi − pl )
, k, l �= i, (19)

as it follows from Eq. (18).
A summary for pole structure in the different ranges of

values of t and r1 is presented in Table I. Its derivation is
discussed in detail in the Appendix B. It is found that the
excluded regions have values for the scattering parameters
such that tr1 > 0, which is equivalent to having a1 > 0, see
Eq. (17).

A. Checking the distance to the nonallowed poles

Inspection of Fig. 2 clearly reveals that the minima for Ē
occur in the region of scattering parameters driving to a pole
content in conflict with general principles, as summarized in
Table I. This is due to fact that in the minima uv < 0, or
equivalently tr1 > 0 because of the relations x = arctanh u =
−1/108t3 and r1 = kF /arctanhv, with kF � 0. However, to
directly rule out because of this reason the set of minima
explored in Sec. II, cf. Fig. 2, would not be justified. The
point is that the ERE has a radius of convergence given by
the position of the nearest singularity to threshold so that out
of this convergence region it could give rise to artifacts, like
the presence of unacceptable poles. However, within its radius
of convergence it is perfectly legitimate to keep using the
ERE. This reasoning was not taken into account in our recent
paper [20], which directly rejected the results for Ē when
using the ERE with parameters given rise to unacceptable
poles. Therefore, a deeper analysis of the use of the ERE is
also needed to fully appreciate the range of applicability of
the results in Ref. [20]. As an illustration of these points let
us consider the application of the ERE in nucleon-nucleon
scattering, where one can find uncoupled P-wave PWAs with
positive scattering volume, like the 1P1 and 3P1 ones.7 The
central values of a1 and r1 for these P waves, taken from
Ref. [38], are shown in Table II. In the same table we also give
the resulting values of t (which are smaller than −1/21/3),

6To see this let us denote by iλi, λi ∈ R the pole position for a
bound or virtual state, then ip3

i = λ3
i , being positive for a bound state

(λi � 0) and negative for a virtual state (λi < 0). Therefore, the sign
of Resi is not affected by the factor ip3

i for a bound state, while its
sign changes for a virtual state. As a result, keeping ip3

i from the
numerator in Eq. (18) has no effect whatsoever in our considerations
that follow, so we drop it.

7We use the standard notation 2S+1LJ to denote PWAs.
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the problematic pole position p3, Eq. (B12), and the unac-
ceptable τ3 < 0, Eq. (B13). In the case of nucleon-nucleon
scattering the radius of convergence of the ERE is |p| <

mπ/2 ≈ 0.35 fm−1, which signals the onset of the left-hand
cut due to one-pion exchange for p2 < −m2

π/4, with mπ the
pion mass. We observe that for the 1P1 partial-wave amplitude
the value of |p3| is almost coincident with this upper limit.
For the 3P1 PWA the value of |p3| is a bit larger, around
0.41 fm−1. We then learn from these examples extracted from
nucleon-nucleon scattering that physical values of a1 and r1

can drive to nonallowed pole structures, with the conflicting
poles happening (barely) out of the convergence region of
the ERE. They cannot lie inside the radius of convergence
for finite-order ERE, if this expansion is reasonable and well
behaved in its application.8

Contrarily to the case of nucleon-nucleon scattering we do
not know the radius of convergence of the ERE for the results
of Ē shown in Fig. 2. However, for each set of ERE parameters
we can determine the position of the unacceptable poles for
a1 > 0 in the complex p plane. Attending to Table I, it turns
out that in the regions of the uv plane where the minima lie the
modulus of these nonallowed poles positions is |p2|. For our
next considerations it is important to realize that |p2| is larger
or equal than the radius of convergence of the ERE (accepting
that it is well behaved with a progressive improvement in the
results as the order is increased). That is, |p2| corresponding
to an unallowed pole is an upper bound for the radius of
convergence of the ERE. We then compare it to kF , and if
2kF > |p2| then the results obtained for Ē are calculated by
employing the ERE beyond its convergence radius, cf. Eq. (9).

In this regard, let us notice that a resonant pole pR in
the complex momentum space with positive imaginary part
also implies a positive imaginary part of the pole position in
energy, ER ≡ MR + i�/2, with MR and � being real positive
numbers. In the P-wave scattering amplitude this pole gives
rise to a term of the form −g2/(E − MR − i�/2) that produces
phase shifts according to the argument of MR − E − i�/2.
Therefore, the phase shifts are negative and cross −90 degrees
at the resonance mass. However, a proper resonance behavior
must give rise to positive phase shifts because of the delay in
the phase of the scattering state trapped by the pseudostation-
ary resonance.

