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Abstract: Emotion recognition is benefitting from the latest research into physiological monitoring
and wireless communications, among other remarkable achievements. These technologies can indeed
provide solutions to protect vulnerable people in scenarios such as personal assaults, the abuse of
children or the elderly, gender violence or sexual aggression. Cyberphysical systems using smart
sensors, artificial intelligence and wearable and inconspicuous devices can serve as bodyguards
to detect these risky situations (through fear-related emotion detection) and automatically trigger
a protection protocol. As expected, these systems should be trained and customized for each
user to ensure the best possible performance, which undoubtedly requires a gender perspective.
This paper presents a specialized fear recognition system for women based on a reduced set of
physiological signals. The architecture proposed is characterized by the usage of three physiological
sensors, lightweight binary classification and the conjunction of linear (temporal and frequency) and
non-linear features. Moreover, a binary fear mapping strategy between dimensional and discrete
emotional information based on emotional self-report data is implemented to avoid emotional bias.
The architecture is evaluated using a public multi-modal physiological dataset with two approaches
(subject-dependent and subject-independent models) focusing on the female participants. As a result,
the proposal outperforms the state-of-the-art in fear recognition, achieving a recognition rate of up to
96.33% for the subject-dependent model.

Keywords: fear recognition; physiological signals; signal processing; wearable sensors

1. Introduction

Physiological monitoring technology has received a great deal of attention during
recent years from both academics and industry because of its potential applications in rele-
vant areas such as healthcare and human–machine interaction [1]. Additionally, emotion
recognition is a multi-disciplinary field of knowledge with links to many research areas,
such as psychology, neuroscience, signal processing and machine learning [2].

Most emotion recognition systems in the literature focus on classifying emotions from
a general-purpose point of view by detecting a set of emotions without considering the
gender perspective [3]. However, targeting the identification of a single emotion that
could be related to a specific situation and considering gender-related particularities could
result in a more accurate system. This last assertion is based on the idea that women
more accurately recognize nonverbal communication or emotional prosody [4] and are
more sensitive to emotional expressions in interpersonal interactions [5]. These concepts
are not considered in any current emotion recognition system using physiological signals
presented in the literature. Currently, to the authors’ knowledge, there is no automatic
detection system that has been developed to identify different critical social situations, such
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as gender-based violence. Within this context, a gender-specialized fear detection system
could be used to trigger a protection protocol that could include a connection to a trusted
circle or even to law enforcement agencies, in order to provide the necessary help. This
kind of system would be in line with the fifth Sustainable Development Goal provided by
the United Nations, which highlights the need for gender equality as a required foundation
for a peaceful, prosperous and sustainable world.

An important consideration when designing emotion recognition systems using phys-
iological signals and aiming, as a long-term goal, to be able to apply the systems to real-life
scenarios is an inconspicuous appearance. For instance, there are many sensors, such as
electroencephalographs or electrooculographs, which are not ready to be integrated within
a current commercial wearable device; e.g., a wristband or a pendant. An emotion recogni-
tion system that is intended to detect emotionally critical situations on a daily basis should
be designed not to draw people’s attention. Therefore, such systems should be designed
considering a wearable form, which implies the integration of the most inconspicuous
sensors [6].

On this basis, in this paper, we aim to design a fear recognition system using a reduced
set of physiological signals from sensors that can be located in many of today’s smart-
watches or activity bracelets. Reviewing the sensors that are available on the market that fit
the wearable integration requirement and have relevance in the emotion recognition field,
the authors selected the electrocardiogram (ECG), skin temperature (SKT) and galvanic
skin response (GSR) sensors [6]. The main focus of this paper is emotion recognition for
women, and we propose systems that aim to protect this specific population. According
to [7], a significant difference in emotional response exists between women and men. Con-
sequently, only data from female participants were considered to train the fear recognition
system. Moreover, a discrete emotional binary mapping into a specific dimensional emo-
tion model is used to provide a mechanism to reduce emotional self-assessment bias. The
main contributions of this paper are as follows:

• A specialized emotion recognition system based on binary fear classification and only
three physiological signals (ECG, SKT and GSR) is presented.

• A fear emotion detection system is pursued, focusing only on women volunteers. This
approach is due to the different emotional responses found between women and men
in the literature.

• A specific mapping between the discrete emotion of fear and a well-known dimen-
sional emotion model is applied and used for our specialized emotion recognition
system.

• The emotion recognition system considers linear (temporal and frequency), and non-
linear feature extraction for the physiological signals. To the authors’ knowledge, this
is the first time that the combination of these features with a reduced set of physio-
logical signals and a fear binary classification considering discrete and dimensional
information about emotions has been proposed.

• The proposed system is validated through an open emotion recognition dataset (MAN-
HOB [8]) adapted to our use case. Experimental results show a fear recognition rate
of up to 96.33% and 85.00% for subject-dependent and subject-independent models,
respectively. The performance of the subject-dependent model outperforms any other
subject-dependent approach in the literature. To the authors’ knowledge, this is the
first time that a subject-independent model considering specific fear binary mapping,
different emotional models (dimensional and discrete) and three physiological signals
has been presented. The results are limited by the number of participants in the
original MANHOB dataset (30 people). This initial limitation resulted in only 12 par-
ticipants being considered for our experiments due to the selection of only women
from MANHOB, as stated above. At this point, this limitation cannot be addressed
because there is no other public dataset available in the literature that fits our use case.

The rest of the document is structured as follows. Section 2 discusses related work
in emotion recognition and provides background about emotion theories and databases
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considering physiological signals within the field. The proposed model is detailed in
Section 3. Section 4 summarizes the different tools considered and particularities related to
the specific validation presented. Experimental results are discussed in Section 5. Finally,
conclusions and future research directions appear in Section 6.

2. Background and Related Work

Research into emotion recognition using physiological signals has increased in recent
decades. Physiological signals are a valuable source of information related to the human
emotional context; this is because the autonomous nervous system controls these signals,
meaning that they cannot be manipulated in any way by human will [9,10].

As stated above, the proposed system should be able to classify a single emotion
(fear) felt by the user from the analysis of physiological data. To this end, the intelligence
engine should be first designed and trained according to a database of physiological signals
captured during the reception of pre-tagged stimuli.

A deep understanding of human reactions to stimuli and emotion inference is required
to achieve this goal, as well as the knowledge of the different available emotion theories
and models. The selection of an adequate emotional model is especially relevant because
it is related to the labeling of the emotion felt by the individual. Note that the better
the emotion labeling during the database generation, the better the performance of the
intelligence engine. The rest of this section discusses emotion theories and models, as well
as databases for emotion recognition using physiological signals.

2.1. Emotion Theories and Models

Two main emotion theories have been presented in the literature. These are categorical
(also called discrete) and dimensional models. Ekman [11,12] and Russel [13], respectively,
are mainly responsible for the adoption of these models.

Categorical models are based on the concept of basic emotions, which are cross-
cultural and universally recognized. These emotions correspond with the primary response
to stimuli that triggers an immediate, innate and universal reaction that is highly related to
survival [14]. Note that, of these basic emotions, fear is included in all the proposed sets.
Categorical models include some important shortcomings: (1) the same basic emotions are
not present in every culture and (2) the analysis of complex emotions is a challenging task.
Although some authors proposed families of emotions, which cover distinct differences
depending on the person’s temperament [15], another fine-grained classification model
is required to match human emotions with sensed data during the reception of stimuli
unequivocally.

