
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. XX, XXXX 2020 1

Full-Wave Computation of Monostatic RCS Using
Ray-Tracing and Adaptive Macro-Basis Functions

Carlos Delgado, Eliseo Garcı́a, Lorena Lozano and Manuel Felipe Cátedra, Life Fellow, IEEE

Abstract—This paper presents a technique for the computation
of the monostatic Radar Cross Section of complex objects
based on a combination of Macro-Basis Functions and the
Multilevel Fast Multipole Algorithm. An initial pool of excitation-
independent Macro Basis Functions are first obtained, generating
the corresponding reduced coupling matrix as well as the
multipole data. For each excitation a ray-tracing processing is
performed, extracting a number of critical points which are used
to obtain a mask that allows to dynamically select the basis
functions to be considered in the analysis. This strategy allows
a noticeable reduction of the size of the problems with minimal
CPU-time preprocessing overhead.

Index Terms—Electromagnetic analysis, Moment methods, Nu-
merical analysis, Ray Tracing.

I. INTRODUCTION

THE prediction of the Radar Cross Section (RCS) of
arbitrary targets constitutes a very important application

of electromagnetic analysis methods, encompassing a broad
range of operation fields that include, in addition to purely
academic research, aircraft approach systems, vessel traffic
service systems, collision-avoidance systems for terrestrial ve-
hicles, meteorology, geology, health, law enforcement, military
systems and others. The interest aroused by accurate RCS
predictions has favored the emergence of efficient computation
techniques, either in the form of general analysis approaches
or restricted to the computation of the RCS for specific types
of problems.

The estimation of the RCS for electrically large objects has
been typically carried out using high-frequency techniques
[1], [2]. The Geometric Theory of Diffraction (GTD) [3]
is a cornerstone of this kind of approaches, incorporating
diffraction effects to the existing Geometrical Optics (GO).
The accuracy of this technique at caustics and light-shadowed
boundaries, in turn, was improved by uniform theories, such as
the Uniform Theory of Diffraction (UTD) [4]. The application
of these approaches for arbitrary problems generally rely
on detailed geometrical processing [5] to obtain the shadow
boundaries and eclipse effects based on ray-tracing analyses
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[6] and their computational cost is associated to the number of
geometric entities in the scenario rather than to the electrical
size. However, when dealing with singular caustic curves or
zones where many boundary layers overlap it may become
necessary to resort to the computation of the surface field
and integrate the currents in order to obtain the radiated field.
The Physical Optics (PO) approach and the Physical Theory
of Diffraction (PTD) [7] do not rely on the concept of rays,
and calculate the current on each point of the surface as a
function of the impinging incident field on that point. Fast
quasi-analytical integration methods for the computation of
the radiated fields can be seen in [8], [9].

In spite of the computational benefits carried by high-
frequency techniques, some problems fall out of their scope in
order to render reliable results or simply need a higher degree
of accuracy. In these cases, and assuming limited computation-
al resources, the next natural step is to combine asymptotic
and rigorous methods in hybrid techniques, separating the
geometrical domains in which each one is to be applied [10],
[11].

The rise in computing power observed in the last years,
specially with the increase of the number of cores and
memory, together with an evolution of conventional full-wave
techniques such as the Method of Moments (MoM) [12],
has motivated the use of rigorous approaches to predict the
RCS of scenarios that fell solely into the scope of asymptotic
analysis some years ago. Domain decomposition techniques
[13]–[15] reduce the computational cost by analyzing isolated
parts of the scenario, followed by a data exchange process
between domains. Full-wave analysis techniques based on
enhancements of the Method of Moments have been developed
in order to bypass the need to store the full coupling matrix,
which is the main computational bottleneck of the MoM.
Some of these approaches require to store only the near-
field part of the matrix, avoiding the interactions between
distant basis functions [16], [17], which are taken into account
in the iterative resolution process using fast matrix-vector
multiplications. Other techniques make use of high-level basis
functions, often referred to as Macro Basis Functions (MBFs)
[18]–[20], allowing an effective reduction of the number of
unknowns typically of one order of magnitude. Different types
of efficient techniques have been combined for an improved
performance [21].