1. u < 0 and v > 0

Let us first consider the region u < 0 (t > 0) and v > 0 in
Fig. 2. According to Table I the problem arises from the fact
that Im p2,3 is positive, so that we evaluate the ratio kF /|p2| as
a function t along the two curves where the minima lie. The
procedure is the following: Given t we can calculate along
each curve u(t ) and v(t ) so that the sought ratio, cf. Eq. (16),

8This is perfectly the case for the 1P1 and 3P1 nucleon-nucleon
PWAs since higher shape parameters in the ERE are given in
Ref. [38], up to v4, and we have checked that the unallowed bound
state for each PWA remains stable if higher-order terms in the ERE
are considered.

is

kF

|p2(t )| = 6y(t )

| − i + eiπ/6u(t )−1 − e−iπ/6u(t )| . (20)

If this ratio were much smaller than one then we could argue
that the poles p2 and p3 are not directly relevant for the
densities involved in the many-body system, not providing
resonant contributions. Conversely, if this ratio were larger
than one then the unphysical resonance phenomenon would
be relevant and the associated minimum should be excluded.

Indeed, let us notice that from Eq. (B16) it follows that

2Re p2 − Im p2

r1
= 1 − z

12z
[2

√
3 − 1 + (2

√
3 + 1)z] > 0

(21)

since 0 < z < 1. Therefore, the Laurent series in momentum
of the P-wave amplitude provided by the ERE around the
resonance pole p2 or p3, selecting the one with positive real
part, converges along the physical real axis for

0 < p < |Re p2|
⎛
⎝1 + 2

√
1 −

(
Im p2

2Re p2

)2
⎞
⎠. (22)

Thus, one has resonant contributions from this pole affecting
the PWA for physical values of p.

To be more definitive let us show the typical behavior
of the P-wave partial-wave amplitude for the minima with
uv < 0 in Fig. 2. The phase shift δ and the modulus squared
of the resulting P-wave scattering amplitudes (sin2 δ)/p2 are
shown in the left and-right panels of Fig. 3 (we take units
such that r1 = 1), respectively. There, the top row is for the
minimum with u = −0.2, v = 0.67 (belonging to the branch
having Ē < 0), and the bottom row corresponds to the min-
imum with u = −0.50, v = 0.71 (with Ē > 0). The values
for a1 and kF in the minima selected are a1 = 4.93 r−3

1 and
kF = 0.79 r1 for u = −0.2, v = 0.67; a1 = 1.82 r3

1 and kF =
0.90 r1 for u = −0.50, v = 0.71. We can observe clearly
marked resonant behavior, with strong peaks in the square
of the amplitudes and rapid varying phase shifts happening
in both cases for p < kF . This unacceptable strong resonance
signal should clearly affect the calculation of Ē , which then
becomes nontrustable and it should be rejected. Notice that
these phase shifts have an inverse resonance shape because of
the reason explained above associated with the wrong sign of
the imaginary part of the momentum in the pole position. Both
minima drive to qualitatively similar behavior of the P-wave
scattering amplitude.

Region around the unitary limit. One has then that u → 0−,
t → +∞, z(t ) → 1, and

p2 = r1

(
1

3
√

6t3/2
+ i

1

54t3

)
+ O(t−9/2). (23)

It is not possible to get rid of this pole in the unitary limit since

kF

|p2| → 3
√

6yt3/2, (24)

and it diverges for t → +∞.
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FIG. 3. Phase shifts and modulus squared of the P-wave scattering amplitude as a function of momentum in units of r1 for two minima
with u < 0 and v > 0. The upper two panels correspond to the minimum u = −0.20, v = 0.67 with Ē < 0, and the lower panels are for the
minimum u = −0.50, v = 0.71 with Ē > 0. The interval of values shown in the p axis runs from zero up to 2kF .