In this sense, quantitative scales for different aspects of emotion allow the creation of
a dimensional emotion space model. Wundt [16] was the first to introduce two dimensions
to differentiate emotions: pleasant–unpleasant (valence) and low–high intensity (arousal).
Unlike qualitative emotional information provided by discrete models, dimensional models
give specific quantitative metrics regarding affective states [17,18]. Thus, dimensional mod-
els have been shown to be useful when designing emotion recognition systems powered by
machine learning. This is because the labels used for training are more specific, resulting in
better intelligence systems.

Regarding the identification of specific emotions using both theories, Albraikan et al.
in [19] tried to diminish the possible bias effect by combining both models and mapping
arousal and valence dimensional space into a specific discrete emotion. However, their
model was not able to capture the difference between fear and anger. In this regard,
Demaree et al. in [20] affirmed that a three-factor model (arousal, valence and dominance)
is required to identify an affective state. They compared the fear–anger distinction using
the circumplex model [21] and the pleasure, arousal and dominance (PAD) model [22].
As a result, Demaree et al. stated that only dominance can disentangle such emotions as
fear and anger, with low and high dominance, respectively. For these reasons, instead of
considering discrete emotions directly or only using a two-dimensional model (arousal
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and valence), the fear detection system proposed in this paper maps the PAD dimensional
space into a discrete binary emotion problem. Thus, fear-related emotions are defined by
low valence, high arousal and low dominance.

2.2. Databases for Emotion Recognition Using Physiological Signals

A database for training an emotion recognition system is composed of three main
elements, apart from the indispensable volunteers:

• Stimuli to evoke different emotions in volunteers;
• Emotion labels for every stimulus received;
• Physiological variables measured during the reception of stimuli.

From these elements, the latter two (labels and physiological data) are the inputs
required for the machine learning training task. Labels can be implemented by experts
or self-reported by the volunteers. Note that, due to different temperaments or traits,
a non-negligible dispersion in the labeling is introduced. However, this dispersion can
also be due to the inherent difficulty of identifying the emotion felt and its translation
to the dimensions asked (e.g., arousal, valence and dominance). This labeling problem
is challenging for the development of subject-independent emotion recognition models.
That means that the protocol for database generation should address in detail the labeling
process. In this regard, there are accepted labeling methods that have been proposed by
experts in emotion elicitation to help in this task. For example, self-assessment manikins
(SAMs) [23] are commonly referenced, although they present male tendencies, which can
affect the interpretation of emotions for women. That means that SAMs should be improved
to include a gender perspective. Moreover, stimulus interpretation is strongly volunteer-
dependent [15] and affected by gender. Thus, customization has been implemented, as
done in [6], in which Schmidt et al. concluded that human emotions are subject-dependent.
After performing a detailed review of wearable-based emotion recognition, they affirmed
that an emotion recognition subject-independent model could be deployed but that, at
some point, user customization will be necessary to improve the system.

Within the emotion recognition community, different publicly available datasets con-
sider physiological signals. The most common are MIT [24], DEAP [25], MAHNOB [8],
DECAF [26], ASCERTAIN [27], and WESAD [28]. In [29,30], the authors performed a
detailed analysis of some of these databases and provided conclusions about their method-
ologies and emotional recognition approaches. These open databases provide a solid
benchmark for current and future emotion recognition systems based on physiological
signals. The proposed emotion recognition solution in this paper was validated using
MAHNOB [8], as this database includes more self-reported information regarding emotion
labels than others. However, the system could be validated using any other database with
the required self-report information; i.e., emotional discrete and PAD metric reports, as
well as gender information and data from the three physiological sensors considered. It
should be noted that there are currently no balanced open databases for the emotion of
fear using physiological signals and considering the gender perspective.

2.3. Related Work in Emotion Recognition Systems Using Physiological Signals

There are three main aspects of emotion recognition systems using physiological
signals affecting system performance: data segmentation, feature extraction and data clas-
sification.

2.3.1. Data Segmentation

Focusing on data segmentation, most of the emotion recognition systems in the
literature use data processing windows to treat and analyze the acquired data. Thus,
data segmentation is characterized by window-related aspects, such as their temporal and
frequency resolution and emotional latency. On the one hand, the temporal resolution has a
direct relationship with frequency resolution. This is due to a specific frequency resolution
needing to be guaranteed to extract useful emotional information for some physiological
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features [31]. On the other hand, emotional latency is related to the fact that a person does
not experience the same physiological response (emotion) during the entire reception of a
stimulus [32,33]. This last aspect definitively affects the system performance because it is
related to the possible incorrect labeling of the input samples.

Reviewing the literature, different studies have applied data segmentation over the
physiological recollected data. For instance, Zao et al. [34] presented a similar use case
to that in this work but using their stimuli instead of an openly available database and
classifying arousal and valence rather than a unique emotion. They omitted the beginning
and the end of the experimental measured data fir each stimulus, using the smallest known
temporal window (16 s). As a result, they obtained up to 75.56% accuracy on average for a
subject-dependent approach in a four-quadrant classification problem (arousal–valence).
Kanjo et al. [35] performed a subject-dependent system using a constrained field experi-
ment, a wearable system, and also omitted the first and the last seconds of each trial. They
tested different window sizes and obtained up to 87.30% accuracy on average by using
deep learning techniques in a five valence level classification problem. In [36], Hassan et al.
proposed a conjunction of conventional machine learning algorithms and a deep belief
network. They performed an analytical study over the DEAP [25] database and concluded
that induced emotions are stronger in the final part of the stimuli. Thus, they trained the
system using only the segmented 20 last seconds of the measured data, obtaining up to
89.53% accuracy for a subject-independent model in a five discrete emotion classification
problem (happy, relaxed, disgusted, sad and neutral). One of the latest emotion recognition
systems, WESAD [28], uses 60 s segmented windows. The researchers obtained up to
93.12% accuracy for a subject-independent model by using linear discriminant analysis
in a binary stress detection problem. Note that stress is not considered to be an emotion.
Analyzing all these related works, it should be noted that the effects of data segmentation
were not discussed. For instance, a rationale was neither given regarding time and fre-
quency resolution requirements in physiological-based emotion recognition systems nor
for physiological response delay times. The latter is key when dealing with slow-changing
physiological signals, such as GSR, which is known to have time-varying responses from 1
to 30 s based on the type of stimulus [37].

