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Background: The transverse densities ρ1;2ðbÞ describe the distributions of electric charge and magnetic
moment at fixed light-front time and connect the nucleon’s elastic form factors with its partonic structure.
The dispersive representation of the form factors F1;2ðtÞ expresses the densities in terms of exchanges of
hadronic states in the t-channel and permits their analysis using hadronic physics methods. Purpose:
Compute the densities at peripheral distances b ¼ OðM−1

π Þ, where they are generated predominantly by the
two-pion states in the dispersive representation. Quantify the uncertainties. Methods: Dispersively
improved chiral effective field theory (DIχEFT) is used to calculate the isovector spectral functions
ImF1;2ðtÞ on the two-pion cut. The method includes ππ interactions (ρ resonance) through elastic unitarity
and provides realistic spectral functions up to t ≈ 1 GeV2. Higher-mass states are parametrized by effective
poles and constrained by sum rules (charges, radii, superconvergence relations). The densities ρ1;2ðbÞ are
obtained from their dispersive representation. Uncertainties are quantified by varying the spectral functions.
The method respects analyticity and ensures the correct b → ∞ asymptotic behavior of the densities.
Results: Accurate densities are obtained at all distances b≳ 0.5 fm, with correct behavior down to b → 0.
The region of distances is quantified where transverse nucleon structure is governed by the two-pion state.
The light-front current distributions in the polarized nucleon are computed and discussed. Conclusions:
Peripheral nucleon structure can be computed from first principles using DIχEFT. The method can be
extended to generalized parton distributions and other nucleon form factors.
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I. INTRODUCTION

Transverse densities have emerged as a key concept in
nucleon structure physics. The functionsρ1;2ðbÞ describe the
transverse coordinate distributions of charge and current in
the nucleon at fixed light-front time xþ ¼ x0 þ x3 and
provide a spatial representation appropriate to the relativistic
nature of the dynamical system [1–4]. They are defined as
two-dimensional Fourier transforms of the invariant form
factors (FFs) F1;2ðtÞ parametrizing the current matrix
element between nucleon states. At the same time, they
represent a projection of the generalized parton distributions
(GPDs) describing the distribution of partons in light-front
longitudinal momentum and transverse position [2,3]. As
such, the transverse densities connect the FFs measured in

low-energy electron-nucleon elastic scattering with the
partonic structure probed in high-energy processes such
as deep-inelastic scattering and hard exclusive processes.
The nucleon FFs F1;2ðtÞ at spacelike momentum trans-

fers t < 0 can be interpreted in terms of hadronic exchanges
between the current and the nucleon. The mathematical
framework is provided by the dispersive representation of
the FFs based on analyticity in t. The FFs at t < 0 are
expressed as integrals over their imaginary parts on the cut
at t > tthr > 0, ImF1;2ðtÞ, the so-called spectral functions,
which correspond to t-channel states with definite hadronic
composition and quantum numbers. A similar dispersive
representation can be derived for the transverse densities
[5]. It establishes a correspondence between the densities at
a given distance b and the hadronic exchanges at various
masses t > 0 [6]. In particular, it connects the densities at
large distances b≳ 1 fm with the lowest-mass t-channel
states and permits a systematic study of “peripheral”
nucleon structure [5,7–9]. Using this framework one can
compute the peripheral densities from first principles
employing methods of hadronic physics. One can also
explore the duality between the hadronic exchanges in the
t-channel and the partonic structure in the s-channel [6].
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The lowest-mass t-channel state in the nucleon electro-
magnetic FFs is the two-pion (ππ) state. It appears in
the isovector channel and saturates the isovector spectral
functions up to t ≈ 1 GeV2. The ππ system in this mass
region interacts strongly and forms the ρ resonance at
t ≈ 0.6 GeV2. The picture of “vector dominance” abstracted
from this situation explains many observations in the
phenomenology of the electromagnetic FFs of the nucleon
and other hadrons. The spectral functions in the ππ channel
have been constructed empirically using methods of had-
ronic amplitude analysis, such as elastic unitarity with input
from πN scattering data [10,11], or Roy-Steiner equations
[12]. The transverse densities have been studied using
the dispersive representation with such empirical spectral
functions [6].
It would be interesting if the transverse densities could

be computed using spectral functions derived from chiral
effective field theory (chiral EFT). This approach would
open up several new possibilities. First, chiral EFT is
predictive and allows one to reduce the information content
of the spectral functions and densities to a few universal
parameters (low-energy constants), which are determined
from independent measurements. Second, one can quantify
the uncertainties in the peripheral densities using the
parametric expansion of chiral EFT. Third, because chiral
EFT is a point-particle field theory, one can explore the
duality between t-channel exchanges and s-channel struc-
ture at a microscopic level and derive a partonic represen-
tation of the chiral processes. Fourth, because of the
universality of chiral EFT one can relate the electromag-
netic densities to other elements of peripheral nucleon
structure.
Traditional chiral EFT calculations of the spectral func-

tions are limited to the near-threshold region t − 4M2
π∼ few

M2
π and cannot describe the ρ resonance region, because the

strong ππ interactions amount to large higher-order correc-
tions [13–16]. When applied to the transverse densities, this
only allows one to compute the densities at very large
distances b≳ 2 fm, where they are extremely small and are
of little practical interest [5,7–9]. In order to go to smaller
distances, one needs an approach that takes into account the
ππ interactions in the ρ region in a different manner.
Dispersively improved chiral EFT (DIχEFT) is an approach
that incorporates ππ interactions through elastic unitarity
and enables EFT-based calculations of the spectral functions
in the ρ meson region [17–19] (an equivalent alternative
formulation is described in Ref. [20]). Using an N=D
representation, the spectral function is separated into a part
containing the nonperturbative interactions in the ππ system,
which is taken from the measured pion timelike FF, and a
part describing the coupling of the ππ system to the nucleon,
which can be computed with chiral EFT with good con-
vergence. The DIχEFT spectral functions have been used to
compute the electromagnetic FFs [18,19] and extract the
proton radii from elastic scattering data [21,22]; the

approach has also been applied to the nucleon scalar FF
[17]. A first study of transverse densities has been performed
in leading-order (LO) accuracy [23].
In this work we use DIχEFT to compute the peripheral

transverse charge and magnetization densities ρ1;2ðbÞ in the
nucleon and study their properties. We construct the ππ
spectral functions ImF1;2ðtÞ in partial next-to-leading-order
(N2LO) accuracy. High-mass states are described by
effective poles, whose parameters are fixed by dispersive
sum rules and superconvergence relations. We compute the
transverse densities in the dispersive representation and
quantify the region of distances where they are dominated
by the ππ state. We quantify the uncertainties of the
densities resulting from the low-energy constants and the
high-mass poles. We also compute the transverse light-front
current densities and construct two-dimensional images of
the transversely polarized nucleon. We discuss the inter-
pretation of the results and possible applications to physics
studies with transverse densities.
Novel aspects of the present study of transverse densities

are as follows: (a) The dispersive representation respects
the analytic properties of the FFs (position and strength of
singularities) and produces densities with the correct
asymptotic behavior at b → ∞. This makes it possible to
reliably compute the peripheral densities and estimate their
uncertainties. Methods based on the Fourier transform of
empirical FFs become unstable at large b and are not
adequate for peripheral densities [24]. (b) The DIχEFT
approach incorporates ππ interactions and the ρ resonance
and produces realistic spectral functions up to t ≈ 1 GeV2,
which allows one to compute the densities down to
distances b ≲ 0.5 fm, substantially smaller than possible
with traditional chiral EFT [5,7–9]. This means that a large
fraction of transverse nucleon structure is now amenable to
an EFT description and can be deconstructed in terms of
effective degrees of freedom and low-energy constants,
representing a significant gain of information. It also means
that the EFT description at large distances can be matched
with a quark model-based description of the densities at
distances b ≲ 1 fm, enabling studies of quark-hadron
duality in the transverse densities. (c) The uncertainties
of the densities are estimated in the context of the dispersive
representation, by varying the elements of the spectral
functions. The unknown high-mass part of the spectral
functions is parametrized by a random ensemble of high-
mass poles, whose distribution is constrained by stability
criteria imposed on the spacelike FFs. This new formu-
lation minimizes the model dependence in the description
of the high-mass states [18,19] and enables robust uncer-
tainty estimates for the densities.
The article is organized as follows. In Sec. II we describe

the methods used in the present study, including the
properties of the transverse densities, their dispersive
representation, the construction of the DIχEFT spectral
functions, and the uncertainty estimates in the dispersive
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representation. In Sec. III we describe the results, including
the DIχEFT isovector spectral functions, the isovector
transverse densities, the proton and neutron densities,
and the light-front current densities in the polarized
nucleon. In Sec. IV we discuss the results and outline
possible future applications to quark-hadron duality and
other structures. In Appendix Awe collect the nucleon radii
and their uncertainties, which serve as input parameters in
the DIχEFT calculation. In Appendix B we summarize the
formulas for the N functions appearing in the calculation of
the spectral functions in the N=D representation. In
Appendix C we describe the parametrization of the iso-
scalar spectral functions used in the calculation of proton
and neutron densities.