2. u > 0 and v < 0

We can also proceed similarly for the two curves of minima
in the region with u > 0 (t < 0) and v < 0. We distinguish
two further regions:

The region −1/21/3 < t < 0, r1 < 0 is excluded accord-
ing to Table I. The criterion to be studied is the same as
already expressed in Eq. (20). In this region −1 < z < 0,
and within it along −1 < z < −(2

√
3 − 1)/(2

√
3 + 1) the

difference 2|Re p2| − |Im p2| < 0. However, this requires that
0.0185 < u < 0.055 where there are no minima according to
Fig. 2. Therefore, the Laurent series around the resonance pole
still converges within the interval in Eq. (22) for the minima
in the lower left quadrant of the uv plane in Fig. 2.

Analogously as for the case above with u < 0, v > 0, let us
show the typical behavior of the P-wave scattering amplitude
that is driven by the presence of these unacceptable resonance
poles in the complex p plane with positive imaginary part.
We take two typical minima with u = 0.70, v = −0.91 in the
lower branch (with Ē < 0), and u = 0.80, v = −0.84 in the
upper branch (with Ē > 0). The resulting scattering volume
a1 and Fermi momentum kF are a1 = 1.15 |r1|−3 and kF =
1.54 |r1| for the minimum with Ē < 0; a1 = 0.91 |r1|−3 and
kF = 1.23 |r1| for the minimum with Ē > 0. The phase shifts
and amplitude squared that follow are shown in the top and
bottom rows in Fig. 4 for the lower- and upper-branch minima,
respectively. In the figure we take units such that r1 = −1.
We observe again a clear resonance shape in the phase shifts
and modulus squared of the P-wave partial-wave amplitude,

although now the resonance is wider as compared with the
case in Fig. 4. This is due to the larger imaginary part of p2 for
the poles with u > 0 than for those with u < 0. For instance,
for the lower-branch minimum with u < 0 in Fig. 3 we have
p2 = 0.48 + i 0.15 r1, while for the analogous one with u > 0
in Fig. 4 the pole position is p2 = 0.80 + i 0.66 |r1|. The peak
positions in Fig. 4 are around kF in both cases and hence the
calculations of Ē are affected by the presence of this wrong
strong resonance signals and should be discarded.

For the other region with t < −1/21/3 the problem accord-
ing to Table I is that the bound-state pole p3 has a negative
residue. The quotient is now

kF

|p3(t )| = 6|y(t )|
| − i − e−iπ/6u(t )−1 + eiπ/6u(t )|

= 6|y(t )|
1 − cos φ − √

3 sin φ
. (25)

However, this region is not relevant for the minima in
Fig. 2 because t � −1/21/3 implies that u � 0.01852, which
is out of the region with minima, as one can check by simple
inspection of Fig. 2.

B. Discussion

For the four branches of minima of Ē in Fig. 2 we check
the value of the ratio kF /|p2| in Eq. (20), which is the relevant
one for determining the positions of the problematic poles
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FIG. 4. Phase shifts and modulus squared of the P-wave scattering amplitude as a function of momentum in units of |r1| for two minima
with u > 0 and v < 0. The upper two panels correspond to the minimum u = 0.70, v = −0.91 with Ē < 0, and the lower ones are for the
minimum u = 0.80, v = −0.84 with Ē > 0. The interval of values shown in the p axis runs from zero up to 2kF .

with respect to kF . The resulting values for this ratio are
plotted in Fig. 5, with Fig. 5(a) for the minima with Ē < 0
and Fig. 5(b) for Ē > 0. We observe from the resulting curves
that kF /|p2| > 1 and hence the nonlegitimate poles p2 and
p3 are relevant for the densities involved in the degenerate
gas of identical spin-1/2 fermions interacting in P wave. In
particular, the most important one for r1 > 0 (<0) is p2 (p3)
which has positive real part.

Therefore, we conclude that a degenerate fermion gas at
T = 0 with spin-independent P-wave interactions, character-

ized by scattering volume a1 and effective momentum r1, is
not stable. No acceptable minima of Ē are found in the whole
range of values for the scattering parameters, Fig. 5. This
conclusion is complementary to that reached in Ref. [16] for
polarized Fermi gas with identical fermions interacting in P
wave, so that no minima were found for normal matter. We
have now extended this result also for the spin-balanced case.