The rigorous analysis of monostatic RCS is an especially
costly problem, because each observation direction requires
the solution of the MoM equation system with a new exci-
tation. Some existing approaches make use of a reduction of
the number of problems when the set of excitations is rank-
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deficient [22]. Other approximations use the bistatic RCS in
the close range of an excitation as an approximation of the
monostatic solution [23], or apply an extrapolation based on
the Asymptotic Waveform Extraction (AWE) technique [24],
[25].

We propose here a novel approach for monostatic RCS
computation based on a combination of the Multilevel Fast
Multipole Algorithm (MLFMA) [16] with a MBF-derived
approach in which the number of MBFs are dynamically se-
lected from a primitive pre-computed set using a Ray-Tracing
processing of the scenario under analysis. This allows a much
more pronounced reduction of the number of unknowns while
maintaining a high degree of accuracy.

This document is structured as follows: section II describes
the ray-tracing considerations and the details of the proposed
numerical technique. Some representative results are shown
and discussed in section III. The conclusions and final remarks
are presented in section IV.

II. DESCRIPTION OF THE ANALYSIS TECHNIQUE

This section contains the description of the technique
proposed for the fast analysis of the monostatic RCS of
complex scenarios. The total number of monostatic directions
considered in the analysis is represented by Nm in this text.
The application of a MBF-MLFMA based method requires,
on one hand, the compartmentalization of the scenario into Nr
cubical regions, whose size ∆r is typically around λ/4 and,
on the other hand, in terms of Nb blocks where the MBFs are
defined, with a side length ∆b of one or several wavelengths.

A. Ray-tracing processing

The technique proposed in this work makes use of the
data retrieved by a ray-tracing analysis of the scenario for
each monostatic direction. The authors have applied in past
works ray-tracing data to speed up full-wave computations,
reducing the effective size of the meshed scenario in [26]
or considering the radiation pattern of antenna excitations to
reduce the number of MBFs in [27]. In this work the ray-
tracing analysis data is used to, instead of modifying the
mesh as described in [26], reduce the size of the problem for
each incidence direction by discarding macro-basis functions
that do not have a significant contribution. The macro-basis
functions are defined as aggregations of low-level conventional
basis functions over blocks of the geometry, and therefore the
mesh does not need to be altered. Note that the selection of
MBFs for each block and excitation is dynamic in the sense
that the threshold applied for their selection changes depending
on the ray-tracing data provided. This is effectively equivalent
to considering a different impedance matrix for each problem,
where some macro-basis functions are discarded from the
pre-computed pool if their relevance is deemed negligible.
After obtaining the ray-tracing data, and with the purpose of
developing an algorithm for the adaptive selection of MBFs
independently for each monostatic direction, it is possible
to get Nm sets of critical points, considering that a critical
point represent the location of the interaction between a ray
and the scenario (for example, reflection points, diffraction

points or samples along the lines defining the trajectories
of creeping waves). Fig. 1 shows an example containing an
aircraft geometry and the ray-tracing analysis from a plane
wave impinging from θ = 90◦, φ = 45◦. The bottom part of
the Figure shows the scenario where the position of the critical
points have been emphasized. Let us consider that there are
N

(i)
c critical points corresponding to the i-th incident direction,

and the set of these points is denoted C(i), while the individual
points are named C(i)

j with j = 1 · · ·N (i)
c .

X

YZ

Fig. 1. Geometry, Ray-Tracing visualization (top) and illustration of the
resulting critical points (bottom) for a commercial airplane. The excitation
is a plane wave impinging from θ = 90o, φ = 45o.