II. METHODS

A. Transverse densities

The transition matrix element of the electromagnetic
current operator between nucleon (proton, neutron) states
with four-momentum transfer Δ≡ p0 − p is described by
the FFs F1ðtÞ and F2ðtÞ (Dirac and Pauli FFs); see Ref. [23]
for details. They are functions of the invariant momentum
transfer t ¼ Δ2, with t < 0 in the physical region of elastic
scattering. Their values at t ¼ 0 are given by the nucleon
charges and anomalous magnetic moments (in units of
nuclear magnetons)

Fp;n
1 ð0Þ ¼ Qp;n ¼ ð1; 0Þ; ð1Þ

Fp;n
2 ð0Þ ¼ κp;n ¼ ð1.793;−1.913Þ: ð2Þ

The isovector and isoscalar components are defined as

FV;S
i ≡ 1

2
ðFp

i ∓ Fn
i Þ ði ¼ 1; 2Þ; ð3Þ

the same convention is used for other quantities (densities,
radii; see below).
The FFs are invariant functions and can be analyzed

without specifying the form of relativistic dynamics or
choosing a reference frame. Their interpretation in terms
of spatial distributions requires specific choices. In the light-
front form of relativistic dynamics one follows the evolution
of strong interactions in light-front time xþ ≡ x0 þ x3 and
describes the structure of systems at fixed xþ [25–27]. In this
context it is natural to consider the FFs in a class of reference
frames where the four-momentum transfer has only trans-
verse components, Δ0 ¼ Δ3 ¼ 0;ΔT ≡ ðΔ1;Δ2Þ ≠ 0, with
jΔT j2 ¼ −t. The FFs can then be represented as two-
dimensional Fourier integrals over a transverse coordinate
variable b, with b≡ jbj,

Fiðt ¼ −jΔT j2Þ ¼
Z

d2b eiΔT ·bρiðbÞ ði ¼ 1; 2Þ ð4Þ

(the two-dimensional Fourier integrals can also be expressed
as radial Fourier-Bessel integrals) [1–4]. The functions
ρ1;2ðbÞ defined by Eq. (4) are called the transverse densities.
Their spatial integrals reproduce the total charge and
anomalous magnetic moment,

Z
d2b ρp;n1 ðbÞ ¼ Fp;n

1 ð0Þ ¼ Qp;n; ð5Þ

Z
d2b ρp;n2 ðbÞ ¼ Fp;n

2 ð0Þ ¼ κp;n: ð6Þ

The functions ρ1;2ðbÞ describe the transverse spatial dis-
tributions of electric charge and anomalous magnetic
moment in the nucleon at fixed light-front time. The
distributions are frame-independent (they are invariant
under longitudinal light-front boosts and transform kine-
matically under transverse boosts) and provide a spatial
representation appropriate to the relativistic nature of the
dynamical system; see Refs. [2,7,28] for details and
Refs. [29,30] for a discussion of alternative concepts.
A simple interpretation of the densities can be provided

in nucleon states which are localized in transverse position
(see Fig. 1; we use x, y, z to denote the 1,2,3 spatial
directions) [2,7]. In a state where the nucleon is localized at
the transverse origin, and its spin quantized along the
y-direction, the expectation value of the current Jþ at the
transverse position b is

hJþðbÞiplocalized ¼ ð� � �Þ½ρp1 ðbÞ þ ð2SyÞ cosϕ ρ̃p2 ðbÞ�; ð7Þ

ρ̃p2 ðbÞ≡ ∂

∂b

�
ρp2 ðbÞ
2mN

�
ð8Þ

(b)

(b)

2

1
p

p

y

left
right

z

x

S
y ∼

b

FIG. 1. Interpretation of the transverse densities in a proton
state localized at the transverse origin, x ¼ y ¼ 0, Eq. (7). ρp1 ðbÞ
describes the spin-independent Jþ current at transverse radius b.
ρ̃p2 ðbÞ describes the spin-dependent distortion in a proton polar-
ized in the y-direction.
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(same for p → n). Here ð� � �Þ represents a factor resulting
from the normalization of states [7], ϕ is the angle of
the vector b relative to the x-axis, and Sy ¼ �1=2 is the
expectation value of the spin in the y-direction. mN is the
nucleon mass (same for p and n). Thus ρ1ðbÞ describes
the spin-independent part of the plus current in the localized
nucleon state, and ρ̃2ðbÞ describes the spin- and angle-
dependent part of the current in a transversely polarized
nucleon. Note that ρ̃2ðbÞ satisfies the integral relation

Z
d2b b ρ̃p;n2 ðbÞ ¼ −

κp;n

mN
; ð9Þ

which is obtained from Eq. (6) by integration by parts.
The derivatives of the FFs at t ¼ 0 are related to the

average squared transverse radii of the distributions,

4
dFp;n

1

dt
ð0Þ ¼ hb2ip;n1 ≡

Z
d2b b2ρp;n1 ðbÞ; ð10Þ

4

κp;n
dFp

2

dt
ð0Þ ¼ hb2ip;n2 ≡ 1

κp;n

Z
d2b b2ρp;n2 ðbÞ: ð11Þ

The factor of 4 results from the two-dimensional distribu-
tions and replaces the well-known factor of 6 in the
representation of the FF derivatives in terms of conven-
tional three-dimensional radii. While the three-dimensional
radii have a physical interpretation only in nonrelativistic
systems, the transverse radii here are averages of spatial
distributions that have a well-defined meaning for relativ-
istic system. The relation between the transverse radii and
the three-dimensional Dirac and Pauli radii hr2i1;2 is

hb2ip;n1 ¼ 2

3
hr2ip;n1 ; hb2ip;n2 ¼ 2

3
hr2ip;n2 : ð12Þ

The nucleon radii are used as parameters in the dynamical
calculations of the transverse densities in this work.
Because FF phenomenology usually quotes the three-
dimensional nucleon radii, we present our calculations
such that they use the three-dimensional radii as input,
keeping in mind that they are related to the transverse radii
by Eq. (12). The empirical values of the three-dimensional
radii and their uncertainties are summarized in Appendix A
and will be quoted in the following.
In studies of the nucleon’s partonic structure in QCD one

considers the transverse coordinate distributions of quarks
and antiquarks with a given light-cone momentum fraction
x in the proton, faðx; bÞ and faðx; bÞ, where a ¼ u; d;…,
denotes the quark flavor. They are defined as the Fourier
representation of the GPDs Haðx; ξ ¼ 0; tÞ, which describe
the FFs of partons with light-cone plus momentum fraction
x in the proton, in the situation where the plus momentum
difference between the proton states is ξ ¼ 0 and the
momentum transfer has only transverse components [2,3],

Haðx; ξ ¼ 0; t ¼ −jΔT j2Þ ¼
Z

d2b eiΔT ·bfaðx; bÞ; ð13Þ

−Hað−x;ξ¼0;t¼−jΔT j2Þ¼
Z

d2beiΔT ·bfaðx;bÞ: ð14Þ

In this context the transverse charge density ρp1 ðbÞ repre-
sents the integral over x of the difference of the proton’s
quark and antiquark distributions at transverse radius b,
weighted by the quark charges ea,

ρp1 ðbÞ ¼
X
a

ea

Z
1

0

dx½faðx; bÞ − faðx; bÞ�; ð15Þ

which can be interpreted as the cumulative charge of
the partons in the proton at the transverse radius b.
Equivalently, ρp1 ðbÞ represents the Fourier transform of
the first moment of the charge-weighted GPDs,

Z
d2b eiΔT ·bρp1 ðbÞ ¼

X
a

ea

Z
1

−1
dx

×Haðx; ξ ¼ 0; t ¼ −jΔT j2Þ: ð16Þ

A similar relation connects the density ρp2 ðbÞ with the
proton helicity-flip GPDs Eaðx; ξ ¼ 0; tÞ [2,3]. The trans-
verse densities are thus directly related to the nucleon’s
transverse partonic structure in QCD.
The concepts of light-front quantization and partonic

structure referenced here are used only for the interpretation
of the transverse densities but are not needed for their
computation. The densities are simple Fourier transforms of
the invariant FFs and can be computed using hadronic
physics methods such as dispersion theory and effective
field theory. It is this “dual” character that makes the
transverse densities so useful for nucleon structure studies.

B. Dispersive representation

The nucleon FFs are analytic functions of t. The physical
sheet has a principal cut at positive real t > tthr; the
threshold tthr depends on the isospin channel (see below).
The FFs satisfy unsubtracted dispersion relations,

FiðtÞ ¼
1

π

Z
∞

tthr

dt0
ImFiðt0Þ
t0 − t − i0

ði ¼ 1; 2Þ; ð17Þ

which express the functions at complex t as integrals over
their imaginary parts on the cut. The real functions ImFiðt0Þ
are known as the spectral functions. They correspond to
processes in which the electromagnetic current with time-
like momentum transfer t > tthr couples to the nucleon
through a hadronic state in the t-channel. These processes
occur in the unphysical region below the two-nucleon
threshold, tthr < t < 4m2

N , where the spectral functions
cannot be measured directly and have to be constructed
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using theoretical methods; see Ref. [31] for a review. In the
isovector FFs the lowest-mass t-channel state is a two-pion
state with tthr ¼ 4M2

π; in the isoscalar FF it is the three-pion
state with tthr ¼ 9M2

π .
The transverse densities Eqs. (4) can be computed as the

Fourier transform of the dispersive representation of the
FFs, Eq. (17) [5,6]. One obtains a dispersive (or spectral)
representation of the densities as

ρ1ðbÞ ¼
1

2π2

Z
∞

tthr

dtK0ð
ffiffi
t

p
bÞImF1ðtÞ; ð18Þ

ρ̃2ðbÞ ¼ −
1

2π2

Z
∞

tthr

dt

ffiffi
t

p
2mN

K1ð
ffiffi
t

p
bÞImF2ðtÞ; ð19Þ

where K0 and K1 are the modified Bessel functions of the
second kind. Equations (18) and (19) express the densities
at a given distance b as a superposition of contributions of
t-channel states (or exchanges) with squared mass t. The
modified Bessel functions decay exponentially at large
arguments,

