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1. Introduction

In terms of structural design, only the elastic behaviour of 
materials is usually considered, thus the engineering stress–
strain curve (ESS, S-e) obtained in a tensile test can be used 
to characterize the behaviour of material. The ESS curve takes 
into account the stress applied to the specimen as the applied 
force divided by the initial cross-section. It is therefore lower 
than the actual stress required for the deformation, because 

the cross-section reduction is not considered. Thus, ESS over-
estimates the stress for which the material will suffer plastic 
deformation. However, either for designs in which weight is 
an important factor or for predicting the behaviour of struc-
tures that are overloaded and produce deformations that go 
further the elastic range, a more realistic analysis of stress–
strain curve is required [1]. Moreover, for on-going moni-
toring of the performance of machines or structures under 
working conditions, or to predict deformation and the ductile 
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fracture propagation of material a sound approach to esti-
mate the behaviour of the material beyond the elastic range 
is essential [2].

There are two different approaches to cover behaviour of 
material in the non- elastic range: the true stress–strain (TSS) 
curve and the Hollomon’s law or reference stress strain curve 
(RSS).

The TSS curve (σ  −  ε) can be obtained from the force-
elongation measurements (F  −  δ) of a tensile test as follows:

σ = (F/A0) (1 + δ/H0)

ε = ln(1 + δ/H0),
 (1)

where A0 and H0 are the initial cross section and length of the 
specimen, respectively.

The TSS takes into account the cross-section reduction of 
the specimen while it is increasingly loaded, considering that 
the cross-section reduction is uniform along the specimen’s 
length. This approach is therefore not valid for materials that 
present plastic deformation, in particular when deformation 
starts to concentrate around a necking zone. At this point, the 
state of stresses at the necking zone changes from uniaxial to 
triaxial [3].

Hollomon’s law (RSS) is also generally accepted to 
describe the behaviour of material in the case of uniform 
plastic deformation. Some authors have termed it also as the 
equivalent TSS curve and formulated it as follows:

σequ(εequ) = k · εn
equ, (2)

where k denotes the strength coefficient and εN stands for the 
strain hardening exponent defined as the true strain value at 
the onset of necking. Values of these parameters are obtained 
as explained in [3].

After the onset of necking, Bridgman’s analytical model 
is the most widely accepted for describing the TSS curve 
[3–7] in cylindrical specimens. This approach is based on the 
exper imental determination of the Bridgman coefficient, C, 
to obtain the equivalent stress–strain curve in post-necking 
phase, when non-uniform plastic deformation occurs. The 
formulation is as follows:

σequ = C · (σa)av, (3)

where (σa)av  =  F/A is the axial average stress at the instanta-
neous smallest cross section (A).

Bridgman’s model approaches the geometrical shape of the 
necking with the inner surface of a torus, whose revolution 
axis coincides with the tensile axis of the cylindrical specimen. 
The torus radius is the curvature radius of the necking RN and, 
the radius of the smallest cross section of the necking, rN is 
related to the radius of revolution of the torus with (RN  +  rN). 
With these two geometrical parameters, the Bridgman’s coef-
ficient is obtained as follows:

C =

ïÅ
1 +

2RN

rN

ã
· Ln
Å

1 +
rN

2RN

ãò−1

. (4)

Equation (4) requires the determination of RN and rN, for each 
load stage after the onset of necking and at the exact loca-
tion of the necking point. This has been proven to be the main 
problem when applying the Bridgman’s model.

Several research methodologies have been studied to define 
the stress–strain relation, in non-uniform plastic deformation 
phase. Some of them use finite element (FE) simulations 
to obtain the TSS curve by comparing simulation outputs 
with the measurements obtained from a tensile test. In [3], 
a weighted-average correction method was proposed for FE 
simulation of a tensile test of a rod specimen after necking. 
In [5], a stress correction parameter obtained by applying a 
linear regression model to the test results, was introduced 
for the stress–strain curve of plane specimens; it was then 
verified using iterative parametric FE simulations. In [7], the 
Bridgman’s stress–strain curve was calculated using the radii 
and necking curvature from the acquired images of different 
steel specimens subjected to tensile tests. The obtained curve 
was used as input for FE simulations of tensile tests. Other 
studies [8, 9] propose the use of a rigid plastic FE method for 
simulation of tensile tests and to predict the strain hardening 
behaviour of the material and the mechanism of the necking 
formation.