1) Fast evaluation of shadowing tests: In order to identify
efficiently the surfaces that are suitable candidates to intercept
an incoming ray it is necessary to consider an ordering proce-
dure based on their relative position. On this account, if there is
an intersection between a ray ~r and a surface Si all the surfaces
situated behind Si are eclipsed by Si for that particular ray
path. The facet-Angular Z-Buffer (AZB) algorithm [28] is a
fast strategy to compute this relative ordering. The underlying
methodology is based on the partition of the computational
space in terms of angular elements called anxels. Each anxel
represents a solid angle taking as the origin any of the vertices
of the facet. For curved surfaces a preliminary facetization can
be performed. The AZB of Si is a matrix structure where the
cells correspond to the anxels and each cell contains a list of
the surfaces of the scenario located within the angular regions
associated to it. The first element of the list corresponds to the
closest surface. As a preliminary processing, the AZB structure
of each facet of the scenario is obtained.

2) Computation of multiple effects: In addition to the calcu-
lation of the shadowing and intersection tests, the computation
of effects of an arbitrary order on a realistic scenario can
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be a formidable challenge applying a naı̈ve implementation.
Some techniques that allow to reduce this complexity are the
methods based on images, allowing to reduce the order of the
effect by substituting plane facets with their images, or those
based on the minimization of the total length of the path for
curved surfaces [5]. Shooting and bouncing rays (SBR) [6]
techniques analyze all the rays shot in radial directions from
the source. The rays which pass near the observation point
are considered to contribute to the scattered field. The strategy
followed in this work is based on a preliminary facetization of
the scenario, followed by the identification of the illuminated
facets by applying intersection tests using the AZB of the
source of the ray. The critical points on that illuminated region
are computed using the image of the source with respect to
the tested facet. After determining the critical points due to the
i-th effect the candidate facets for the (i+1)-th interaction are
determined using the AZB of the previously illuminated facets
in the angular region given by the outgoing ray, calculated
using Snell’s law [5]. More detailed information regarding this
methodology can be seen in [28].

A special consideration needs to be given for the computa-
tion of the path followed by creeping waves [29]. In order
to consider this effect it is necessary to identify first the
silhouette points, which mark the interface between the visible
and hidden parts of the object, and choose from these the entry
and exit points. The creeping path is then computed taking into
account the curvature of the object and the incident direction
at the entry point. The path is defined by a set of sample points
along the creeping contour.

B. Dynamic selection of MBFs and reduced matrix

In order to select dynamically the significant MBFs for each
monostatic direction it is necessary to pre-compute a complete
MBF pool, which is later used to generate a primitive reduced
matrix. In the rest of this document the terms Nl and Nh
make reference to the total number of low- and high-level basis
functions, i.e., subdomain functions and MBFs, respectively,
while a superscript, such as N (i)

l or N (k)
h indicates the basis

functions contained in that specific block. The MBF pool
is generated by isolating each block and orthogonalizing
the currents induced by a set of external excitations. One
approximation is based on the use of a sampling of the Plane
Wave Spectrum (PWS) [19] as external sources. Considering
angular separations of ∆θ and ∆φ degrees between plane
waves, the total number of excitations is P =

[
180o

∆θ ·
360o

∆φ

]
.

Assuming that the current induced by the k-th plane wave on
the i-th block is [J

(i)
k ], it is possible to include all the induced

currents in a matrix [J
(i)
(PWS)] and perform the Singular Value

Decomposition:

[
J

(i)
PWS

]
=



{[
J

(i)
1

]}T{[
J

(i)
2

]}T
...{[

J
(i)
P

]}T


=
[
U (i)

] [
Σ(i)

] [
V (i)

]∗
(1)

where the columns of
[
U (i)

]
and

[
V (i)

]
are the left-

and right-singular vectors which form orthonormal bases,
and the diagonal part of

[
Σ(i)

]
contains the singular values

σ
(i)
1 , σ

(i)
2 , · · · , σ(i)