K0;1ð
ffiffi
t

p
bÞ ∼

ffiffiffiffiffiffiffiffiffiffiffi
π

2
ffiffi
t

p
b

r
e−

ffiffi
t

p
b ð ffiffi

t
p

b ≫ 1Þ: ð20Þ

The dispersive integrals for the densities therefore converge
exponentially at large t, and the integration effectively
extends over masses

ffiffi
t

p
∼ 1=b: ð21Þ

This provides a mathematical formulation of the connection
between the masses of the exchanges and the ranges of the
spatial distributions in the nucleon. In particular, the
peripheral densities at b ¼ OðM−1

π Þ are governed by low-
est-mass states in the dispersive representation and can be
computed and analyzed accordingly. Note that the actual
spectral composition of the densities—how much the states
with various

ffiffi
t

p
contribute to the densities at given b—

depends on the distribution of strength in the spectral
functions and can be established only with specific models
of the latter.
The dispersive representation offers several theoretical

and practical advantages for studying the peripheral trans-
verse densities compared to other approaches. (a) The
dispersive representation permits efficient calculation of
the peripheral densities. The exponential convergence of
the dispersion integrals reduces the contribution from the
high-mass region, where the spectral functions are poorly
known. Calculations can focus on the low-mass region—
the two-pion part of the isovector spectral function, for
which dedicated theoretical methods are available. The
high-mass region can be parametrized by effective poles,
whose coefficients are fixed by sum rules; only the overall
strength in this region is relevant to the peripheral densities,

not the details of the distribution. (b) The dispersive
representation automatically generates densities with the
correct asymptotic behavior at b → ∞. The asymptotic
behavior of the densities at b → ∞ is governed by the
analytic properties of the FFs in t (position and strength of
singularities), which are explicitly realized in the dispersive
representation. The densities exhibit an exponential decay
with a range governed by the lowest-mass exchanges,
modified by a preexponential factor resulting from the
behavior of the spectral function near the threshold [7]. The
spectral integrals Eqs. (18) and (19) permit stable numerical
evaluation of the densities in the region where they are
exponentially small.1 In contrast, methods calculating the
densities as Fourier transforms of the FFs become numeri-
cally unstable at large b, even if the FF parametrizations
have correct analytic properties.2 (c) The dispersive repre-
sentation enables uncertainty estimates of the peripheral
densities. The densities generated by Eqs. (18) and (19)
depend smoothly on the parameters of spectral function,
even at large bwhere they are exponentially small. Varying
the parameters of the low-mass spectral functions one can
estimate the uncertainties of the peripheral densities in a
manner that respects analyticity and is numerically stable.
Methods using the frequency spectrum of the Fourier
transform of FFs for estimating the uncertainties of the
densities are not appropriate for distances significantly
larger than 1 fm [24].
The spectral functions obey certain integral relations

(sum rules), which result from the constraints on the
nucleon FFs at t ¼ 0 and their derivatives in the dispersive
representation Eq. (17),

1

π

Z
∞

tthr

dt
ImF1ðtÞ

t
¼ Q; ð22Þ

1

π

Z
∞

tthr

dt
ImF1ðtÞ

t2
¼ 1

6
hr2i1 ¼

1

4
hb2i1; ð23Þ

1In Ref. [32] the low-t nucleon FFs were analyzed by
expanding the transverse densities in a set of basis functions
(orthogonal polynomials). That method produces peripheral
densities with an oscillating behavior, which is in conflict with
the smooth exponential falloff dictated by the dispersive repre-
sentation; see Ref. [6] and the results of the present study,
especially Fig. 7. The basis function expansion as implemented
in Ref. [32] does not naturally describe the exponential smallness
of the densities, and correlations between many terms would
be required to express it correctly.

2FF parametrizations with incorrect analytic properties, e.g.
rational functions with singularities at complex t with Im t ≠ 0 on
the physical sheet, produce Fourier densities with qualitatively
incorrect asymptotic behavior at b → ∞. Such FF parametriza-
tions are principally not adequate for evaluating densities at
distances above b≳ 2 fm, even if they provide good fits to the
spacelike FF data at small t < 0; see Ref. [6] for a discussion.
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1

π

Z
∞

tthr

dt
ImF2ðtÞ

t
¼ κ; ð24Þ

1

π

Z
∞

tthr

dt
ImF2ðtÞ

t2
¼ 1

6
κhr2i2 ¼

1

4
κhb2i2: ð25Þ

Additional relations follow from the asymptotic behavior of
the nucleon FFs at large spacelike jtj,

F1ðtÞ ∼ jtj−2; F2ðtÞ ∼ jtj−3 ðjtj → ∞Þ: ð26Þ

This behavior is predicted by the QCD hard scattering
mechanism up to logarithmic corrections (counting rules)
[27]. In F1 the predicted behavior is approximately
observed in the data at jtj ≳ 1 GeV2; in F2 the predicted
behavior is not observed at presently available momentum
transfers [33]; see Ref. [34] for a possible theoretical
explanation in the context of QCD. When imposed on
the dispersive representation of the FFs, Eq. (26) implies
the relations (so-called superconvergence relations)

1

π

Z
∞

tthr

dt ImF1ðtÞ ¼ 0; ð27Þ

1

π

Z
∞

tthr

dt ImF2ðtÞ ¼ 0; ð28Þ

1

π

Z
∞

tthr

dt t ImF2ðtÞ ¼ 0: ð29Þ

At the level of the densities, these relations constrain the
behavior in the limit b → 0. This can be derived from
the dispersive representation, Eqs. (18) and (19), by using
the limiting behavior of the modified Bessel functions at
small argument (here z≡ ffiffi

t
p

b),

K0ðzÞ ¼ −
�
1þ z2

4
þ � � �

�
log zþ analytic; ð30Þ

K1ðzÞ ¼
1

z
þ
�
z
2
þ � � �

�
log zþ analytic; ð31Þ

where “analytic” denotes the parts that are analytic at
z ¼ 0 (constants or positive powers). Equation (27) implies
that

ρ1ðbÞ → finite for b → 0: ð32Þ

The kernel K0ð
ffiffi
t

p
bÞ in Eq. (18) diverges logarithmically

for b → 0 according to Eq. (30); this would cause a
logarithmic divergence of ρ1ðbÞ; however, the coefficient

of the divergent term is zero because of Eq. (27).3 Similarly,
Eqs. (28) and (29) imply that

ρ̃2ðbÞ → 0

dρ̃2
db

ðbÞ → finite

�
for b → 0: ð33Þ

C. Spectral functions

The spectral functions of the isovector nucleon FFs on
the two-pion cut have been computed using various
theoretical approaches, such as analytic continuation of
pion-nucleon amplitudes [10], chiral EFT [13–16], and
Roy-Steiner equations [12]. Here we employ the method of
DIχEFT, which combines general methods of dispersion
theory (elastic unitarity in the ππ channel, N=D represen-
tation) with specific dynamical input from chiral EFT. The
foundations of the method and its applications to FFs are
described in detail in Refs. [17–19]. Here we summarize
only the main steps and the new features arising in the
present application to densities. The new features are as
follows: (a) We now construct the spectral functions
ImF1;2ðtÞ as needed for the transverse densities, whereas
in Refs. [18,19] we worked with ImGE;MðtÞ. (b) We impose
the superconvergence relations resulting from the asymp-
totic behavior of F1;2ðtÞ, which provide additional con-
straints on the high-mass part of the spectral functions.
(c) We implement a more flexible parametrization of the
high-mass part of the spectral function to enable more
realistic uncertainty estimates.
The isovector spectral functions are organized as

ImFV
i ðtÞ ¼ ImFV

i ðtÞ½ππ�Θð4M2
π < t < tmaxÞ

þ ImFV
i ðtÞ½high-mass�Θðt > tmaxÞ

ði ¼ 1; 2Þ; ð34Þ
where Θ is the step function (1 if the argument is true,
otherwise 0). The first term is the contribution of the two-
pion cut that starts at 4M2

π and extends up to tmax ≈ 1 GeV2

(see below); this part is calculated theoretically. The second
term represents the contribution of high-mass states above
tmax of unspecified hadronic composition; this part is
parametrized through effective poles.

1. Two-pion part of spectral function

The two-pion spectral functions are obtained from the
elastic unitarity relation in the two-pion channel (see
Fig. 2). The relation is written in a manifestly real form
by applying a version of the N=D method [37–39],

3Such a logarithmic divergence at b → 0 is observed in the
charge density in the pion, where the FF behaves as FπðtÞ ∼ jtj−1
for jtj → ∞ and no relation like Eq. (27) exists [35,36]. The
finiteness of the charge density in the nucleon at b ¼ 0 appears
natural in the parton picture, as the nucleon is a more composite
system than the pion.
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ImFV
i ðtÞ½ππ� ¼

k3cmffiffi
t

p ΓiðtÞF�
πðtÞ ð35Þ

¼ k3cmffiffi
t

p NiðtÞjFπðtÞj2; ð36Þ

kcm ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=4 −M2

π

q
; ð37Þ

NiðtÞ≡ ΓiðtÞ
FπðtÞ

ði ¼ 1; 2Þ: ð38Þ

kcm is the center-of-mass momentum of the ππ state in the
t-channel, ΓiðtÞ (i ¼ 1, 2) are the ππ → NN partial-wave
amplitudes, and FπðtÞ is the pion timelike FF. The
functions ΓiðtÞ and FπðtÞ in Eq. (35) are complex for
t > 4M2

π because of ππ rescattering but have the same
phase. The ratios NiðtÞ (i ¼ 1, 2) in Eq. (36) are real for
t > 4M2

π and possess only left-handed singularities; they
are free of ππ rescattering effects and describe the coupling
of the ππ system to the nucleon. These functions can be
computed in χEFT with good convergence. The ππ
rescattering effects in Eq. (36) are contained in the squared
modulus of the pion FF, jFπðtÞj2. This function is measured
in eþe− → πþπ− exclusive annihilation experiments and
can be taken from a parametrization of the data [40]. In this
way Eq. (36) factorizes the rescattering effects in the ππ
channel and permits chiral EFT-based computation of the

spectral functions. While Eqs. (35) and (36) are strictly
valid only up to the four-pion threshold t < 16M2