2.3.2. Feature Extraction

Regarding feature extraction, the best detection capacity results for emotion recogni-
tion systems using physiological signals were obtained by Rubin et al. in [38]. They applied
data segmentation together with linear and non-linear feature extraction techniques, rather
than simply using temporal and frequency-based linear features. They used a wearable
electrocardiogram and collected data from individuals suffering from panic disorder in an
ambulatory setup. As a result, they obtained up to 97.20% accuracy on average by using
linear and non-linear feature extraction, in combination with random forest classification,
in a panic-based binary classification subject-independent system. Note that, within this
system, emotional labels such as PAD were not included, as the researchers were not
inferring an emotion but distinguishing between pathological and non-pathological states
associated with panic disorder. Another recent work [19] used multidimensional dynamic
time warping as a non-linear technique to deal with physiological dynamics. They obtained
up to 94.00% and 93.60% accuracy for a valence and arousal subject-independent model by
using all signals from the MAHNOB database. Most emotion recognition systems based on
physiological signals and using accepted emotional labels are based on conventional tem-
poral and frequency linear feature extraction. Thus, the combination of the three domains
(temporal, frequency and non-linear) should be extended in the literature. This approach
might be exploited to gain a better understanding of the physiological variations and
changes concerning the self-reported metrics used as labels within these types of systems.

Another step commonly implemented after feature extraction is the application of
feature selection techniques to reduce the redundant information and the dimensionality
of the problem. In this regard, previous results obtained in [30], in which the model
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performance was compromised, led the authors of this work not to include this step in the
current study.

2.3.3. Data Classification

Related to data classification, different machine learning and deep learning techniques
have been used for emotion recognition systems in the literature. In this context, the
most used machine learning algorithms were the support vector machine (SVM), k-nearest
neighbor (KNN), ensemble classifiers (ENS) and random forests [1,6]. These classifiers pro-
vide low computational complexity and straightforward implementation on low-resource
devices. Note that, regardless of the classification approach, the preprocessing and fea-
ture extraction might be the most computationally intensive part of the inference stage.
Moreover, in the last years, the development of open-source deep learning frameworks
for constrained devices, such as TensorFlow Lite, are leading to the use of neural-based
inference approaches [39].

To the authors’ knowledge, there is only one emotion recognition system in the
literature that proposes a specialized fear binary recognition approach [40] and obtains
a fear accuracy below 90% by using the same discrete and dimensional emotion models
combination as ours. They validated their system based on DEAP but using all signals,
including an electroencephalogram. Moreover, they did not consider any constraint related
to data segmentation, frequency resolution, feature extraction, storage or complexity. The
other works mentioned above [28,34–36,38], which were based on different emotional
detection use cases, all considered wearable sensors; i.e., systems that can be integrated
following an inconspicuous factor form. However, none of them included self-reported
dominance by the volunteers in the labeling problem. This last fact has a key impact
on the distinction of fear and therefore on the system, as stated in the previous section.
Besides, the authors in [35,36] considered deep neural networks and other techniques that
are not feasible for low-power embedded integration or could imply high computational
complexity. Another key aspect which was not studied within these references is the effect
that a balanced data distribution has on both subject-dependent and subject-independent
models, as well as the effect on gender distinction. These facts are directly related to the
type of stimuli used during the emotion elicitation and they have a key impact on the
generation of any subject-independent model.

This work proposes a specialized fear recognition system for women based on only
three physiological sensors and the use of a discrete emotion binary mapping process
into three emotional dimensions (arousal, valence and dominance). Analyses regarding
the balanced data distribution and its repercussions for the classification metrics are also
provided. Additionally, two different systems, subject-dependent and independent, are
presented and analyzed.

3. Proposed System

The proposed emotion recognition solution consists of two main stages: data segmen-
tation and data processing. These stages follow the typical processing chain employed
in emotion recognition [1,6]: segmentation, preprocessing, feature extraction and data
classification. The presented approach benefits from the state-of-the-art methodology to
provide a system that meets the following requirements:

• The system must be focused on fear emotion recognition.Thus, the physiological
dataset used must address the elicitation of fear. This concern affects the dataset
selection and processing.

• The emotional labeling of the stimuli must encompass dimensional and discrete self-
reported emotional information. This fact is related to the classification strategy and
methodology used.

• The type and the number of sensors impose a limitation related to the diversity of
information available. These sensors must be chosen to be applicable for current
wearable device integration.
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Figure 1 shows an overall description of the proposed fear recognition system. It
includes the usual steps in the processing chain discussed above, from the analysis of an
available dataset of physiological signals to raw data preprocessing, feature extraction
and emotion classification. Note that w#n denotes the different windows obtained after
data segmentation application. The next sub-sections describe each of the elements in this
processing chain.

Physiological Data 

(ECG, GSR, SKT)

Trial 1

Database

…Trial 2 Trial 𝑛

w #1 … w #𝑛

Signal 

processing

Fear Binary 

Mapping

Classifier 

Optimization

Trained 

Model

w #1 … w #𝑛 w #1 … w #𝑛…

Feature Extraction

Annotation Data 

(SAM - PAD)

Data Segmentation

Data Processing

Data Classification

Statistical 

Features

Frequential 

Features

Nonlinear 

Features

Figure 1. Overview of the proposed fear recognition system employing physiological sensor data
and the pleasure, arousal and dominance (PAD) dimensional approach emotion labeling. The latter
is fed into the fear binary mapping procedure. ECG: electrocardiogram; GSR: galvanic skin response;
SKT: skin temperature; SAM: self-assessment manikin.

3.1. Data Segmentation

The system starts by considering a database in which data captured from three physi-
ological sensors (ECG, GSR, and SKT) are included, while stimuli are shown to volunteers
and the emotions felt are labeled according to the PAD space. This database contains
information from several volunteers. If only data from one volunteer are considered to
generate the system, a subject-dependent approach will be produced. Conversely, if data
from all the volunteers are considered, a subject-independent approach will be generated.
Both approaches are analyzed in the next sections.

As stated in Section 2.3, data segmentation or window-based methods are used to
extract emotion-related information concerning time instants. Following the accepted data
segmentation procedures in the literature, a window-based methodology is adopted in this
work. Based on the sampling frequency of the different sensors, an appropriate window
length is chosen to ensure that the frequency resolution is sufficient to deal appropriately
with all the frequency-based features. Data are encapsulated in fixed time slots to be
processed during the next data processing stage. The size and number of windows are
configurable parameters in the proposed system, together with the window overlapping,
allowing researchers to search for the best physiological option considering both the time
and computational complexity.

3.2. Data Processing

The segmented data (windows) obtained during the previous stage are preprocessed
to eliminate noise and other non-useful components for the next steps. Thus, the overall
signal quality is improved by denoising filters, focusing on their specific physiological char-
acteristics. Specifically, the raw ECG signal is subjected to a band-pass FIR filter through a
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low and high pass filtering cascade to ease complexity [41]. Afterwards, automatic gain
control is applied to limit the signal and enhance the peak detection. For the GSR and
SKT signals, low-pass FIR filters are employed to remove high-frequency noises. Next,
features of interest are extracted from the noise-free physiological signals, meaning that a
lightweight binary classification algorithm can be trained to predict the fear occurrence in
future samples.

The data processing strategy presented in this section was designed to generate (train)
the machine learning model. However, the architecture can be adapted for the prediction
of samples during the production stage. To this end, the task of training the model should
be replaced by applying the inference stage of the previously trained model, resulting in
the fear prediction of the segmented input. The rest of this section focuses on discussing
the feature extraction and data classification techniques used.

3.2.1. Feature Extraction

This stage plays a key role in any classification system, but this is even more applicable
when considering such complex inputs as physiological signals. Thus, our proposal
considers features from the three main groups: time-domain, frequency-domain and non-
linear features.