We also move on with these considerations and ap-
ply them to the quadrants with uv < 0 and evaluate for
every value of u and v the ratio between kF and the

FIG. 5. The ratio kF /|p2|, Eq. (20), is plotted for the minima of Ē shown in Fig. 2. Panel (a) corresponds to the branches of minima with
Ē < 0, and panel (b) corresponds to those with Ē > 0. We observe that the ratio is always greater than one for all the minima pinned down.
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FIG. 6. The shaded regions in the quadrants with uv < 0 com-
prise those values of u and v for which kF /|p2| > 0.5, such that
the calculation of Ē requires to use the ERE beyond its applicability
when expressed in terms of a1 and r1. The white regions either do not
have unacceptable poles (uv > 0) or if they do (uv < 0) then the ratio
kF /|pi| < 0.5, with |pi| the absolute value of the pole position(s) of
the problematic pole(s).

modulus of the unacceptable pole(s), a ratio that we call
w(u, v).9 We divide the uv plane in two regions as shown in
Fig. 6: (i) The one with uv > 0, which are free of unacceptable
poles, and those with uv < 0 such that w(u, v) < 0.5. The
reason for this upper bound is because in the calculation of
tm, Eq. (4), in-medium momenta up to 2kF are involved in
the function Lm(p, a) of Eq. (3). (ii) The rest of the quadrants
with uv < 0 are shaded and for them the calculations are
based on the use of ERE out of its radius of convergence.
Without further information a conservative attitude requires
its exclusion. Of course, the set of minima discussed above
in more detail lie within the shaded areas of the uv plane in
Fig. 6, because kF /|p2| > 1, as already shown in Fig. 5.

Finally, we also consider the inspection of Ē as a function
of −1/a1k3

F for r1 = 0. The ERE P-wave scattering amplitude
simplifies then to k2(−1/a1 − ik3)−1. The issue here is again
the raise of unacceptable poles for a1 � 0. Taking the limit
r1 → 0 in the expression for pi, i = 1, 2, 3, we have

p1 = −i
1

α1
, p2 =

√
3 + i

2α1
,

p3 = −√
3 + i

2α1
. (26)

For α1 > 0 it follows that p1 is a virtual state but p2 and p3

constitute a couple of resonance poles with positive imaginary
part, which is not allowed. This settles that the radius of con-
vergence of a well-behaved ERE should be smaller than 1/α1

for α1 > 0. Therefore, in the perturbative regime in which
|a1| → 0 this upper bound to the radius of convergence tends
to infinity and poses no problem. However, as a1 → +∞ the
radius of convergence tends to zero at least as fast as 1/α1.

Imposing then that 2kF < 1/α1 for a1 > 0, the condition
8 � 1/a1k3

F is required for an ERE study with only the scat-
tering volume included to make sense. This translates at the

9It is clear from Table I that if there are more than one unallowed
pole the moduli of their pole positions are common to all of them.

level of the density of the system into the upper bound ρ <

1/24π2a1.

IV. CONCLUSIONS

In summary, we have performed a nonperturbative renor-
malized calculation for unpolarized fermionic quantum
liquids interacting with pure P-wave spin-independent inter-
actions, which are characterized by the scattering volume
a1 and the effective range r1. We then applied the formula
of Ref. [20] that allows one to calculate the energy den-
sity of a spin-1/2 fermion many-body system directly in terms
of the partial-wave amplitudes in vacuum by resumming the
Hartree-Fock series in the ladder approximation. The minima
of the energy per particle Ē are searched in the whole space of
P-wave scattering parameters and a rich structure of minima
is observed. Out of the four branches of minima that result,
one of them reaches values close to (but not strictly at) the
unitary limit.

Further constraints are imposed on the existence of these
minima by establishing whether the pole structure of the vac-
uum scattering amplitudes is permissible. It is then observed
that all the observed minima in Ē correspond to scattering
parameters that give rise to resonance poles with positive
imaginary part in the complex momentum plane, which is not
acceptable by general arguments based on the Hermitian char-
acter of the Hamiltonian. Nonetheless, this is not sufficient
reason to reject those minima because the ERE can give rise
to artifacts beyond its radius of convergence, like generating
unallowed poles, as we have exemplified with the 1P1 and
3P1 nucleon-nucleon P-wave scattering amplitudes. We have
further inquired whether these problematic poles are directly
affecting the interactions for the many-body system and found
that this is actually the case because the referred poles are
located with a momentum smaller than kF in absolute value.
Then, we conclude that no stable minima result for spin-1/2
balanced Fermi gas in normal matter. Other regions of possi-
ble values of a1, r1, and kF have been also identified as lying
beyond the radius of expansion of the ERE.