π , the
eþe− exclusive annihilation data indicate that four-pion and
other states are strongly suppressed up to ∼1 GeV2 [40], so
that the elastic unitarity relations can practically be used up
to tmax ¼ 1 GeV2 [10,37].4

The ratios NiðtÞ have been computed in relativistic χEFT
with dynamical N and Δ baryons using the setup described
in Ref. [18], including terms of LO, NLO, and partial
N2LO (pN2LO) accuracy,

NiðtÞ ¼ NiðtÞ½LO� þ NiðtÞ½NLO� þ NiðtÞ½pN2LO�: ð39Þ

At LO accuracy, the ππ → NN amplitudes ΓiðtÞ in the
numerator are given by the Born graphs with intermediate
N and Δ and the Weinberg-Tomozawa contact term; the
pion FF FπðtÞ in the denominator is constant (unity) at this
accuracy (the graphs are given in Fig. 1 of Ref. [18]). At
NLO accuracy, the amplitude Γ2ðtÞ receives an additional
tree-level contribution proportional to the low-energy con-
stant c4 (see graphs in Fig. 2 of Ref. [18] and discussion
there). At N2LO accuracy, pion loop graphs appear, and the
structure of the χEFT expressions in NiðtÞ becomes
considerably richer. At this order ππ rescattering in the
t-channel causes ΓiðtÞ and FπðtÞ to become complex, in
such a way that the phase cancels between numerator and
denominator and the ratio remains real. Also, at this order
graphs with πN and πΔ intermediate states appear in ΓiðtÞ.
Extending the arguments presented in Refs. [18,19], we
estimate the N2LO contributions by assuming that they
have the same functional form as the N2LO tree-level
results, multiplied by constants representing the loop
effects,5

NiðtÞ½pN2LO� ¼ const × NiðtÞ½N2LO-tree� ð40Þ

≡ λit ði ¼ 1; 2Þ: ð41Þ

The values of the parameters λi will be estimated using the
dispersive sum rules (see below). In summary, the LO and
NLO results for the NiðtÞ are given entirely in terms of
known low-energy constants in the chiral Lagrangian; the

−

_

I = J = 1

=

> 4M 2

N

=

t

measured incalculated in
chiral EFT +

N

2

e+e−

ii

Γi

VF

F

F

F

Γ

FIG. 2. Summary of the DIχEFT calculation of the two-pion
part of the isovector spectral functions ImFV

i ðtÞ½ππ� (i ¼ 1, 2).
First line: Elastic unitarity relation with complex amplitudes,
Eq. (35). Second line: Manifestly real form obtained in the N=D
representation, Eq. (36).

4Our approach uses the N=D method with the specific D
function 1=FπðtÞ to write the unitarity relation Eq. (35) in the
manifestly real form Eq. (36), following Refs. [37–39]. It does
not involve the general integral representations of the N and D
functions and their ambiguities, as are encountered in other
applications of the N=D method. For other applications of the
N=D method to hadronic amplitudes, also in combination with
chiral EFT, see Refs. [41–43] and references therein.

5In Eq. (41) we have simplified the functional form of the
N2LO tree-level terms to ∝ t, neglecting constant terms ∝M2

π
with coefficients of order unity, which appear in the exact results.
This simplification is justified because the N2LO terms become
numerically important only at t ∼ 20–50M2

π , where the terms ∝ t
are much larger than the constant terms.
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pN2LO results in our approximation involve one unknown
parameter each.
The χEFT expressions for NiðtÞ at LO and NLO can be

obtained from those of the functions J1�ðtÞ, which appear in
the N=D representation of the unitarity relation for the
GE;MðtÞ FFs and were calculated in our earlier work [18].
The formulas connecting the NiðtÞ and J1�ðtÞ functions are
given in Appendix B of the present article, and the explicit
expressions for the J1�ðtÞ functions are given in
Appendix A of Ref. [18]. Together with the pN2LO term,
Eq. (41), this provides the complete expressions for the
NiðtÞ functions used in the present calculations.
The theoretically calculated NiðtÞ functions are then

multiplied by the empirical pion timelike FF jFπðtÞj2
measured in eþe− → πþπ− exclusive annihilation [see
Eq. (36)]. This function contains the nonperturbative
interactions of the ππ system in the t-channel, which give
rise to the ρ resonance at t ≈ 0.6 GeV2 (see e.g. Fig. 3 of
Ref. [18]). The multiplication with jFπðtÞj2 provides a
substantial numerical enhancement of the spectral func-
tions compared to direct χEFT calculations and gives them
the characteristic peaked shape corresponding to the ρ
resonance. For jFπðtÞj2 we use the parametrization of
Ref. [44], which includes ρ − ω mixing, with the param-
eters determined in Ref. [45].

2. High-mass part of spectral function

The high-mass part of the isovector spectral functions in
Eq. (34) is parametrized by effective poles. It is important
to note that for our calculation of peripheral densities we
need only a summary description of the high-mass strength
of the spectral function, because of the strong numerical
suppression of large t in the dispersion integrals Eqs. (18)
and (19) (see Sec. II B). We construct an appropriate
parametrization by making reasonable assumptions about
the positions of the poles, treating variations of the position
as part of the theoretical uncertainty, and fixing the strength
of the poles through the dispersive sum rules Eq. (22) et
seq. and Eq. (27) et seq.
Several observations suggest that the main strength of the

isovector spectral functions beyond the two-pion region is
located around t ≈ 2 GeV2, and that higher values of t are
strongly suppressed. (a) The eþe− → hadrons exclusive
annihilation data show that the cross section at t > 1 GeV2

is dominated by the 4π channel and concentrated around
t ≈ 2 GeV2 [40]. This suggests similar behavior of the
nucleon spectral functions, even if the connection with
the annihilation cross section is at the amplitude level and
cannot be made explicit. (b) Dispersive fits to the spacelike
nucleon FFs with flexible parametrizations of the high-mass
states usingmultiple effective poles findmost of the strength
in the region around t ≈ 2 GeV2 [46,47]. (c) The dual
resonance model describes the isovector spectral functions
of the pion or nucleon FFs through the exchange of

vector resonances with masses M2
n ¼ M2

ρð1þ 2nÞ, with
M2

0 ≡M2
ρ. The first resonance after the ρ has mass

M2
1 ¼ 3M2

ρ ¼ 1.8 GeV2. If in the nucleonFFs the resonance
contributions decrease rapidly with n, the dominant con-
tribution beyond the ρ should come from this resonance.
Based on these observations, we parametrize the high-

mass part of the isovector spectral function ImFV
1 ðtÞ as

ImFV
1 ðtÞ½high-mass� ¼ πaðV;0Þ1 δðt − tðV;0Þ1 Þ

þ πaðV;1Þ1 δ0ðt − tðV;1Þ1 Þ: ð42Þ

The first term is a delta function, the second term is the
derivative of a delta function. The pole masses have the
nominal value

tðV;0Þ1 ; tðV;1Þ1 ½nominal� ¼ 1.8 GeV2 ¼ 3M2
ρ: ð43Þ

Their actual values are considered undetermined and will be
allowed to vary randomly in a plausible range; their
distribution will be constrained by further physical require-
ments, and the resulting variation in physical quantities will
be regarded as a theoretical uncertainty of the model (see
Sec. II D). Note that the sum of the functions in Eq. (42)
parametrizes both the “strength” and the “shape” of the high-
mass spectral function in the region around t ≈ 2 GeV2 in an
effective form.
Some comments are in order regarding the use of delta

function derivatives in the parametrization Eq. (42). The
high-mass states in the nucleon spectral functions are
traditionally parametrized as a sum of simple delta func-
tions at different positions. In the dispersion integral (where
the functions are evaluated far from the position of the
singularities) such a sum of simple delta functions is
effectively equivalent to a single delta function and deriv-
atives and can be represented as such. The representation in
terms of delta function derivatives offers several practical
advantages. Dispersive fits of the isovector nucleon FFs
using sums of simple delta functions give clusters of poles
around ∼2 GeV2 with varying signs and unnaturally large
coefficients ≫1 [46], which can be combined to a single
delta function and derivatives with coefficients of natural
size ∼1. The parametrization in terms of a delta function
and derivatives thus expresses the relevant functional
freedom with coefficients of natural size. Furthermore,
with this parametrization one can directly express the fact
that all the “structures” arise from the same mass region in
the dispersive integral. Note that the single pole mass
Eq. (43) is used only as the nominal value (as justified by
the above theoretical arguments, and by the subsequent
empirical observations), and that we let the pole masses
vary independently in estimating the uncertainty of the
functional parametrization (see below).
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3. Parameter fixing through sum rules

Combining the two-pion part given by Eqs. (36), (39),
and (41), and the high-mass part given by Eq. (42), the
isovector spectral function ImFV

1 ðtÞ contains three
unknown parameters:

λ1; a
ðV;0Þ
1 ; aðV;1Þ1 : ð44Þ

We fix these parameters through the sum rules for the
isovector charge and radius [see Eqs. (22) and (23)], and the
superconvergence relation for FV

1 [see Eq. (27)]:

1

π

Z
∞

tthr

dt
ImFV

1 ðtÞ
t

¼ QV; ð45Þ

1

π

Z
∞

tthr

dt
ImFV

1 ðtÞ
t2

¼ 1

6
hr2iV1 ; ð46Þ

1

π

Z
∞

tthr

dt ImFV
1 ðtÞ ¼ 0; ð47Þ

where

QV ≡ 1

2
ðQp −QnÞ ¼ 1

2
; ð48Þ

hr2iV1 ≡ 1

2
ðhr2ip1 − hr2in1Þ: ð49Þ

The relations Eqs. (45)–(47) constrain weighted integrals of
the total isovector spectral function ImFV

1 ðtÞ. The integrals
extend over the two-pion and the high-mass parts of the
spectral functions (here n ¼ 0, 1, 2),

Z
∞

tthr

dtt−nImFV
1 ðtÞ≡

Z
tmax

tthr

dtt−nImFV
1 ðtÞ½ππ�

þ
Z

∞

tmax

dtt−nImFV
1 ðtÞ½high-mass�: ð50Þ

The integral over the two-pion part is a continuous integral
and computed numerically; the integral over the high-mass
part is a sum of delta function derivative integrals and is
computed exactly. Since the integrands depend linearly on
the parameters Eq. (44), one obtains a system of linear
equations for the parameters, which can easily be solved.