Time-domain features have the lowest computational complexity, providing useful
information about stationary signals with linear dynamics. Frequency-based features are
also widely applied to obtain power spectral densities in specific frequency bands for
physiological signals, such as ECG and GSR[42]. These frequency-based features usually
require a higher computational effort than time-domain features. Non-linear features are
useful to find trends in non-linear and non-stationary signals, with promising solutions
presented in the literature, but imply complex implementations. Our proposal considers
the set of 48 features presented in Table 1. Specifically, 25 features for ECG (two in the time
domain, nine in the frequency domain and 14 non-linear features), 17 features for GSR (six
in the time-domain, three in the frequency-domain, and eight non-linear features) and six
features for SKT (four in the time-domain and two in the frequency domain) are included.

All the time-domain and frequency-domain features considered in our model are
based on accepted, well-known physiological literature dealing with emotional-related
features [31,43,44]. The raw ECG signal is subjected to R-peak identification to deter-
mine the inter-beat intervals (IBI) and extract a valid heart rate estimation and heart rate
variability-related parameters. The GSR signal consists of two main components: tonic
(also called skin conductance level) and phasic (also called skin conductance response). The
latter reflects both event-related skin conductance responses (ERSCRs) and non-specific
responses (NSSCRs). As stated in [37], characteristics regarding rising time and peak
amplitude differ for both ERSCRs and NSSCRs. Our proposal includes a moving median
filter to separate the tonic and phasic components and a trough-to-peak standard peak
detection method, which is characterized by low computational complexity. For the SKT
signal, no particular digital signal processing, other than the previous filtering, is applied
before feature extraction.

The non-linear features considered in our model are based on recent publications that
included these metrics in an emotion recognition system [38,45]. The calculation of most
of the non-linear features considered requires the recurrence plot (RP) [46] to be obtained
based on the phase space trajectory followed by a specific raw physiological signal. RPs
are a bidimensional plot showing, for each moment in time t1, the number of times that
the phase space trajectory of the signal visits the same area in the phase space at time
t2, with both t1 and t2 represented on the horizontal and vertical axis, respectively [47].
The RP calculation requires some parameterization; i.e., the time delay T, the embedding
dimension M and the threshold distance E. The authors estimate T and M using mutual
information [48] and false nearest neighbor [49], respectively, and define E as 10% of the
average phase space diameter of observations [50]. A recurrence quantification analysis [51]
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is applied to quantify valuable information by exploring the obtained RPs, which provides
the different extracted non-linear features.

Table 1. Features extracted for the proposed wearable-ready fear recognition system. IBI: inter-beat
interval; RP: recurrence plot.

Sensor Domain Features

ECG Time-domain: Mean of IBI
(25) (2) Heart rate variability

Frequency-domain: Power spectral density of 4 bands
(9) (0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz and 0.3–0.4 Hz)

Power spectral density on IBI for
Low frequency (LF) (<0.08 Hz)
Medium frequency (MF) (0.08–0.15 Hz)
High frequency (HF) (0.15–0.5 Hz)
Total energy ratio for MF
Spectral density ratio between
LF and HF band

Non-linear: Multiscale entropy at five levels
(14) Detrended fluctuation for raw data

Detrended fluctuation for IBI
Recurrence rate
Determinism
Laminarity
Longest RP diagonal line
Diagonal lines entropy
Trapping time
Correlation dimension

GSR Time-domain: ER-SRRs including number of peaks,
(17) (6) Amplitude and rise time

Raw data mean value
Standard deviation
First quartile
Third quartile

Frequency-domain: Power spectral density of 2 bands
(3) for tonic and phasic components

(0–0.05 Hz, 0.05–1.5 Hz)
Spectral density ratio for 0–0.05 Hz

Non-linear: Detrended fluctuation
(8) Recurrence rate

Determinism
Laminarity
Longest RP diagonal line
Diagonal lines entropy
Trapping time
Correlation dimension

SKT Time-domain: Raw data mean value
(6) (4) Standard deviation

Skewness
Kurtosis

Frequency-domain: Power spectral density of two bands
(2) (0–0.1 Hz, 0.1–0.2 Hz)

3.2.2. Data Classification

As introduced in Section 2.3, the proposal only considers lightweight binary super-
vised classification algorithms. In this line, a design space exploration was developed, and
this is described in Section 5. This was accomplished by applying a set of low-complexity
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algorithms in the emotion recognition field; i.e., SVM, KNN and ENS. Other classification
algorithms could be considered for the proposal without loss of generality, also including
key factors such as the time complexity and the necessary resources.

Most classification algorithms include hyper-parameters that affect the algorithm
performance [52], which should be fitted before performing the training stage. In this
regard, the proposal considers Bayesian optimization to minimize the misclassification
rate over iterations, supported by a cross-validation strategy. Specifically, a sequential
model-based optimization technique is included.

Data labeling is a critical task when designing a supervised classification strategy;
i.e., assigning the value for the property to be predicted is for a given input sample. As
expected, this task definitively affects the classification algorithm because it determines
the correctness of the information from which the algorithm will learn. On this basis, a
binary label was adopted for the fear emotion; i.e., 1 (positive class) if the sample referred
to fear and 0 otherwise. As input labels in the database were given in the three-dimensional
PAD space, a binarization stage was required to map the discrete fear emotion into the
specific PAD quadrant. That meant that samples with low valence, high arousal and low
dominance were labeled as the positive class, whereas the rest of the combinations referred
to the negative class (see Section 2.2). Note that the distinction between low and high
values for the three dimensions was made by equally dividing the SAM scales from 1 to
9 [23]. This proposal could be extended to detect other emotions by binarizing the labels in
the database accordingly.

4. Tools and Methods

The proposed emotion recognition system, which was fully encoded by the authors
under MATLAB®2019b, was experimentally evaluated using the MAHNOB dataset [8].
This lab-based emotion recognition dataset includes data from several volunteers who
observed 20 one-minute video clips. The recorded physiological responses were acquired
using the Biosemi active II system. The acquired data included ECG, GSR, respiration
amplitude, SKT, electroencephalogram, eye gaze and face and body videos. A total of
30 adults participated in the original experiment, of which 17 were women and 13 were men.
However, only 12 of the female volunteers were recorded without failures and permitted
the publishing of their data. As stated in Sections 1 and 2, as we aimed to develop a
specialized fear recognition system for women, only the women participants in MAHNOB
were considered for the experimentation. That means that the results presented in this
work could be limited by the reduced number of participants during the experimentation
for the models proposed. However, to the authors’ knowledge, there is no other available
dataset that fits our case in the literature.

The MAHNOB database generation considered the emotional recoveries of volunteers
between stimuli. That means that, before watching any emotional video, different neutral
clips were shown to the participants. This process was used to recover a basal physiological
level, decrease the emotional bias after experiencing an emotion and handle physiological
intra-subject differences. All recorded responses for each stimulus contained 30 s of data at
the beginning and the end of the slot corresponding to this recovery process. These 60 s
periods in the experimentation were eliminated.