P . Assuming that these values are arranged
in increasing magnitude, a threshold T is used to truncate the
number of columns of [V (i)] to be retained as the N (i)

h initial
MBFs assigned to the i-th block as follows:

N
(i)
h = k =⇒ σ

(i)
1

σ
(i)
k

≤ T and
σ

(i)
1

σ
(i)
k+1

> T (2)

where typical values of 103 are generally found in the
existing literature for the T parameter. As stated before,
condition (2) indicates that the pool of MBFs of the i-th block
is defined as the column vectors v

(i)
k , with k = 1 · · ·N (i)

h :

[
V (i)

]
N

(i)
l ×N

(i)
l

=
(

v
(i)
1 v

(i)
2 · · · v

(i)

N
(i)
h

· · · v
(i)

N
(i)
l

)
.

(3)
It is necessary to follow this procedure for each block of

the scenario, retaining the first N (i)
h values of

[
Σ(i)

]
in order

to perform the fast dynamic assignation of MBFs from the
existing pool as indicated below.

Note that the generation and storage of the MBF pool as
previously described entails the need of additional computa-
tional resources compared to the conventional MoM-MLFMA.
Considering that the [J

(i)
k ] currents in (1) are obtained using

the PO approach the associated cost for their generation is
O(N

(i)
l ) and the storage of the matrix containing the currents

increases with O(P ·N (i)
l ) where, as previously indicated, P

and N (i)
l refer, respectively, to the total number of PWS excita-

tions and the number of low-level basis functions contained in
the i-th block. The computation of the SVD, in turn, increases
as O(N

(i)
l · P 2 + P 3) as described in [30].

The MBFs can be described as aggregations of low-level
basis functions using as weighting values the previously ob-
tained coefficients:

J
(i)
j (~r) =

N
(i)
l∑

n=1

v
(i)
j,nT

(i)
n (~r) (4)

where v(i)
j,n is the n-th element of v(i)

j , J (i)
j (~r) stands for the

j-th MBF on the i-th block and T (i)
n (~r) is the n-th subdomain

basis function on the same block. This expansion of the high-
level basis functions allow to computed the reduced coupling
matrix using the conventional low-level coupling coefficients.
The coupling term between the m-th MBF of the i-th block
and the n-th MBF of the j-th block can be expressed:

〈
L(J (j)

n ), J (i)
m

〉
=

N
(m)
l∑
k=1

N
(n)
l∑
p=1

v(j)
n,pv

(i)∗
m,kzk,p (5)

where the L operator computes the field radiated by the
active MBF J (j)

n (~r) over the passive MBF J (i)
m (~r), and zk,p is

the coupling term between conventional low-level basis func-
tions. This expression allows to obtain the primitive reduced
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matrix [Z], that defines the system to be solved to obtain the
current distribution corresponding to each excitation:

[Z][Jm] = [Vm], for m= 1..Nm. (6)

However, depending on the characteristics of the scenario
and each incident direction, the solution of (6) can be equiv-
alent to that of a further reduced system where the coupling
matrix is tailored to the excitation:

[Zm][Jm] = [Vm], for m= 1..Nm (7)

in this case [Zm], called effective reduced matrix, is a sub-
matrix of [Z] where a number of MBFs have been discarded
taking into consideration the set of critical points for the m-th
excitation, C(m). A procedure analogous to that described in
(2) is followed in order to determine the number of effective
MBFs to be retained, substituting T by a modified threshold
value T

(i)
m , where m indicates the incident direction and i

refers to the block, that can be determined as follows:

T (i)
m =

Tmin +
∆2

b(T−Tmin)

4D
(i)
m

2 , if D(i)
m ≥ ∆b

2

T, if D(i)
m < ∆b

2 or block-i contains caustics
,

(8)
where Tmin is the minimum threshold value and D(i)

m is the
distance between each block and the closest critical point for
the m-th impinging plane wave:

D(i)
m = min

j=1..N
(m)
c

(‖~r(i)
b − ~rC(m)

j
‖) (9)

where ~r
(i)
b makes reference to the position of the center

of the i-th block and ~r
C

(m)
j

is the position vector of the j-th
critical point computed for the m-th excitation.