4. Spectral function ImFV
2 ðtÞ

In the spectral function ImFV
2 ðtÞ, we parametrize the

high-mass part as

ImFV
2 ðtÞ½high-mass� ¼ πaðV;0Þ2 δðt − tðV;0Þ2 Þ

þ πaðV;1Þ2 δ0ðt − tðV;1Þ2 Þ
þ πaðV;2Þ2 δ00ðt − tðV;2Þ2 Þ; ð51Þ

which compared to Eq. (42) includes also a term with a
second derivative of a delta function. The three pole masses
again have the nominal value

tðV;0Þ2 ; tðV;1Þ2 ; tðV;2Þ2 ½nominal� ¼ 1.8 GeV2 ¼ 3M2
ρ ð52Þ

and will be allowed to vary randomly in an interval around
this value (see Sec. II D). The combined spectral function
now contains four unknown parameters:

λ2; a
ðV;0Þ
2 ; aðV;1Þ2 ; aðV;2Þ2 : ð53Þ

They are fixed through the sum rules for the isovector
magnetic moment and the magnetic radius [see Eqs. (24)
and (25)], and by the two superconvergence relations for F2

[see Eqs. (28) and (29)]:

1

π

Z
∞

tthr

dt
ImFV

2 ðtÞ
t

¼ κV; ð54Þ

1

π

Z
∞

tthr

dt
ImFV

2 ðtÞ
t2

¼ 1

6
hr2iV2 ; ð55Þ

1

π

Z
∞

tthr

dt ImFV
2 ðtÞ ¼ 0; ð56Þ

1

π

Z
∞

tthr

dt tImFV
2 ðtÞ ¼ 0; ð57Þ

where

κV ≡ 1

2
ðκp − κnÞ; ð58Þ

hr2iV2 ≡ 1

2
ðκphr2ip2 − κnhr2in2Þ: ð59Þ

In our approach the unknown parameters in the spectral
functions are fixed by the dispersive sum rules and
expressed in terms of the values and derivatives of the
FFs at t ¼ 0. Since values of the FFs (charges and magnetic
moments) are known, this leaves the derivatives (radii) as
the effective parameters of our model. With the spectral
functions determined by the radii, our approach can then
predict the spacelike FFs and the densities in terms of the
radii. This particular “information flow” is made possible
by the analytic properties of the FFs, which relate integrals
over the spectral functions to derivatives of the FF at t ¼ 0.
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5. Contributions to densities

When computing the densities in the dispersive repre-
sentation, Eqs. (18) and (19), the integrals receive con-
tributions from the two-pion and the high-mass parts of the
spectral functions, Eq. (34). An important question is how
the relative contributions depend on the distance b, which
represents an external parameter in the integrals. Figure 3
shows the two-pion and high-mass contributions to ρV1 ðbÞ
obtained with our spectral functions (here, for the nominal
parameter values). The top panel shows the absolute
contributions; the bottom panel shows the relative contri-
butions, i.e., the fractions of ρV1 ðbÞ due to the two-pion and
high-mass parts. One observes that in ρV1 ðbÞ the two-pion
part accounts for >80% at b > 1 fm and >60% at
b > 0.5 fm. Similar relative contributions are found in
the dispersion integral for ρ̃V2 ðbÞ (not shown in the figure).
In ρ̃V2 ðbÞ the two-pion part accounts for >97% at b > 1 fm
and >50% at b > 0.5 fm. These findings are central to our

approach, as they quantify the dominance of the two-pion
state at large distances and justify the summary description
of the high-mass states for the purpose of computing the
peripheral densities.
In the present study our focus is on the isovector channel,

where the two-pion state in the spectral functions generates
the dominant contributions to the peripheral nucleon
densities. In order to compute the individual proton and
neutron densities in the dispersive representation, we need
also the isoscalar spectral function. A parametrization of
the isoscalar spectral functions, constructed along similar
lines as for the isovector spectral function but relying more
on empirical information, is described in Appendix C.

D. Uncertainty estimates

Our dispersive approach allows us to estimate the uncer-
tainties of the spectral functions and the densities obtained
from them. We consider two sources of uncertainties:
(i) Uncertainties due to the parametrization of the high-

mass part of the spectral functions. The high-mass part of
the isovector spectral function is linked to the low-mass
part through the dispersive sum rules, Eqs. (45)–(47) and
Eqs. (54)–(57). The parametrization of the high-mass part
can therefore influence the low-mass part of spectral
functions and indirectly affect observables sensitive to
the low-mass part, such as the peripheral densities. We
estimate this uncertainty by varying the positions of the
high-mass poles in the isovector spectral functions,
Eqs. (43) and Eqs. (52). As the plausible range of variation
we consider

tðV;0Þ1 ; tðV;1Þ1

tðV;0Þ2 ; tðV;1Þ2 ; tðV;2Þ2

�
¼ ð1.2–2.4Þ GeV2 ¼ ð2–4ÞM2

ρ: ð60Þ

This range allows for variations of the pole masses with a
maximum/minimum ratio of 2, which is a very significant
change. Equation (60) covers the entire region of the
secondary peak of the eþe− annihilation cross section
above the ρ resonance [40]. In the context of the dual
resonance model, Eq. (60) corresponds to varying the
pole position from the n ¼ 1 resonance at 3M2

ρ to values
that are halfway between this one and the n ¼ 0 or 2
resonances. Note that we let the mass parameters in the
delta functions and delta function derivatives vary inde-
pendently of each other over the given range, so that the
parametrization represents a wide range of “shapes” of the
spectral function.
We further constrain the set of mass parameters by

requiring that the variation of the spacelike FF generated by
the spectral function be within a certain range around the
nominal value. This is essentially a stability condition,
which eliminates extreme values of the mass parameters
that would lead to large excursions of the spacelike FF and

FIG. 3. Contributions of the two-pion and high-mass parts
of the spectral function ImFV

1 ðtÞ, Eq. (34), to the dispersion
integral of the density ρV1 ðbÞ (nominal parameters). Upper panel:
Absolute contributions. Dashed black line: ρV1 ðbÞ½ππ�. Dotted
black line: ρV1 ðbÞ½high-mass�. Solid red line: ρV1 ðbÞ½total�. Lower
panel: Relative contributions. Same as in upper panel, but divided
by total density ρV1 ðbÞ½total�.
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can be ruled out on physical grounds. We implement this by
requiring that (here i ¼ 1, 2)

FV
i ðtrefÞ½varying pole masses�

FV
i ðtrefÞ½nominal� − 1 < ϵ; ð61Þ

where tref < 0 is a spacelike t value. In the following
applications we choose tref ¼ −1 GeV2 and ϵ ¼ 0.1 for
both FV

1 and FV
2 ; the choice is justified in the following;

other choices are possible. The parameter variation
Eq. (60), supplemented by the stability condition
Eq. (61), generates a functional variation in the high-mass
part of the spectral function which we regard as the
theoretical uncertainty of our model. Note that the stability
condition Eq. (61) restricts the variation of the theoretical
FF prediction relative to the nominal value of the model,
not relative to an experimental value; no fitting to the FF
data is performed here. The parameters tref and ϵ are chosen
such that the resulting theoretical model uncertainty of the
FFs is reasonable and covers the experimental data. In this
way the experimental FF data are used only in estimating
the theoretical uncertainty of the model, not in determining
the nominal model prediction.
To map out the theoretical uncertainty in practice, we

generate a random ensemble of mass parameters in the
range of Eq. (60) and retain those for which the spacelike
FFs satisfy the condition Eq. (61). We then use this
restricted ensemble to generate uncertainty bands in the
spectral functions and transverse densities (and possibly
other quantities derived from the spectral functions).
Figure 4 illustrates the procedure in the case of FV

2 . One
observes that the procedure generates natural uncertainty
bands, which are approximately symmetric around the
nominal value. The resulting uncertainty will be quoted
as “high-mass uncertainty” in the results below.
We emphasize that the procedure respects analyticity and

the dispersive sum rules. Each instance in the ensemble
corresponds to a FF with correct analyticity in t and a
density with correct asymptotic behavior at large b. Each
instance represents a spectral function that satisfies the sum
rules Eqs. (45)–(47) and Eqs. (54)–(57) and produces FFs
and densities with the correct normalization. The only
differences between the instances are in the form of the
high-mass spectral function, and in the distribution of
strength between the low-mass and high-mass regions.
(ii) Uncertainties due to the nucleon radii. The nucleon

radii determine the spectral function parameters through
the dispersive sum rules Eqs. (45)–(47) and Eqs. (54)–(57).
We can estimate the resulting uncertainty by varying the
value of the radii. The empirical values of the radii and
their uncertainties are summarized in Appendix A. For our
uncertainty estimate, we vary the radii in a range corre-
sponding to their empirical uncertainty

hr2iV1 → hr2iV1 ½nominal� × ð1� 0.03Þ; ð62Þ

hr2iV2 → hr2iV2 ½nominal� × ð1� 0.02Þ: ð63Þ

We then follow the effect of this variation from the spectral
function to the FFs and densities calculated as dispersive

FIG. 4. The procedure for estimating the uncertainty resulting
from the high-mass part of the spectral function ImFV

2 ðtÞ. A
random ensemble of parameters for the high-mass pole positions
Eq. (60) is generated. With these parameters, the spectral function
and the spacelike FF are computed. The parameter ensemble is
then restricted to values for which the spacelike FF satisfies the
stability condition Eq. (61) (see upper panel, accept/reject).
The restricted parameter ensemble is then used to evaluate the
uncertainty of the spectral function (middle panel) and the density
(lower panel). In all panels, the functions with accepted param-
eters by Eq. (61) are shown as solid black lines, the ones with
rejected parameters as dot-dashed red lines. The functions with
the nominal parameters are shown by the dashed white line.
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integrals. The resulting uncertainty will be quoted as “radius
uncertainty” in the results below.