In response to the data segmentation described in Section 3, and with the aim of
obtaining a low processing time in each window, a minimum fixed temporal window size
was selected. This decision was led by frequency resolution restrictions imposed by the
features to be extracted. Thus, a fixed window size of 20 s with a 10 s overlap was applied
over the 20 trials or audiovisual stimuli. This decision directly affected two key factors.
On the one hand, the frequency resolution was set to 0.05 Hz/bin, which was enough
to ensure the frequency precision needed. Note that the sampling frequency for all the
sensors in this database was 256 Hz. Thus, this window size provided the best trade-off
between the temporal complexity and necessary resources within the window. Note that
the bigger the window, the higher the frequency resolution, but the larger the memory
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required to store the data and the time to process it. On the other hand, the limitation of
dealing with this window length and an ERSCR duration greater than 20 s was taken into
account. Note that, as stated in Section 2.3.1, ERSCRs may vary between 1 to 30 s, although
the use of a 50% overlap allowed for a balanced trade-off between the amount of ERSR
information lost and memory requirements. Therefore, each trial was segmented into a
total of five windows that had the same class or label. Note that the greater the overlap, the
more operations needed to be done within a specific time interval. Concerning the storage
of the acquired signals into an embedded platform—for instance, assuming a maximum
width of 32-bits for each data point—the parameters set would lead to a 60 KB memory
requirement (256 samples per second × 20 s × 3 sensors for 32-bit samples). This storage
space could be provided by the current system-on-chips that are used for many wearable
devices. Nevertheless, these requirements are application-driven and can be modified
based on the embedded platform capabilities.

As stated in Section 2.1, the authors considered the MAHNOB subjective self-reports
from volunteers according to their experience during the visualization of stimuli. Accord-
ing to these labels, a fear binary mapping was done as specified in Section 3.2.2. The
machine learning metrics used to assess our model performance were accuracy (ACC), the
area under the curve (AUC) [53], geometric mean (Gmean) and F1 score. The former is
calculated as

ACC =
TP + TN

TP + TN + FP + FN
, (1)

where TP and TN are the true positives and negatives, respectively, and FP and FN are
false positives and negatives, respectively. AUC is given by

AUC = P(X1 > X0) , (2)

where X1 is the score for a positive instance and X0 is the score for a negative one. Gmean
is calculated as

Gmean =
√

sensitivity ∗ speci f icity, (3)

where sensitivity is the true positive rate and speci f icity is the false negative rate. The
latter is determined by

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
, (4)

where TP, FP and FN are the true positives, false positives and false negatives, respectively.
Regarding the validation procedure, the subject-dependent and subject-independent mod-
els were validated based on a stratified k-fold cross-validation schema (k = 5). Note that,
for the subject-dependent models, the mean of all metrics for all volunteers and the mean ab-
solute deviation (MAD) were calculated. Specifically, the subject-independent models were
divided into training–validation–testing sets, employing a leave-one-subject-out (LOSO)
strategy. The latter allowed us to study the performance of various subject-independent
systems trained with different subject combinations and tested with a single volunteer
about whom the system had no information.

5. Results and Discussion

This section presents the experimental analysis of both subject-dependent and subject-
independent models for a specialized binary-fear recognition system based on a reduced
set of physiological signals for women.

5.1. Subject-Dependent Analysis

Before considering the classification problem, an exploratory data analysis over the
different extracted physiological features was performed to check for outliers and verify
that all generated data were physiologically in-range. These models were adequately
scaled but not subjected to any normalization. Note that, as stated in the previous section,
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physiological recovery time-slots were omitted. After performing the fear label binarization
in MAHNOB, the obtained distribution was analyzed for all female volunteers, resulting
in asymmetry. That meant that the appearance of fear labels was not uniform for all of
the participants. Thus, Figure 2 shows that 60% of the volunteers had more than 30%
of binary-fear labels, whereas the rest of the volunteers were below that amount. Note
that, in this figure, the notation Vx means volunteer x, with x ∈ 1 . . . 12, and the notation
G refers to the original binary-fear distribution of the experiment (the actual number of
stimuli intended to elicit fear; i.e., only 20% of the total amount of videos). This unbalanced
situation is especially relevant for V11, with only 5% of fear data. That means that the
interpretation of stimuli was strongly volunteer-dependent, as expected. This makes the
selection of general stimuli which elicit fear difficult. The asymmetry observed also affected
the performance metrics to be considered. Thus, ACC was not enough to assess model
performance [54]. Therefore, more robust metrics were needed, such as the AUC, Gmean
and F1 score. Note that the class distribution does not imply that two volunteers with the
same distribution reported the same stimulus as inducing fear. Thus, the performance of
each of the subject-dependent models generated was subjected to the disentanglement
of the physiological fear-related patterns of the subject through the binary fear mapping
obtained through self-reports.
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Figure 2. Subject-dependent class distribution for binary fear mapping over the subjective self-reports
in MANHOB, and the original intended class distribution of the experiment.

Table 2 shows the validation performance metrics and dispersion for the different
light-weight classification algorithms selected for the generation of each subject-dependent
model for all volunteers. After analyzing the results, it can be observed that there was no
strict dependence relationship between the class distribution and performance. Nonethe-
less, the performance of the models was directly affected by the type of classifier used.
Moreover, as stated above, another key factor that could have influenced performance was
related to the alignment of subject-dependent physiological patterns and the binary fear
mapped labels obtained. Furthermore, the usage of Gmean and F1 score allowed us to dis-
tinguish the low-performance models from the higher-performing models more robustly.
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Table 2. Performance metrics for each generated subject-dependent model and average performance metrics and dispersion for each classification algorithm. SVM: support vector machine;
KNN: k-nearest neighbor; ENS: ensemble classifiers; MAD: mean absolute deviation; ACC: accuracy; AUC: area under the curve.

SVM KNN ENS

Training Trained ACC AUC Gmean F1 ACC AUC Gmean F1 ACC AUC Gmean F1
Type Volunteers (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

V1 89.00% 90.30% 87.73% 85.71% 88.00% 88.67% 87.90% 85.37% 88.00% 79.32% 85.12% 83.33%
V2 88.00% 92.43% 76.41% 71.43% 99.00% 99.89% 99.23% 87.72% 91.00% 97.47% 85.41% 80.85%
V3 91.00% 94.44% 71.20% 74.29% 94.00% 96.19% 90.47% 85.00% 97.00% 95.31% 98.13% 93.02%
V4 93.00% 95.29% 84.06% 75.86% 99.00% 96.67% 96.59% 96.55% 96.00% 99.69% 85.62% 84.62%
V5 76.00% 84.97% 75.01% 72.09% 81.00% 91.47% 85.62% 84.62% 98.00% 99.88% 97.95% 97.78%

Subject V6 90.00% 93.67% 87.92% 83.33% 98.00% 98.60% 84.08% 82.86% 99.00% 99.90% 99.23% 98.36%
dependent V7 93.00% 98.54% 92.47% 91.14% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

V8 85.00% 90.57% 81.22% 74.58% 94.00% 92.24% 90.58% 89.29% 93.00% 86.05% 92.12% 88.52%
V9 96.00% 98.44% 83.16% 77.78% 99.00% 99.44% 99.40% 95.24% 100.00% 100.00% 100.00% 100.00%