C. MLFMA application

The system matrix in (6) can be decomposed into its near
and far field terms as follows:

(
[ZNF ] + [ZFF ]

)
[Jm] = [Vm], for m= 1..Nm (10)

where [ZNF ] is the primitive near-field reduced matrix and
can be computed using (5). This is a sparse matrix and will
be later used to extract the effective reduced matrix for each
monostatic direction. We propose to compute the far-field
interactions between MBFs via the MLFMA, which allows
to address larger problems and avoids the storage of [ZFF ].

The partitioning of the scenario into first-level MLFMA
regions considered makes use of the existing block structure
(∆r = ∆b). The clustering of these regions into higher groups
is described by a hierarchical structure shaped as an octal
tree. The interactions between MBFs located inside the same
block, or in neighboring blocks, are computed using their
coupling coefficients as described in (5), while those between
distant MBFs are calculated computing the aggregation and
disaggregation terms into first-level multipoles. This can be
carried out considering the expansion of the MBFs into their

low-level aggregations as seen in (4). The aggregation term
for the j-th MBF of the m-th block at the first level can be
thus expressed:

V
AGG(1)
mj (k̂) =

N
(m)
l∑
k=1

∫
S

v
(m)
j,k e

−jk̂~rjm(Ī − k̂k̂)T
(m)
k (~r′)dS′

(11)
where ~rjm is the position vector from each subdomain to the

aggregation point at the center of the block. The disaggregation
term for the i-th MBF located on the m’-th block at level 1 is
analogously expressed as:

V
DIS(1)
m′i (k̂) =

N
(m′)
l∑
k=1

∫
S

v
(m′)
i,k ejk̂~rim′ (Ī − k̂k̂)T

(m′)
i (~r′)dS′.

(12)
Note that both the aggregation and disaggregation terms

have only θ and φ components. The translator operator allows
to express the multipole expansion that has been aggregated
to ~rm referred to a distant point at the same level ~r′m and is
given by:

τmm′(k̂, ~rmm′) =
jk

4π

L∑
l=0

jl(2l + 1)h
(1)
l (krmm′)Pl(~rmm′ · k̂)

(13)
where h

(1)
l (krmm′) is a spherical Hankel function of the

first kind and Pl(~rmm′) is a Legendre polynomial. In order
to apply a multilevel version of this strategy it is necessary
to aggregate the multipoles belonging to the (l-1)-th level to
their parent group at the l-th level:

V
AGG(l)
mj (k̂) = V

AGG(l−1)
mj (k̂)e−jk̂~rml−1ml (14)

where ~rml−1
and ~rml

are the parent cube group centers
of block m at levels l − 1 and l, respectively. Likewise, the
disaggregation from a parent cube at the (l+1)-th level down
to its child cube at the l-th level can be written:

V
DIS(l)
m′i (k̂) = V

DIS(l+1)
m′i (k̂)ejk̂~rml+1ml . (15)

III. NUMERICAL RESULTS

This section contains a selection of examples where the
efficiency and performance of the previously described ap-
proach have been assessed. The CPU-time values shown have
been obtained using a parallel implementation of the analysis
methods running on 2 Intel Xeon processors with a base
clock speed of 2.9 GHz, 16 physical cores and 256 GB
of RAM. The iterative solver used in the simulations has
been the Biconjugate Gradient Stabilized (BiCGStab) [31]
with an maximum error of 10−3. The proposed approach has
been named ”Dynamic RT-MBF” in the plots showing the
monostatic RCS results. The geometries have been meshed
taking into account the conventional sampling rate of λ/10.
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A. PEC Ogive
The first test case considered in this section is a metallic

ogive. This is a classic RCS test case for measurement and
simulation, and the specific model used is described in [32].
This ogive has a total length of 10 inches (or 25.4 cm) and
a half-angle of 22.62◦. The geometry has been generated
following the analytical expressions:

for − 5 ≤ t ≤ 5 and − π ≤ φ ≤ π :

x = t

f(x) =

√
1−

(x
5
· sin(22.62◦)