III. RESULTS

A. Spectral functions

Figure 5 shows our results for the two-pion part of
the isovector spectral functions ImFV

1 ðtÞ and ImFV
2 ðtÞ and

their uncertainties obtained with the methods of Sec. II C
and II D. The upper panels show the spectral functions
obtained with the nominal parameters for the high-mass
poles and the radii. One observes the following: (a) The
spectral functions show the characteristic peak from the ρ
resonance in the ππ channel. This essential feature arises
through the pion timelike FF in the elastic unitarity relation
Eq. (36). (b) Both spectral functions (with the nominal
parameters) change sign and become negative above the ρ
region.
The middle and lower panels of Fig. 5 show the

uncertainties in the two-pion part of the spectral functions
resulting from the parametrization of the high-mass part
and from the nucleon radii, estimated with the procedure of
Sec. II D. (Note that the figure shows only the variation of

the two-pion part of the spectral function; the high-mass
part undergoes a corresponding variation with the param-
eters, so that the sum rules are satisfied; this part is not
shown in the figure.) One observes the following: (a) The
uncertainties of the spectral functions are negligible in the
region of t from the threshold at 4M2

π to ∼0.4 GeV2. In this
region the chiral expansion of the functions NiðtÞ is well
convergent, and the spectral functions represent genuine
predictions of the theory. Notice that the enhancement of
the spectral functions through ππ rescattering is already
very significant in this region [23]. (b) In the region of the ρ
resonance, the spectral functions show significant uncer-
tainties from the high-mass states and from the radii. The
behavior in this region is mainly constrained by the sum
rules, so that the spectral functions become sensitive to the
parameters, as expected. The relative uncertainties are of
order unity and approximately the same in ImFV

1 ðtÞ and
ImFV

2 ðtÞ.
In the present study we use the spectral functions to

compute the peripheral densities. The dispersive integrals
for the peripheral densities converge rapidly and sample
mostly the two-pion part of the spectral functions; the
contribution of high-mass states is strongly suppressed

FIG. 5. Two-pion part of isovector spectral functions ImFV
1 ðtÞ (left column) and ImFV

2 ðtÞ (right column) obtained in DIχEFT. In each
column: Upper panel: DIχEFT result with nominal parameters. Middle panel: Uncertainties resulting from the parametrization of high-
mass states. Lower panel: Uncertainties resulting from the nucleon isovector radii.
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(see Fig. 3). Our DIχEFT method and uncertainty estimates
aim to provide a realistic description of the two-pion part,
while parametrizing the high-mass part in summary form.
The dispersive integrals for the spacelike FFs converge
more slowly and are more sensitive to the high-mass states.
The computation of spacelike FFs therefore generally
places stronger demands on the description of the high-
mass states than are needed in the present study. Still, it is
instructive to see how our simple spectral functions perform
in the computation of the spacelike FFs, for which
experimental data are available.
Figure 6 shows the isovector spacelike FFs FV

1 ðtÞ and
FV
2 ðtÞ obtained with our spectral functions. [The plots show

the FFs divided by the standard dipole FF SDðtÞ≡
ð1 − t=0.71 GeV2Þ−2.] The top panels show the predictions
with the nominal values of the high-mass pole position and
the nucleon radii. One observes that the nominal predic-
tions agree very well with the empirical FFs extracted from
experimental data [48]. This indicates that our assumptions
made in parametrizing the high-mass part of the spectral
function (in particular, the rapid saturation at low masses
t ≈ 3M2

ρ) are realistic at the quantitative level. The middle
and lower panels show the uncertainties of the predictions
due to the position of the high-mass poles and the values
of the nucleon radii, estimated with the procedure of
Sec. II D. One observes that the procedure gives a

reasonable uncertainty estimate of the spacelike FFs that
is approximately symmetric around the nominal value (by
design of the procedure) and covers the experimental
values. We emphasize that our goal here is not to predict
or analyze the spacelike FFs, but just to validate that
our spectral function results are compatible with the
spacelike FF data. It is clear that a much more accurate
description of the spacelike FFs could be achieved within
our framework if the value of the high-mass poles were
used as fit parameters, as is commonly done in dispersive
fits [46,47].

B. Isovector densities

Figures 7 and 8 show our results for the isovector
transverse densities ρV1 ðbÞ and ρ̃V2 ðbÞ, obtained by evalu-
ating the dispersive integrals Eqs. (18) and (19) with the
spectral functions of Sec. II C and by quantifying the
uncertainties with the procedure of Sec. II D. These
densities are the principal objective of the present study.
Figure 7 shows the densities ρV1 ðbÞ and −ρ̃V2 ðbÞ on a
logarithmic scale and their relative uncertainties. Figure 8
shows the radial densities 2πbρV1 ðbÞ and −2πbρ̃V2 ðbÞ on a
linear scale and their absolute uncertainties.
One observes the following: (a) The densities exhibit an

exponential decrease at b ≳ 0.5 fm, as dictated by the

FIG. 6. Isovector nucleon FFs FV
1 ðtÞ (left column) and FV

2 ðtÞ (right column) at spacelike t < 0 obtained from the DIχEFT spectral
functions. In each column: Upper panel, solid line: DIχEFT result with nominal parameters. Middle panel: Uncertainty resulting from
the parametrization of high-mass states. Lower panel: Uncertainty resulting from the nucleon isovector radii. Upper panel, dotted line:
Empirical FFs [48]. All FFs are shown divided by the standard dipole FF.
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analytic properties of the FF (see Sec. II B). This behavior
is naturally obtained from the dispersive representation and
is the principal reason for the use of this method for the
computation of peripheral densities. (b) The uncertainties
of the densities resulting from the high-mass part of the
spectral function and from the nucleon radii show a
characteristic dependence on b (nodes, maxima). This
dependence is explained by the way in which these
parameters influence the low-mass and high-mass parts
of the spectral functions through the dispersive sum rules
(see Sec. II C). (c) The uncertainty bands are bounded at
large distances and permit stable estimates of the uncer-
tainties of the peripheral densities. In both ρV1 ðbÞ and ρ̃V2 ðbÞ,
the estimated relative uncertainties from high-mass states
and radii are≲10% at distances b>0.5 fm. (d) At b>0.5 fm
the relative uncertainties of ρV1 and ρ̃V2 are comparable. At
b < 0.5 fm, the relative uncertainty of ρ̃V2 is larger than that
of ρV1 . This happens because at small b the dispersion
integral samples the high-mass part of the spectral function,
and our parametrization of ImFV

2 allows for more variation
than that of ImFV

1 .
We emphasize that our theoretical calculations are aimed

only at the “peripheral” densities, with the boundary in b

determined by the uncertainty estimates. Our results for the
densities and uncertainty estimates are to be understood in
this sense. At distances b≲ 0.3 fm the densities become
sensitive to the details of the high-mass states in spectral
function. Our effective description is not expected to be
accurate in this region but still allows us to estimate the
uncertainty and demonstrate its increase.
Figures 7 and8 also show the empirical densities, computed

as Fourier transforms of the FF fit of Ref. [48] [see Eqs. (4)
and (8)]. Because it is difficult to quantify the uncertainties of
the Fourier transform densities at large b (see discussion in
Sec. III A), we show only their central value. One observes
that our theoretical results show excellent agreement with the
empirical densities at distances b≳ 0.5 fm, where our cal-
culations are accurate according to our intrinsic uncertainty
estimates. Our results obtained with the nominal parameters
follow the empirical densities even down to b → 0. This
strongly indicates that our assumptionsmade in parametrizing
the high-mass part of the spectral function are realistic
regarding the nominal values, and that the uncertainty of
our predictions at smallb could be reducedby constraining the
variation of the high-mass part through further theoretical
arguments or empirical information.