V10 89.00% 91.31% 87.73% 85.71% 94.00% 94.15% 93.24% 92.31% 100.00% 100.00% 100.00% 100.00%
V11 95.00% 50.00% 00.00% 00.00% 99.00% 90.00% 89.44% 88.89% 100.00% 100.00% 100.00% 100.00%
V12 77.00% 83.48% 62.91% 53.06% 91.00% 85.95% 84.97% 83.02% 94.00% 93.33% 90.58% 89.29%

88.50% 88.62% 74.15% 70.42% 94.66% 94.44% 91.80% 89.24% 96.33% 95.91% 95.51% 92.98%
(4.66%) (7.90%) (14.72%) 14.62% (4.33%) (4.02%) (4.92%) (4.53%) (3.28%) (4.94%) (5.62%) (6.38%)



Sensors 2021, 21, 1587 14 of 31

The presented results could be biased due to the reduced amount of data available
(100 samples per volunteer, with 20 videos and five windows each), as well as due to the
asymmetry detected (imbalanced data). Focusing on asymmetry, this problem is especially
relevant in V11, as discussed before. The effect on performance due to asymmetry for this
volunteer is shown in Figure 3. This figure provides the confusion matrices for V11 after
applying all the algorithms. Conversely, the confusion matrices of the volunteer V7 are also
shown in Figure 4. This volunteer was considered to show the best performance overall;
i.e., considering the different metrics for the three classifiers applied. In these figures, the
positive class is represented by the number two, and the negative class is represented by
the number one. The rows correspond to the predicted class and the columns correspond
to the true class or ground truth. From left to right and from top to bottom, each confusion
matrix shows the TN, FP and false omission rates. The next row shows the FN, TP and
precision rate. The last row shows the false-negative rate, specificity and overall accuracy.
Note that the rest of the confusion matrices for each subject-dependent model generated
are shown in Appendix A.

After analyzing these confusion matrices, the performance of the algorithms in V11
was also found to be asymmetric. Thus, for instance, SVM provided a high accuracy,
at up to 95.00%, but this metric was biased by the reduced number of samples of this
volunteer within the positive class (only five samples). In this case, the calculated Gmean
and F1 metrics results were 0.00% due to the zero positive predicted rate, and the AUC
was 50.00%, showing that this classification model performed no better than random
guessing. The behavior shown by SVM matched the usual unreliable performance of
this algorithm for extremely imbalanced distributions; that is, SVM is oriented towards
the majority class to optimize the error rate during the training stage. On the contrary,
boosting algorithms usually provide a better behavior for imbalanced distributions, as
shown by ENS for this case. Nevertheless, this imbalanced situation should be avoided
during the database generation, and the quality and diversity of the stimuli considered
should be improved. In the case that this situation is not addressed during the database
generation, the bias generated in performance could be partially solved by selecting an
adequate classification technique, as discussed above. However, the lack of information
from one of the two classes cannot be solved, resulting in a possible incorrect classification
for future samples [55]. Another possible approach to deal with this problem is based
on the application of data augmentation techniques or weighted classes. Some of these
techniques have been already used in [30] by the authors. Conversely, in the case of V7,
the system showed 40.00% positive class information, which translates into a better SVM
performance. KNN and ENS continued to outperform SVM due to the reasons stated above
for the error rate optimization of this classifier.

To the authors’ knowledge, the results obtained for the subject-dependent fear detec-
tion model proposed in this paper outperform the state-of-the-art approaches. Thus, the
only binary fear recognition system known in the literature [40] with an accuracy above
90% was surpassed, as our approach reached 96.33% accuracy. Other related works within
the wearable emotion recognition field were also outperformed, such as the proposals
in [34,35], providing up to 75.56% and 87.30% accuracy values. The valuable work in [38]
provided a similar accuracy to our approach, with up to 97.20% accuracy. Note that the
works in [34,35,38] were for a different use case, and the performance metrics shown should
be considered as an indication of usual performance metrics within the field. Note also
that this comparison could be biased due to the usage of ACC in these papers instead of
more robust metrics as Gmean or F1.
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Figure 3. Confusion matrices for a subject-dependent model in V11, detected as a problem in asym-
metry.
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5.2. Subject-Independent Analysis

Another possibility would be to generate a subject-independent approach to obtain
a global model for the entire population. This option avoids customization for each user,
facilitating the delivery task and making the system more user-friendly. In this case,
the combination of all volunteers would substantially increase the number of samples.
Thus, there would be more data to train and test the models, which is especially valuable
in the emotion recognition field. However, the subject-independent approach aimed to
find a universal model for the global population, presenting a challenging task for our
system considering the observed dispersion in emotion labeling for different individuals.
The possibility of generating a subject-independent system is still an open question that
requires a larger data set combined with an improved labeling methodology and a balanced
selection of emotion-eliciting stimuli.

Focusing on our use case, the combination of all individual samples resulted in a bigger
dataset with 1200 samples (20 videos× 5 windows each× 12 volunteers). The physiological
signal ranges differed for different individuals due to the nature of each individual and
the differences in the measurement set-up (e.g., ambient temperature). Therefore, the
data from each volunteer should be normalized. To this end, the authors considered the
z-score method. Once the database was normalized, the binary-fear recognition system
was generated using a k-fold cross-validation schema and a LOSO testing methodology, as
stated before in Section 4.

Table 3 shows the performance metrics for each classification algorithm in the gen-
eration of the subject-independent model. Note that the training of these models was
performed using all volunteers except the one used for testing in each iteration (unseen
test data); i.e., a total of 12 subject-independent models were generated and tested.

Table 3. Performance metrics for each generated subject-independent model and average performance metrics and
dispersion for each classification algorithm. The training stage is performed using all the volunteers except the tested
volunteer in each model generated (unseen test data).

SVM KNN ENS

Training Tested ACC AUC Gmean F1 ACC AUC Gmean F1 ACC AUC Gmean F1
Type Volunteers (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD) (MAD)

V1 65.00% 60.83% 57.15% 47.76% 75.00% 71.25% 68.74% 62.69% 71.00% 65.83% 60.55% 52.46%
V2 70.00% 61.33% 58.83% 42.31% 81.00% 74.00% 72.66% 61.22% 82.00% 86.72% 71.26% 60.87%
V3 64.00% 66.00% 62.44% 40.00% 72.00% 61.88% 59.53% 39.13% 62.00% 61.19% 45.82% 24.00%
V4 82.00% 71.01% 83.88% 59.09% 84.00% 87.84% 87.67% 63.64% 85.00% 91.61% 90.75% 66.67%
V5 64.00% 70.55% 61.10% 55.00% 70.00% 71.74% 65.32% 59.46% 73.00% 75.58% 68.16% 63.01%

Subject V6 84.00% 88.57% 85.61% 77.14% 71.00% 68.81% 68.59% 56.72% 79.00% 87.86% 76.16% 66.67%
independent V7 75.00% 90.54% 65.38% 59.02% 76.00% 91.83% 69.37% 63.63% 87.00% 99.46% 82.16% 80.60%

V8 76.00% 81.90% 70.51% 60.00% 78.00% 72.86% 71.71% 62.07% 80.00% 85.00% 75.59% 66.67%
V9 67.00% 69.67% 63.77% 21.82% 67.00% 59.44% 58.69% 18.87% 78.00% 84.78% 78.88% 42.11%