)2

− cos(22.62◦)

y =
f(x) · cos(φ)

1− cos(22.62◦)

z =
f(x) · cos(φ)

1− sin(22.62◦)

(16)

where the length units, related to the t parameter, are
expressed in inches. The resulting object is illustrated in Fig.
2.

X

Y

Z

Fig. 2. Geometrical model of the PEC ogive.

The monostatic RCS has been calculated for this geometry
at a frequency of 100 GHz, considering the Combined Field
Integral Equation (CFIE) formulation and the angular obser-
vation directions ranging in azimuth from φ = 0◦ to φ = 180◦

for θ = 90◦. Both polarizations have been considered using the
MoM-MLFMA, MBF-MLFMA and the proposed approach.
The results for the θ− θ and φ−φ polarizations are shown in
Figs. 3 and 4, respectively. The CPU-time required by the
analysis methods considered for each incident polarization
is shown in Table I, differentiating the pre-processing and
the solution stages. The total number of basis functions has
been 616,952 with the MoM-MLFMA, 189,039 MBFs with
the MBF-MLFMA and an average of 114,090 MBFs per
monostatic direction considering the proposed approach.

The data contained in Table I shows the extra pre-processing
time required by MBF-based techniques in order to generate
the high-level basis functions compared to the conventional
MoM-MLFMA approach. Note that the proposed approach
does not include any additional time over the conventional
MBF technique due to the generation of the MBF pool,
because all the MBFs contained in the pool are required by
the conventional approach for each individual excitation.
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Fig. 3. Monostatic RCS results for the metallic ogive comparing MoM-
MLFMA, a conventional MBF technique and the proposed approach (θ − θ
polarization).
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Fig. 4. Monostatic RCS results for the metallic ogive comparing MoM-
MLFMA, a conventional MBF technique and the proposed approach (φ− φ
polarization).

TABLE I
CPU-TIME REQUIRED FOR THE PEC OGIVE TEST CASE (SECONDS).

Analysis Method Polarization Pre-Processing Solution
MoM-MLFMA θ 581 15,636

MBF-MLFMA θ 1,930 5,469

Proposed Technique θ 1,930 3,721

MoM-MLFMA φ 581 15,272

MBF-MLFMA φ 1,930 5,718

Proposed Technique φ 1,930 3,959

B. Airliner

This test case makes use of the Perfect Electric Conductor
(PEC) geometrical model of the airliner shown in Fig. 1, pre-
viously used to illustrate the technique proposed in this work.
This scenario includes 257 Non-Uniform Rational B-Spline
(NURBS) surfaces. The monostatic RCS has been obtained at
1 GHz considering a θ polarized incident field for the angular
cut given by θ = 90o and φ ranging from 0o to 180o in 1o
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steps. This is a closed geometry, which allows the analysis
using the CFIE for a faster convergence. The results obtained
using the proposed approach have been compared to those pro-
vided by the application of conventional MoM-MLFMA and
MBF-MLFMA techniques. The accuracy is remarkably good
in this case, both for the co-polar and cross-polar components,
shown respectively in Figs. 5 and 6. The total number of low-
level unknowns has been 1,784,241 and is reduced to 556,234
MBFs with the conventional MBF-MLFMA method, while the
proposed technique has produced an average of 389,223 MBFs
in the angular observation range. The total CPU-time has
been broken down into the pre-processing time, including only
the MLFMA data retrieval, coupling matrix assembly and, if
applicable, the MBF generation, and the solution time, and
is indicated in Table II, corroborating the expected efficiency
improvement of the proposed approach.
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Fig. 5. Monostatic RCS results for the commercial aircraft scenario comparing
MoM-MLFMA, a conventional MBF technique and the proposed approach
(θ − θ polarization).
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Fig. 6. Monostatic RCS results for the commercial aircraft scenario comparing
MoM-MLFMA, a conventional MBF technique and the proposed approach
(θ − φ polarization).