In addition, we have studied the energy per particle of
this system around the unitary limit and given values for the
leading universal parameters in an expansion in powers of kF .
It would be also interesting to apply these methods to other
systems such as unbalanced-spin quantum liquids and/or in-
teracting with higher partial waves.
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APPENDIX A: PROPERTIES OF THE MINIMA

From the calculation of Ē we can obtain other thermody-
namic and mechanical properties of the minima by employing

054003-10



ULTRACOLD SPIN-BALANCED FERMIONIC QUANTUM … PHYSICAL REVIEW C 106, 054003 (2022)

FIG. 7. Properties for the minima with Ē < 0. From top to bottom and left to right a1 [a−3
B ], ρ [a−3

B ], ĒkB [K], cs [m/s], cs/vF and K/Kfree

are plotted.

well-known thermodynamic identities. At the minimum the
pressure P vanishes, while the chemical potential μ is simply
Ē . We also consider the sound velocity cs and the coefficient
of compressibility K . At a minimum of Ē these magnitudes
fulfill the relations

c2
s = ∂P

∂ρ(m + Ē )
= 1

m + Ē
∂

∂ρ

(
ρ2 ∂ Ē

∂ρ

)
,

K−1 = c2
s ρ(m + Ē ). (A1)

Another interesting relation is that K−1 = ρ2 ∂μ

∂ρ
, so that the

derivative of the chemical potential with respect to the density
is positive at the minima. The calculated properties of the min-
ima are plotted in Figs. 7 (Ē < 0) and 8 (Ē > 0), calculated
with the sign of r1 chosen such that r1v > 0 because then
kF = r1arctanh v > 0 as it must (notice that for the minima
uv < 0). From top to bottom and left to right, we plot a1,
ρ (both in units of a−3

B ), Ē in kelvin, cs in m/s, the ratio
cs/vF , where vF = kF /m is the Fermi velocity, and K/Kfree,

with Kfree = k5
F

9π2 the compressibility coefficient for a free
Fermi gas.

In Fig. 7 the minima with Ē < 0 are considered. The left
branch when approaching the unitary limit has a clear gas
behavior with diverging K and vanishing ρ, Ē , and cs in
that limit. The other branch has a maximum value for a1 of
67.2 a−1

B . For the branches with Ē > 0 drawn in Fig. 8 their
scattering volumes are also bounded from above with the
maxima values of a1 = 101.8 a−1

B for u < 0, and 49.0 a−1
B for

u > 0. In both figures we observe that the density of particles
has typical values of a few fermions in a volume of 103 a3

B.
The sound velocity shows typical values of hundreds of m/s
and, except in the case of diverging a1, it is larger than vF .

APPENDIX B: POLE CONTENT AS A FUNCTION
OF t AND r1

We now analyze in detail the pole content from Eq. (15) as
a function of t and r1, indicating the regions that are allowed
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FIG. 8. Properties for the minima with Ē > 0. The light shaded areas reflect the remaining numerical uncertainty in our calculation. For
the rest see the caption in Fig. 7.

and excluded according whether the properties of these poles
are allowed or not.

1. Pole content for t = −1/2
1
3

At t = −1/2
1
3 it follows from Eq. (17) that

r1α1 = −541/3. (B1)

The resulting pole positions are

p1 = − ir1

3
, (B2)

p2 = p1 = − ir1

3
,

p3 = ir1

6
. (B3)

Region excluded. r1 < 0: we have a double bound-
state pole which is excluded based on general considera-
tions [37,39].

Region allowed. r1 > 0: we have a double virtual-state pole
and a bound state pole (p3). The residue of the bound state is

τ3 = 8

r2
1

> 0. (B4)

The borderline value r1 = 0 is excluded because all poles
are degenerate pi = 0 and they could be considered as a
higher-order bound-state pole.