V10 76.00% 79.63% 65.95% 60.00% 78.00% 72.92% 68.34% 63.33% 77.00% 82.30% 72.80% 67.61%
V11 74.00% 90.53% 76.78% 23.53% 80.00% 89.47% 88.85% 40.00% 74.00% 86.32% 85.22% 27.78%
V12 70.00% 72.05% 64.14% 51.61% 71.00% 66.90% 66.12% 53.97% 72.00% 67.72% 66.73% 54.84%

72.25% 75.22% 67.96% 49.77% 75.25% 74.07% 70.47% 53.73% 76.67% 81.20% 72.84% 56.11%
(5.58) (9.18) (7.48) (12.24) (4.25) (7.82) (6.50) (10.53) (5.22) (9.07) (8.62) (13.22)

After analyzing this table, the best results were also provided by ENS, with the highest
averaged performance metrics (81.20%, 72.84%, 56.11%) for the AUC, Gmean and F1 score.
On the contrary, SVM also provided the worst performance in general. The differences
between all the subject-independent models generated should be noted. For instance, the
best model achieved a Gmean of up to 90.75% when testing with V4 and training with
the rest of the volunteers, and the worst model provided a Gmean of up to 45.82% when
testing with V3 and training with the rest of the volunteers. This fact emphasizes the need
for a larger and more balanced data set to deal with these problems. Regarding the F1
score, a high variability can be observed between the different models. By definition, this
score is a weighted harmonic mean between precision and recall, which leaves TNs out
of the equation. This fact is key when presented with a very low positive incidence, but a
high F1 score does not necessarily imply a better performance of the system. For instance,
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the confusion matrices of two subject-independent tested models for the ENS classifiers are
shown in Figure 5 for V4 and V7 with F1 scores of up to 66.67% and 80.60% respectively.
Based on the pursued fear recognition application, it could be more convenient to have
a misclassification for the FPs than over the FNs. Therefore, comparing the F1 score for
different subject-independent models should be accompanied by the requirements and
needs of the application. Note that both of the explained examples did not show a perfect
classification performance. The rest of the confusion matrices for each subject-independent
model generated are shown in Appendix A.
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Figure 5. Confusion matrices for ENS classifiers and tested volunteers (unseen data) over their
respective subject-independent models: (a) tested V4, (b) tested V7.

The best subject-independent model generated corresponded with the only special-
ized fear recognition system in the literature, which considered a subject-dependent model
(below 90% accuracy). This fact is especially relevant due to the advantages of the in-
dependent approach and the usage of only three physiological signals. Other related
works correspond with the result obtained for a subject-independent approach as well. For
instance, the works in [28,36] provided up to 93.12% and 89.53% accuracy values, while
that in [19] showed up to 94% accuracy. Note that these other related works are based on a
different use case—i.e., not binary-fear recognition—and the performance of their models
was defined by the accuracy metric, which is not enough to assess model performance, as
sated previously.

6. Conclusions and Future Work

A specialized fear recognition system for women based on a reduced set of physiolog-
ical signals has been proposed in this work. This system is characterized by the usage of
three physiological signals (ECG, GSR and SKT), a binary fear mapping strategy based on
self-report information, low computational complexity binary classification algorithms and
the conjunction of linear and non-linear features.

The authors evaluated the system using the MANHOB database with two approaches;
i.e., subject-dependent and subject-independent models. Focusing on the subject-dependent
approach, the proposal achieved a fear accuracy recognition rate of up to 96.33% and a
Gmean of up to 95.51% for 12 volunteers. Focusing on the challenging subject-independent
approach, the proposal achieved an average fear accuracy recognition rate of up to 76.67%
and an average Gmean of up to 72.84% considering a LOSO testing methodology. Note
that the best subject-independent model provided a fear accuracy recognition rate and a
Gmean of up to 85.00% and 90.75%, respectively.

Certain limitations of the proposed system must be considered. On the one hand, the
data segmentation approach used in this work presents some disadvantages when dealing
with slow-changing physiological signals, as stated in Section 2.3.1. Different techniques
should be applied to take into account all the different physiological particularities without
wasting information. For instance, specifically for the GSR, the use of dynamic data
segmentation and overlapping could be a valid solution. However, when dealing with
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resource-constrained devices, a better solution might be to keep track of the onsets of the
ERSCRs and, when detecting the offsets for the successive processing windows, calculate
all the ERSCRs metrics. The main advantage of this latter method is the independence of the
processing window length at the expense of storing the ERSCR tracking information until
the completion of the ERSCR (offset). On the other hand, no normalization is applied for
the subject-dependent models. Conversely, the z-score is used for the subject-independent
model to deal with inter-difference, as stated in Section 5. Despite using these specific
normalization strategies, other approaches might be exploited. For instance, the authors are
already working on applying different normalization techniques, such as using recovery
time-slots to normalize the data of the audiovisual stimulus and study the effect for
the analyzed fear use case. At the same time, and following this upgrading context,
the authors are also considering some feature selection techniques, such as principal
component analysis, sequential feature selection or recursive feature elimination to reduce
the redundancy and dimensionality of the problem and to reinforce the system without
compromising the model performance. Finally, it should be noted that the convenience of
the three initially selected sensors (ECG, GSR, SKT) was validated according to the quality
of the assessment metrics presented above. Thus, the results shown are limited by the size
of the dataset considered, which is the weakest point of this work. As no other dataset
exists that fits the use case, a larger and better dataset is required to create a more reliable
system, as stated in Section 5.

Comparing the proposal to related works, the authors checked that the proposed
subject-dependent fear detection model outperformed the state-of-the-art approach regard-
ing fear detection. Additionally, other related works within the emotion recognition field
were also outperformed. Regarding the subject-independent fear detection model, to the
authors’ knowledge, this is the first time that a subject-independent model based on fear
detection using a fear binary mapping by means of PAD and discrete emotions and three
physiological signals has been presented. This fact is especially valuable due to the advan-
tages of the subject-independent model in comparison to the subject-dependent model.

Some of the limitations identified while performing this work confirm the relevance
of creating a novel data set focused on fear detection. This dataset should include some
key facts, such as the usage of emotional immersive technology, the modification of the
labeling methodology to consider the gender perspective, a properly balanced stimuli
distribution regarding the target emotions and a greater number of participants. Thus, as a
future work, the authors plan to develop a specific database using professional equipment
and our developed hardware platform [56,57], which includes inconspicuous wearable
physiological smart sensors. This database will be focused on vulnerable groups, such
as gender-based violence victims. Moreover, the labeling process will be done based on
a gender perspective, taking into consideration label balancing issues and using virtual
reality to produce a stronger emotional immersion. This specific work is currently under
development [7]. The resultant intelligent system will be implemented into an embedded
wearable device, which will be part of a cyber-physical system that is also connected to
trusted responders or even law enforcement agencies.
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Figure A1. Confusion matrices for a subject-dependent model for V1.