A different approach to estimating post-necking behaviour 
and sidestepping the difficulty in experimentally obtaining 
the Bridgman’s parameters are based on different math-
ematical formulations of the stress–strain curves [10, 11]. 
In [10], a mathematical model for predicting the cylindrical 
specimen’s deformation is proposed and compared with FE 
analysis results, but without experimental validation. In [11], 
mathematical regression equations are used to fit the exper-
imental stress–strain curves of stainless steel specimens; how-
ever, necking formation is disregarded but instead, a uniform 
elongation. In [12], the axial strain component of the necking 
zone of a cylindrical specimen, is obtained from images of 
the specimen’s surface marked with regularly distributed dots. 
The specimen’s profile is also obtained by selecting certain 
points along the specimen’s contour and fitting them to a 
quadratic function. From that, the other two strain components 
are obtained using a specially developed mathematical model. 
Validation is then performed using numerical simulation with 
the Abacus software. Nonetheless, this edge tracing procedure 
for selecting the data points does not provide a robust pro-
cedure to determine the necking curvature from the selected 
profile. As will be addressed later on, it strongly depends on 
the range of data points around the necking zone used to fit the 
necking curvature.

Precise experimental measurements of large displacement 
maps for entire specimen surfaces can be obtained with a 
digital image correlation (DIC) technique [13]. It can be per-
formed with one camera (2D-DIC) or with two cameras (3D-
DIC). In [14–16], DIC was used to study deformation in the 
plastic range of different materials. In [17], 3D-DIC was used 
to obtain TSS curves at two sections  of the specimen, near 
and far from the fracture location, and the evolution of the 
plastic zone was analysed, by mapping the measured displace-
ments during the experimental tensile test. Furthermore, the 
stress–strain curves obtained experimentally with DIC can be 
used to validate FE models used to simulate material plastic 
behaviour. In this sense, several studies combine numerical 
simulations (FEM) and DIC, on plane specimens made of 
copper [18], hourglass type specimens of carbon steel [19], 
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cylindrical specimens of different aluminium alloys [20] or 
even titanium [21]. In [22], 3D-DIC is used to obtain the full 
reconstruction of the necking area in different specimens (flat 
and cylindrical) at high speed.

When applying the Bridgman’s method for rod specimens 
[3, 5, 7, 10], it is essential to set up an accurate and repro-
ducible procedure to obtain the geometrical parameters of 
the necking (rN and RN) along the whole test and thus, attain 
a more accurate approximation of post-necking equivalent 
stress–strain curve. As mentioned before, the use of 3D-DIC 
has proved to be a valuable tool for determining the Bridgman 
parameters [20]. However, on one hand, the procedure of 
obtaining these parameters from experimental 3D data has not 
yet been proposed in a feasible way. It would be necessary 
to specify which data points from the necking zone have to 
be used to determine RN. On the other hand, the main incon-
venient of the 3D-DIC is the complex image-processing algo-
rithms that it requires, which makes it difficult to create the 
required self-made software. In addition, the commercially 
available ones are quite expensive and are not always afford-
able; therefore, an alternative and more accessible technique 
would be of interest.

In the present work, a self-made full-field technique com-
bining 2D-DIC and fringe projection (FP), (FP  +  2D-DIC) is 
used to obtain the 3D displacement maps of the surface of 
cylindrical specimens subjected to a tensile test. The 2D-DIC 
makes possible to measure the in-plane displacements of the 
surface elements in x- and y -direction and, FP uses an addi-
tional fringe projector to measure the out-of-plane (z-dis-
placements) [23–25].The obtained axial displacement (AD) 
profiles and the 3D shape around the necking zone are then 
used to localize and determine the necking parameters at each 
load stage in a well-established and reproducible way. This 
method also allows finding an empirical axial displacement 
equation, for estimating each surface element of our cylin-
drical specimens at the necking zone. However, the exper-
imentally obtained values for rN and RN are somewhat noisy 
and the noise in rN critically affects the average axial stress at 
the smallest cross section. To prevent it, from the empirical 
axial displacement equation, an analytical model is derived for 
the radii of the specimen along the loading axis, from which 
both the smallest necking radius and the necking curvature 
can be obtained in an alternative way. This delivers noise-free 
values for both rN and RN, so the equivalent stress-equivalent 
strain curve is obtained in a feasible way.

The remainder of the paper is organized as follows: the 
experimental set up of the tensile test with the combined 
FP  +  2D-DIC system and the retrieved data are outlined in 
Section 2 for three different specimens (although up to three 
specimens of each material were tested giving practically 
the same results). The detailed description of the image pro-
cessing performed after obtaining the in- and out-of-plane dis-
placements of the 2D-DIC and FP results are then presented 
in section  3. The image processing performed by 2D-DIC 
and FP are not described in detail since they are already 
commonly used and well-known techniques. The two pro-
posed procedures for the feasible determination of Bridgman 
parameters are given in section 4. The results of the estimated 

Bridgman parameters, the average axial stress at the smallest 
cross section and the equivalent stress–strain curve according 
to Bridgman are shown in section 5. The final section is dedi-
cated to the discussion of the results obtained and to give 
some ending conclusions and remarks on the work carried out.