2. Pole content for t < −1/2
1
3

In this case |z(t )| = 1 because

z(t ) = t

(1 + t3 + i
√−1 − 2t3)1/3

,

|z(t )3| =
√

t6

(1 + t3)2 − 1 − 2t3
= 1, (B5)
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and we write z(t ) in terms of its phase φ(t ),

z(t ) ≡ eiφ(t ), t < −1/21/3. (B6)

For t → −∞ then u → ei2π/3 and for t → −1/21/3 one has
u → −1. Then, its phase moves from φ = π (t → −1/21/3)
to φ = 2π/3 (t → −∞).

Let us now analyze the different pole positions. For the
pole position p1 we have

p1 = − ir1

6
(1 + 2 cos φ). (B7)

For φ = 2π/3 we have 1 + 2 cos φ = 0. For larger values of
φ < π then

1 + 2 cos φ < 1 + 2 cos 2π/3 = 0. (B8)

Thus, if r1 > 0 then p1 is a bound state, otherwise (r1 < 0) it
is a virtual state. Regarding τ1 we have

τ1 = 24

r2
1 (1 + 2 cos 2φ)

> 0. (B9)

This is so because 4π/3 < 2φ < 2π and then 0 < 1 +
2 cos 2φ.

Pole position p2:

p2 = ir1

6
(−1 + cos φ −

√
3 sin φ). (B10)

For π < φ < 2π/3 it is trivial to conclude that −1 + cos φ −√
3 sin φ < 0 and then p2 is a bound state for r1 < 0 and a

virtual state for r1 > 0. Regarding its residue,

τ2 = 12cosec2φ

r2
1 (1 − √

3 cot φ)
> 0, (B11)

because cot φ < 0 for π < φ < 2π/3.
Pole position p3:

p3 = ir1

6
(−1 + cos φ +

√
3 sin φ). (B12)

For φ = π then −1 + cos φ + √
3 sin φ = −2. As φ de-

creases towards the limit value of 2π/3 then cos φ + √
3 sin φ

becomes larger since both cos φ and sin φ increases and for
φ = 2π/3 one has that −1 + cos φ + √

3 sin φ = 0. There-
fore, −1 + cos φ + √

3 sin φ < 0 for π < φ < 2π/3. Thus,
p3 is bound state for r1 < 0 and a virtual state for r1 > 0. The
p3 pole is shallower than p2. Regarding τ3,

τ3 = 12cosec2φ

r2
1 (1 + √

3 cot φ)
< 0, (B13)

since 1 + √
3 cot φ < 0 for 2π/3 < φ < π , being zero for

φ = 2π/3.
Region excluded. r1 < 0 because p3 is a bound state with

negative residue.
Region allowed. r1 > 0 since p3 becomes a virtual state

pole.
The borderline value r1 = 0 should be excluded because all

poles are degenerate at pi = 0, and they could be considered
bound states.

3. Pole content for t > −1/2
1
3

For these values of t then z(t ) ∈ R. We have that z < 0 for
−1/21/3 < t < 0 and z > 0 for t > 0.

Pole position p1:

p1 = − ir1

6
(1 + z + z−1). (B14)

For −1/21/3 < t < 0, i.e., −1 < z < 0, then h(z) ≡ 1 + z +
z−1 has values within the interval (−∞,−1), while for 0 < t ,
i.e., 0 < z, then h(z) decreases from +∞ to 0 as z increases.
As a result, p1 is either a bound state or a virtual state depend-
ing on the range of values of t for a given r1 according to the
following:

(a) −1/21/3 < t < 0: p1 is a bound state for r1 > 0, and a
virtual state if r1 < 0.

(b) 0 < t : p1 is a virtual state for r1 > 0, while p1 is a
bound state when r1 < 0.

Regarding its residue τ1,

τ1 = 24z2

r2
1 (1 + z2 + z4)

> 0 (B15)

for nonvanishing z, and no extra constraint stems from here.
The poles p2 and p3 are resonance poles that share the same

imaginary part and have real parts with different sign. Their
imaginary and real parts are, respectively,

Im p2 = Im p3 = r1

12z
(1 − z)2,

Re p2 = −Re p3 = r1

√
3(1 − z2)

12z
. (B16)

Then, in the range −1/21/3 < t < 0 (z > 0) we have Im p2 <

0 for r1 > 0, while Im p2 > 0 if r1 < 0, which is excluded. In
turn, for 0 < t (0 < z) it follows that Im p2 > 0 for r1 > 0,
which is excluded, while Im p2 < 0 for r1 < 0.
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