TABLE II
CPU-TIME REQUIRED FOR THE AIRLINER TEST CASE (SECONDS).

Analysis Method Pre-Processing Solution
MoM-MLFMA 1,698 117,769

MBF-MLFMA 6,790 45,940

Proposed Technique 6,790 28,982

C. Small jet airplane

This test case involves a PEC jet airplane modeled using 321
NURBS patches and depicted in Fig. 7. It is an open geometry,
precluding the use of CFIE, and therefore the monostatic RCS
has been computed considering the Electric Field Integral
Equation (EFIE), which generally presents slower convergence
properties. The monostatic RCS analysis has been performed
considering a θ polarized excitation and the observation an-
gular range given by φ = 180o and θ = 0o to θ = 90o with
a separation of 3o between angular samples. The frequency
considered has been 1 GHz, rendering 333,150 low-level
unknowns, 110,240 MBFs when applying the conventional
MBF-MLFMA technique and and average of 74,513 MBFs
using the proposed method. The CPU-time required by the
simulations is shown in Table III.

X
Y

Z

Fig. 7. Geometrical model of a small jet airplane.

TABLE III
CPU-TIME REQUIRED FOR THE SMALL JET AIRPLANE TEST CASE

(SECONDS).

Analysis Method Pre-Processing Solution
MoM-MLFMA 261 221,618

MBF-MLFMA 1,639 148,476

Proposed Technique 1,639 103,700

IV. CONCLUSION

A numerical full-wave approach for the computation of
the monostatic RCS of complex scenarios has been presented
in this work. It makes use of a pre-computed near-field
coupling matrix using a primitive pool of MBFs as well as
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Fig. 8. Monostatic RCS results for the small jet airplane comparing MoM-
MLFMA, a conventional MBF technique and the proposed approach (θ − θ
polarization).
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Fig. 9. Monostatic RCS results for the small jet airplane comparing MoM-
MLFMA, a conventional MBF technique and the proposed approach (θ − φ
polarization).

a combination with the MLFMA. For each incident plane
wave a ray-tracing process is carried out, identifying the the
critical points that are subsequently used to create a mask that
serves to reduce the effective size of the primitive coupling
matrix, resulting in shortened CPU-time requirements. Since
the coupling data is obtained in a pre-processing stage there is
not any additional run-time overhead over conventional MBF-
based approaches. Some representative test cases show very
good accuracy in the results and improved efficiency.

REFERENCES

[1] D.P. Bouche, F.A. Molinet, R. Mittra, ”Asymptotic and hybrid tech-
niques for electromagnetic scattering”, Proc. IEEE, vol. 81, no. 12, pp.
1658-1684, Dec. 1993.

[2] E. F. Knott, ”A Progression of High-Frequency RCS Prediction Tech-
niques”, Proceedings of the IEEE, vol. 73, no. 2, pp. 252-264, Feb.
1985.

[3] J. B. Keller, ”Geometrical Theory of Diffraction,” J. Opt. Soc. Amer.,
vol. 52, pp. 116-130, 1962.

[4] R. C. Kouyoumjian, P. H. Pathak, ”A Geometrical Theory of Diffraction
for an Edge in a Perfectly Conducting Surface,” Proc. IEEE., vol. 62,
pp. 1448-1461, Nov. 1974.

[5] L. Lozano, M. J. Algar, E. Garcı́a, I. González, F. Cátedra, ”Efficient
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