1 2

Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

SVM V2

73
73.0%

2
2.0%

97.3%
2.7%

10
10.0%

15
15.0%

60.0%
40.0%

87.9%
12.1%

88.2%
11.8%

88.0%
12.0%

(a) SVM classifier

1 2

Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

KNN V2

74
74.0%

1
1.0%

98.6%
1.4%

0
0.0%

25
25.0%

100.0%
0.0%

100.0%
0.0%

96.1%
3.9%

99.0%
1.0%

(b) KNN classifier

1 2

Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

ENS V2

72
72.0%

3
3.0%

96.0%
4.0%

6
6.0%

19
19.0%

76.0%
24.0%

92.3%
7.7%

86.3%
13.7%

91.0%
9.0%

(c) ENS classifier
Figure A2. Confusion matrices for a subject-dependent model for V2.
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Figure A4. Confusion matrices for a subject-dependent model for V4.
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Figure A5. Confusion matrices for a subject-dependent model for V5.
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Figure A6. Confusion matrices for a subject-dependent model for V6.
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Figure A7. Confusion matrices for a subject-dependent model for V8.
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Figure A8. Confusion matrices for a subject-dependent model for V9.
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Figure A9. Confusion matrices for a subject-dependent model for V10.
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Figure A10. Confusion matrices for a subject-dependent model for V12.
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Figure A11. Confusion matrices for a subject-independent model tested with V1.
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Figure A12. Confusion matrices for a subject-independent model tested with V2.



Sensors 2021, 21, 1587 25 of 31

1 2
Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

SVM / SI Tested with V3

52
52.0%

28
28.0%

65.0%
35.0%

8
8.0%

12
12.0%

60.0%
40.0%

86.6%
13.4%

30.0%
70.0%

64.0%
36.0%

(a) SVM classifier

1 2
Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

KNN / SI Tested with V3

63
63.0%

17
17.0%

78.8%
21.2%

11
11.0%

9
9.0%

45.0%
55.0%

85.1%
14.9%

34.6%
65.4%

82.0%
18.0%

(b) KNN classifier

1 2

Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

ENS / SI Tested with V3

56
56.0%

24
24.0%

70.0%
30.0%

14
14.0%

6
6.0%

30.0%
70.0%

80.0%
20.0%

20.0%
80.0%

62.0%
38.0%

(c) ENS classifier
Figure A13. Confusion matrices for a subject-independent model tested with V3.
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Figure A14. Confusion matrices for a subject-independent model tested with V4.
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(c) ENS classifier
Figure A15. Confusion matrices for a subject-independent model tested with V5.
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Figure A16. Confusion matrices for a subject-independent model tested with V6.
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Figure A17. Confusion matrices for a subject-independent model tested with V7.
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(c) ENS classifier
Figure A18. Confusion matrices for a subject-independent model tested with V8.



Sensors 2021, 21, 1587 28 of 31

1 2
Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

SVM / SI Tested with V9

61
61.0%

39
39.0%

67.7%
32.3%

4
4.0%

6
6.0%

60.0%
40.0%

93.8%
6.2%

13.3%
86.7%

67.0%
33.0%

(a) SVM classifier

1 2
Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

KNN / SI Tested with V9

62
62.0%

38
38.0%

68.8%
31.2%

5
5.0%

5
5.0%

50.0%
50.0%

92.5%
7.5%

11.6%
88.4%

67.0%
33.0%

(b) KNN classifier

1 2

Ground Truth

1

2

P
re

di
ct

ed
 C

la
ss

ENS / SI Tested with V9

70
70.0%

20
20.0%

77.8%
22.2%

2
2.0%

8
8.0%

80.0%
20.0%

97.2%
2.8%

28.6%
71.4%

78.0%
22.0%

(c) ENS classifier
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Figure A20. Confusion matrices for a subject-independent model tested with V10.
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40. Bălan, O.; Moise, G.; Moldoveanu, A.; Leordeanu, M.; Moldoveanu, F. Fear Level Classification Based on Emotional Dimensions
and Machine Learning Techniques. Sensors 2019, 19, 1738. [CrossRef] [PubMed]

41. Sörnmo, L.; Laguna, P. Chapter 7—ECG Signal Processing. In Bioelectrical Signal Processing in Cardiac and Neurological Applications;
Biomedical Engineering, Academic Press: Burlington, MA, USA, 2005; pp. 453–566. [CrossRef]

42. Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, A.D.; Aljama-Corrales, T.; Charleston-Villalobos, S.; Chon, K.H. Power
Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann. Biomed. Eng. 2016, 44, 3124–3135.
[CrossRef]

43. Dawson, M.E.; Schell, A.M.; Filion, D.L., The Electrodermal System. In Handbook of Psychophysiology, 4th ed.; Cambridge
Handbooks in Psychology; Cambridge University Press: Cambridge, UK, 2016; pp. 217–243. [CrossRef]

44. Shusterman, V.; Anderson, K.P.; Barnea, O. Spontaneous skin temperature oscillations in normal human subjects. Am. J. Physiol.
Regul. Integr. Comp. Physiol. 1997, 273, R1173–R1181. [CrossRef]

45. Valenza, G.; Lanata, A.; Scilingo, E.P. The Role of Nonlinear Dynamics in Affective Valence and Arousal Recognition. IEEE Trans.
Affect. Comput. 2012, 3, 237–249. [CrossRef]

46. Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D. Recurrence Plots of Dynamical Systems. Europhys. Lett. 1987, 4, 973–977. [CrossRef]
47. Marwan, N.; Carmen-Romano, M.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007,

438, 237–329. [CrossRef]
48. van-den Bleek, C.M.; Schouten, J.C. Deterministic chaos: A new tool in fluidized bed design and operation. Chem. Eng. J. Biochem.

Eng. J. 1993, 53, 75–87. [CrossRef]
49. Carl Rhodes, M.M. The false nearest neighbors algorithm: An overview. Comput. Chem. Eng. 1997, 21, S1149–S1154. [CrossRef]
50. Schinkel, S.; Dimigen, O.; Marwan, N. Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 2008,

164, 15–53. [CrossRef]
51. Marwan, N.; Wessel, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence-plot-based measures of complexity and their

application to heart-rate-variability data. Phys. Rev. E 2002, 66, 026702. [CrossRef]
52. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the 24th International

Conference on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2011; pp. 2546–2554.
53. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,

30, 1145–1159. [CrossRef]
54. Valverde-Albacete, F.J.; Peláez-Moreno, C. 100% Classification Accuracy Considered Harmful: The Normalized Information

Transfer Factor Explains the Accuracy Paradox. PLoS ONE 2014, 9, e84217. [CrossRef]
55. Raudys, S.J.; Jain, A.K. Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners. IEEE

Trans. Pattern Anal. Mach. Intell. 1991, 13, 252–264.
[CrossRef]

56. Miranda, J.A.; Marino, R.; Lanza-Gutierrez, J.M.; Riesgo, T.; Garcia-Valderas, M.; Lopez-Ongil, C. Embedded Emotion Recognition
within Cyber-Physical Systems using Physiological Signals. In Proceedings of the 2018 Conference on Design of Circuits and
Integrated Systems (DCIS), Lyon, France, 14–16 November 2018; pp. 1–6.

57. Rituerto-González, E.; Miranda, J.A.; Canabal, M.F.; Lanza-Gutiérrez, J.M.; Peláez-Moreno, C.; López-Ongil, C. A Hybrid Data
Fusion Architecture for BINDI: A Wearable Solution to Combat Gender-Based Violence. In Multimedia Communications, Services
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