FIG. 7. Isovector densities ρV1 ðbÞ (left column) and −ρ̃V2 ðbÞ (right column) and their relative uncertainties obtained with the DIχEFT
spectral functions. In each column: Upper panel, solid line: DIχEFT prediction with nominal parameters. Middle panel: Relative
uncertainty from high-mass states. Lower panel: Relative uncertainty from nucleon isovector radii. Upper panel, dotted line: Density
from empirical FFs [48].
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C. Proton and neutron densities

The DIχEFT method allows us to predict the isovector
densities, which contain the effect of the two-pion states
and dominate peripheral nucleon structure. In order to
compute the individual proton and neutron densities in the
dispersive representation we need also the isoscalar spec-
tral functions. For the purposes of this study we use the
parametrization of Appendix C, which describes the
isoscalar spectral function through effective poles and
implements the dispersive sum rules in a similar manner
as in the isovector sector. The parameters are fixed in terms
of the isoscalar nucleon radii and their uncertainties. The
proton and neutron densities and their uncertainties are
obtained by combining the isovector and isoscalar den-
sities. As the high-mass uncertainty of the proton and
neutron densities we take only the one resulting from the
isovector densities estimated in Sec. III B,which is expected
to be dominant. As the radius uncertainty of the proton and
neutron densities we quote the change of the density under
variation of the nucleon’s “own” radius, i.e., hr2ip1;2 for the
proton and hr2in1;2 for the neutron, corresponding to a
simultaneous change of the isovector and isoscalar radii.
This is the dominant radius uncertainty in most of the
densities. The only exception is the neutron charge density,

where the uncertainty resulting from the change of the
neutron radius is smaller than that resulting from the proton
radius, through its combined effect on the isovector and
isoscalar densities.
Figures 9 and 10 show the densities ρp;n1 ðbÞ and ρ̃p;n2 ðbÞ

and their uncertainties obtained in this way. One observes
the following: (a) The calculation predicts the peripheral
nucleon densities with good accuracy. In the proton charge
density ρp1, and the proton and neutron magnetization
densities ρ̃p;n2 , the relative uncertainties are estimated at
≲10% at b > 0.5 fm (these densities are uniformly positive
or negative, so that one can sensibly quote the relative
uncertainty). (b) In the neutron charge density ρn1, the
absolute uncertainty is estimated at> 50% near the positive
maximum at b ¼ 0.65 fm, and rapidly decreasing at larger
b (this density has different signs in different regions).
(c) The nominal DIχEFT predictions agree well with the
empirical densities at b ≳ 0.5 fm. In particular, the theo-
retical calculation reproduces the behavior of the neutron
density, which changes from negative values at b ≳ 1.5 fm
to positive values at 1.5≳ b≳ 0.35 fm to negative values at
b≲ 0.35 fm [4,28]. This behavior arises as the result of a
delicate cancellation of isovector and isoscalar densities in
the different regions of b.

FIG. 8. Same as Fig. 7, but showing the radial densities 2πbρV1 ðbÞ (left column) and −2πbρ̃V2 ðbÞ (right column) and their absolute
uncertainties.
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FIG. 9. Transverse charge density ρ1ðbÞ in the proton (left column) and neutron (right column) obtained from the DIχEFT results (see
text). In each column, the panels show the nominal DIχEFT results and their absolute uncertainties from high-mass states and from the
nucleon radii. The empirical densities are obtained from the FF parametrizations of Ref. [48].

FIG. 10. Transverse magnetization density ρ̃2ðbÞ in the proton (left column) and neutron (right column) obtained from the DIχEFT
results (see text). In each column, the panels show the nominal DIχEFT results and their absolute uncertainties from high-mass states
and from the nucleon radii. The empirical densities are obtained from the FF parametrizations of Ref. [48].
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D. Current densities in polarized nucleon

Combining our results for the densities ρ1ðbÞ and ρ̃2ðbÞ,
we can compute the Jþ current density in the transversely
polarized nucleon, Eq. (7). In order to display the theo-
retical uncertainties it is useful to show a one-dimensional
projection of the two-dimensional current density. We
consider the current density Eq. (7) in the nucleon with
Sy ¼ þ1=2 on the transverse x axis, where b ¼ ðbx; 0Þwith
bx < 0 or > 0, which is given by

hJþðbxÞilocalized¼ð�� �Þ½ρ1ðjbxjÞþ signðbxÞρ̃2ðjbxjÞ�: ð64Þ

This function describes the current density to the “left” and
“right” when looking at the nucleon along the z-axis from
z ¼ þ∞ (see Fig. 1). Notwithstanding its piecewise def-
inition in Eq. (64), it is a smooth function of bx because
ρ̃2ðjbxj ¼ 0Þ ¼ 0.
Figure 11 shows the Jþ current density Eq. (64) in the

proton and neutron obtained from our DIχEFT results,
including its theoretical uncertainty. [The plot shows the
expression in the square brackets in Eq. (64) without the
normalization factor denoted by (� � �).] In the high-mass
uncertainties we have added the uncertainty bands in ρ1ðbÞ
and ρ̃2ðbÞ assuming no correlation between the two (the

positions of the effective high-mass poles in ImFV
1 and

ImFV
2 are not related, and their variation in Sec. II D is

performed independently). In the radius uncertainty we
show separately the variations of the density under the
changes of the nucleon’s radii hr2i1 and hr2i2. One
observes the following: (a) The numerical densities behave
smoothly at bx ¼ 0, as they should. (b) The Jþ current
densities in the proton and the neutron exhibit a strong left-
right asymmetry. In the context of the parton picture, this
shows that the internal motion due to the nucleon spin
causes a significant distortion of the plus momentum
distribution and attests to the essentially relativistic char-
acter of the system. A “mechanical” interpretation of the
left-right asymmetry of the peripheral densities in tradi-
tional chiral EFT, as arising from the motion of a soft
pion in the nucleon’s periphery, has been developed in
Refs. [8,9,49,50].

IV. DISCUSSION

In the present work we have computed the peripheral
transverse charge and magnetization densities in the
nucleon using the DIχEFT method and quantified their
uncertainties. The main findings are the following: (a) The

FIG. 11. Jþ current density on the x-axis, Eq. (64), in the transversely polarized proton (left column) and neutron (right column) with
Sy ¼ þ1=2. In each column: Upper panel: Nominal DIχEFT result. Middle panel: Absolute uncertainty from high-mass states. Lower
panel: Absolute uncertainty from nucleon radii.
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dispersive representation permits stable calculation of the
peripheral densities. The densities exhibit the exponential
decrease implied by analyticity of the FFs and depend
smoothly on the parameters of the spectral functions.
(b) Uncertainties can be estimated by allowing for variation
of the spectral functions (functional form, parameters) and
following its effect on the densities. The procedure makes
use of the particular “information flow” implied by
analyticity and relates the peripheral densities to the
spacelike FFs in a controlled manner. (c) Using a minimal
parametrization of the high-mass part of the isovector
spectral functions, the isovector densities are computed
with an estimated accuracy of ∼� 10% at b≳ 0.5 fm.
In the present calculation we have not used any spacelike

FF data beyond the nucleon radii (FF derivatives at t ¼ 0)
to constrain the isovector spectral functions. In particular,
we do not fit the high-mass part of the spectral function to
the spacelike FF data, as is done is dispersive fits. [The
stability condition Eq. (61), controlling the variation of the
high-mass spectral function, applies to the variation relative
to the nominal theoretical prediction, not relative to the FF
data.] Our results represent theoretical predictions based on
a minimal parametrization of the high-mass spectral func-
tion, and our uncertainty estimates should be understood in
this sense. It is clear that a much more accurate description
could be achieved if spacelike FF data were used to
constrain the high-mass part of the isovector spectral
functions. Our estimates of the high-mass uncertainty
therefore should not be regarded as “final,” but rather as
showing how far one can go without fitting spacelike
FF data.
In the present study we have estimated the uncertainties

of the densities by employing an effective parametrization
of the high-mass states and exploring the functional
variation allowed under minimal physical assumptions
(essentially, regarding the mass range where the strength
is located, which determines the allowed variation of the
position of the effective poles). In this approach the
description of the high-mass strength is purely effective,
and there is generally no relation between the effective
poles and any definite hadronic singularities. An alternative
approach would be to employ dynamical models of the
high-mass states of the nucleon spectral functions, such as
the picture of vectorlike resonance exchanges based on the
large-Nc limit of QCD [51,52], or models of the nucleon
form factors based on a holographic representation of QCD
[53–55]. Such models could implement a coherent descrip-
tion of the high-mass spectral functions over the entire mass
range, which is not possible with individual effective poles.
How such models could be combined with our DIχEFT
calculation of the low-mass spectral functions, and how one
could estimate the uncertainty of the densities in this
context, are interesting questions for further study.
The methods developed here enable an EFT-based

computation of the transverse densities down to distances

b≳ 0.5 fm. At such distances the transverse densities can
be described in approaches using other effective degrees of
freedom, e.g. quark models. This makes it possible to
match the EFT-based description with quark model pre-
dictions of the transverse densities at “intermediate” dis-
tances and explore quark-hadron duality in new ways.
While quark models may not be able to accurately
reproduce the absolute densities, they can predict qualita-
tive features such as the spin/isospin dependence and flavor
decomposition of the densities, which can lead to interest-
ing conclusions when matched with the EFT description.
We plan to explore the use of transverse densities for quark-
hadron duality studies in a separate work.
Some comments are in order regarding the interpretation

of our results in terms of a “pion cloud” of the nucleon. It is
true that the isovector densities at distances ≳0.5 fm are
generated mostly by the two-pion states in the dispersive
representation (see Fig. 3). One might be tempted to
explain this in a picture where a bare nucleon fluctuates
into a pion-nucleon state, and the peripheral structure arises
from the propagation of that pion. Such a picture is indeed
obtained in traditional chiral EFT, where the pion and
nucleon are pointlike, and the peripheral densities emerge
from the propagation of the pointlike pions. However, in
our unitarity-based approach the pion is not pointlike and
has an extended structure of the same range as the nucleon,
as required by unitarity. The results of our approach should
therefore not be interpreted in terms of the traditional pion
cloud picture. The spacetime interpretation of the densities
in the unitarity-based approach is an interesting question
which we plan to investigate in a future study.
In the present study we have applied our unitarity-based

approach to the peripheral densities associated with the
nucleon matrix element of the electromagnetic current
operator. The approach could be extended to compute
the peripheral densities of other operators whose FFs
possess a two-pion cut, such as the QCD energy momen-
tum tensor (spin-2 operator) or the leading-twist QCD
operators whose matrix elements determine the moments of
the GPDs (twist-2, spin-n operators, n ≥ 1). This would
allow one to “deconstruct” not only the nucleon’s electro-
magnetic current but also its peripheral partonic structure in
terms of EFT degrees of freedom. One difference between
the electromagnetic and the generalized FFs is that for the
latter the “radii” (derivatives at t ¼ 0) are generally not
known from independent measurements, so that one has to
adjust the procedure of fixing the parameters of the spectral
functions and recruit new sources of information.
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APPENDIX A: NUCLEON RADII

In this appendix we list the values of the nucleon radii
used as parameters in the DIχEFT calculation of the
spectral functions. The Dirac and Pauli radii of the proton
and neutron are defined in terms of the FF derivatives

dFp
1

dt
ð0Þ ¼ 1

6
hr2ip1 ;

dFp
2

dt
ð0Þ ¼ 1

6
κphr2ip2 ðA1Þ

(same for p → n). They are related to the conventional
electric and magnetic radii by

hr2ip1 ¼ hr2ipE −
3κp

2m2
N
; ðA2Þ

κphr2ip2 ¼ −hr2ipE þ μphr2ipM þ 3κp

2m2
N

ðA3Þ

(same for p → n). Here κp;n are the anomalous magnetic
moments, and μp;n ¼ Qp;n þ κp;n ¼ ð2.793;−1.913Þ are
the ordinary magnetic moments of the nucleons.
We estimate the values of hr2i1;2 and their uncertainties

from the empirical values of hr2iE;M and their uncertainties,
neglecting correlations between the uncertainties of hr2iE
and hr2iM. We use the following numbers and sources:
hr2ipE ¼ ð0.7090� 0.0168Þ fm2 [22], hr2inE ¼ ð−0.1161�
0.0022Þ fm2 [56], hr2ipM ¼ ð0.7225� 0.0170Þ fm2 [22],
and hr2inM ¼ ð0.7465� 0.0156Þ fm2 [56]. The proton and
neutron radii hr2i1;2 thus obtained are summarized inTable I.
We also list in Table I the isovector and isoscalar

combinations of the radii, defined by Eqs. (48) and (49)
and Eqs. (58) and (59), as well as by Eqs. (C6) and (C7) and
Eqs. (C8) and (C9), which enter in the sum rules for the
isovector and isoscalar spectral functions. In calculating the
uncertainties we neglect correlations between the uncer-
tainties of the proton and neutron radii. Note that the
isovector/isoscalar combinations of hr2i2 defined by
Eqs. (58) and (59) and Eqs. (C8) and (C9) involve the
nucleon anomalous magnetic moments and cannot directly
be interpreted as nucleon radii.

APPENDIX B: N FUNCTIONS

In this appendix we give the expressions for the N1;2ðtÞ
functions appearing in the unitarity relations for the isovector
spectral functions ImFV

1;2ðtÞ, Eqs. (36) and (38). We do not
compute these functions explicitly but express them in terms
of our earlier results for the J1�ðtÞ functions appearing in the
unitarity relations for the ImGV

E;MðtÞ spectral functions [18].
The Dirac/Pauli FFs F1;2ðtÞ and the electric/magnetic

FFs GE;MðtÞ are related by

GEðtÞ ¼ F1ðtÞ þ
t

4m2
N
F2ðtÞ; ðB1Þ

GMðtÞ ¼ F1ðtÞ þ F2ðtÞ; ðB2Þ

or, inversely,

F1ðtÞ ¼
�
GEðtÞ −

t
4m2

N
GMðtÞ

���
1 −

t
4m2

N

�
; ðB3Þ

F2ðtÞ ¼ ½−GEðtÞ þ GMðtÞ�
��

1 −
t

4m2
N

�
; ðB4Þ

which hold for any complex t. The elastic unitarity relation
for ImGE;MðtÞ, in its manifestly real form analogous to
Eq. (36), is written as (here t > 4M2

π)

ImGV
EðtÞ½ππ� ¼

k3cm
mN

ffiffi
t

p J1þðtÞjFπðtÞj2; ðB5Þ

ImGV
MðtÞ½ππ� ¼

k3cmffiffiffiffi
2t

p J1−ðtÞjFπðtÞj2; ðB6Þ

where kcm is given in Eq. (37). The relation between the
functions N1;2ðtÞ and J1�ðtÞ is

N1ðtÞ ¼
�
J1þðtÞ
mN

−
t

4m2
N
J1−ðtÞ

���
1 −

t
4m2

N

�
; ðB7Þ

N2ðtÞ ¼
�
−
J1þðtÞ
mN

þ J1−ðtÞffiffiffi
2

p
���

1 −
t

4m2
N

�
: ðB8Þ

Note that

1 −
t

4m2
N
¼ p̃2

cm

m2
N
; ðB9Þ

where p̃cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N − t=4
p

is the unphysical nucleon center-
of-mass momentum in the ππ → NN process in the
t-channel. The expressions Eqs. (B7) and (B8) are evalu-
ated only in the region of elastic unitarity in the two-pion
channel, t < tmax ≈ 1 GeV2, far away from the singularity
at t ¼ 4m2

N .

TABLE I. Nucleon Dirac and Pauli radii and their uncertainties
used as input in DIχEFT calculation.

Type hr2i (fm2) δhr2i (fm2) δhr2i=hr2i
hr2ip1 0.5906 0.0168 0.0285
hr2in1 0.0102 0.0022 0.2157
hr2ip2 0.7961 0.0281 0.0353
hr2in2 0.7518 0.0156 0.0207

hr2iV1 0.2902 0.0085 0.0293
hr2iS1 0.3004 0.0085 0.0283
hr2iV2 1.4328 0.0293 0.0204
hr2iS2 −0.0054 0.0293 −5.4
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The explicit expressions for the J1�ðtÞ functions in chiral
EFT at LO and NLO accuracy are given in Appendix A of
Ref. [18]. The expressions for the functions N1;2ðtÞ at this
order can be obtained from those results using Eqs. (B7)
and (B8). Supplemented with the pN2LO term, Eq. (41),
this provides the complete expressions for the N1;2ðtÞ
functions at LOþ NLOþ pN2LO accuracy, Eq. (39),
used in the present calculations.

APPENDIX C: ISOSCALAR PARAMETRIZATION

In this appendix we present a simple parametrization
of the isoscalar spectral functions, which is used in the
dispersive calculations of the individual proton and neutron
densities. The isoscalar spectral functions are constructed
along similar lines as the isovector ones in Sec. II C, but
relying more on empirical information.
The isoscalar spectral functions start with the 3π channel

and can be organized in a similar way as Eq. (34) (here
i ¼ 1, 2),

ImFS
i ðtÞ ¼ ImFS

i ðtÞ½πππ� þ ImFS
i ðtÞ½high-mass�: ðC1Þ

The strength in the 3π channel is overwhelmingly con-
centrated in the ω resonance at t ¼ M2

ω ¼ 0.61 GeV2; for
an estimate of nonresonant 3π contributions in chiral EFT,
see Ref. [57]. We parametrize the 3π part of the spectral
functions as (i ¼ 1, 2)

ImFS
i ðtÞ½πππ� ¼ πaωi δðt −M2

ωÞ: ðC2Þ

High-mass strength appears at t≳ 1 GeV2 through the KK
channel and the ϕ resonance, as well as through other
hadronic states such as πρ [58,59]. We assume that the
high-mass part of the isoscalar spectral functions is
approximately exhausted by these states at t ∼ 1 GeV2

and parametrize the spectral functions as

ImFS
1ðtÞ½high-mass� ¼ πaðS;0Þ1 δðt − tðSÞÞ

þ πaðS;1Þ1 δ0ðt − tðSÞÞ ðC3Þ
and

ImFS
2ðtÞ½high −mass� ¼ πaðS;0Þ2 δðt − tðSÞÞ

þ πaðS;1Þ2 δ0ðt − tðSÞÞ
þ πaðS;2Þ2 δ00ðt − tðSÞÞ; ðC4Þ

where the effective pole mass is chosen as

tðSÞ ¼ M2
ϕ ¼ 1.04 GeV2: ðC5Þ

The pole strengths aω1 ; a
ðS;0Þ
1 , and aðS;1Þ1 in ImFS

1 , and

aω2 ; a
ðS;0Þ
2 ; aðS;1Þ2 , and aðS;2Þ2 in ImFS

2 , are then determined
by imposing the dispersive sum rules for the isoscalar

spectral functions. These sum rules are given by the
formulas analogous to Eqs. (45)–(47) and Eqs. (54)–(57)
with V → S, in which the quantities on the right-hand side
are now the isoscalar charge and radius,

QS ≡ 1

2
ðQp þQnÞ ¼ 1

2
; ðC6Þ

hr2iS1 ≡ 1

2
ðhr2ip1 þ hr2in1Þ; ðC7Þ

and the isoscalar anomalous magnetic moment and radius

κS ≡ 1

2
ðκp þ κnÞ; ðC8Þ

hr2iS2 ≡ 1

2
ðκphr2ip2 þ κnhr2in2Þ: ðC9Þ

The isoscalar spectral functions defined by Eq. (C1) et seq.
generate remarkably accurate isoscalar nucleon FFs (see
Fig. 12) and provide a sufficient description of the isoscalar
sector for the purposes of our study.
In the applications in Sec. III, we take into account the

uncertainty in the isoscalar spectral functions resulting
from the nucleon radii. We do not attempt to assign a
theoretical uncertainty to the high-mass part of the isoscalar
parametrization; this uncertainty could be estimated empir-
ically from dispersive fits to the data [46,47].

FIG. 12. Isoscalar FFs FS
1ðtÞ and FS

2ðtÞ obtained with our
parametrization of the isoscalar spectral functions Eqs. (C3) and
(C4). Solid and dashed lines: FS

1 and FS
2 obtained with nominal

parameters. Bands: Uncertainty resulting from the variation of the
isoscalar radii hr2iS1 and hr2iS2 in the range given in Table I. Dotted
lines: Empirical FFs of Ref. [48]. All FFs are shown divided by
the standard dipole FF.
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