2. Experimental set-up of the tensile test

2.1. Tensile test

The tensile tests were performed on normalized cylindrical 
specimens of steel, aluminium and copper of 6 mm diameter 
and with a gage length of H0  =  30 mm each.

To perform the tensile test, the WP300 test bench (GÜNT) 
equipped with electronic force and a displacement measure-
ment instruments was used, in addition to data acquisition 
equipment (WP300.20), to obtain values of force and the 
corresponding displacement with a precision of 0.5 kN and 
0.01 mm, respectively. The 2D-DIC  +  FP system consists 
of a colour camera and a colour projector. The camera vis-
ualizing the specimen must be placed perpendicular to the 
specimen’s cylindrical axis (x-axis) and the projector projects 
fringes perpendicular to this axis, but with a certain incidence 
angle, as shown in figure 1. Both the camera and the projector 
are joined together and fixed on a mobile platform, allowing 
the movement of both elements towards and away from the 
specimen to aligning and calibrate the system. The whole 
2D-DIC  +  FP system is mounted on a tripod, which enables 
the correct configuration and alignment of the set-up. The 
detailed alignment and calibration procedures have previ-
ously been described in [24, 25]. Furthermore, the specimen 
needs to be painted with red speckles on a white background 
and the fringes must alternate in white and blue. Then, from 
each red–green–blue (RGB) image acquired by the camera, it 
is possible to separate the fringe information from the speckle 
information by simply using the R channel or the B channel 
respectively, as will be shown later. The speckle images are 
used to compute the in-plane displacements (in the x- and 
y -directions) for each surface element (i.e. the surface that 
is visualized by one pixel) of the specimen, these being dis-
placements on a plane perpendicular to the camera’s optical 
axis. The fringe images are then used to compute the out-
of-plane displacements (in the z-direction) for each surface 
element or the 3D shape.

The test was then performed manually by increasing the 
load applied on the specimen at a constant speed of about 
0.5 mm specimen elongation per minute. Two separate meas-
urements were taken at the same time:

 i.  Loads and displacements data sets (F  −  δ) acquired with 
the WP 300.20 GÜNT system. Size of the data set was 
between 171 for steel, 148 for copper and 64 for Al.

 ii.  Images acquired with the FP  +  2D-DIC system and 
corre sponding loads (from which the axial displacements 
were obtained after image processing).

The number of acquired images (S  =  56 for steel, S  =  23 
for copper and S  =  18 for aluminium), was lower than the 
number of (F  −  δ) pairs acquired by the GÜNT system.
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A good correspondence between the two sets of data (axial 
displacements acquired with GÜNT acquisition system and 
those obtained from 2D-DIC) was found through the elon-
gation measurements. In particular, both identified the same 
ultimate strength position. Thus, the force for each captured 
image could be assigned.

2.2. Experimental tensile test results

As shown in figure 2, the tensile test measurements (F  −  δ) 
of the three samples were obtained with the GÜNT and 
FP  +  2D-DIC systems at the same time, but with a different 
sampling interval.

The images at the different loading stages acquired with 
FP  +  2D-DIC are indicated with squares, triangles and dia-
monds respectively for specimens 1, 2 and 3. The continuous 
line indicates the almost continuous data points acquired 
with the GÜNT system. The determination of the elongation 
values from the FP  +  2D-DIC system are explained in the 
next section. The onset of necking is also indicated according 
to Considère’s criterion [9], such that the slope of the force 
elongation curve becomes zero; this corresponds to the point 
of ultimate stress (corresponding to the maximum load) of the 
ESS curve, when the true strain reaches the strain-hardening 
exponent, εN.

Figure 3 shows the corresponding TSS curve (equation 
(1)) and the RSS curve (equation (2)) of the three samples. 
The RSS curve is generally considered applicable after the 
elastic range until the onset of necking, as shown in figure 3, 
where this point is marked with respective crosses. The first 
specimen (steel) experienced ductile fracture at a total axial 
elongation of 5.08 mm. Onset of necking appeared, according 
to Considère’s criterion, at δ  =  1.6 mm and F  =  14.65 kN, 
which corresponds to an engineering stress of Se  =  488.4 MPa 
and an engineering strain of e  =  5.65%.

The strength coefficient and the strain hardening exponent 
for the RSS curve (equation (2)) were k  =  605.19 MPa and 
εN  =  0.054 97. As will be shown in the following sections, 

data processed from FP  +  2D-DIC give the onset of necking 
for the steel sample at the load stage s  =  22, corresponding to 
an axial elongation of 1.65 mm, which is in good agreement 
with Considère’s criterion (a second specimen of steel was 
tested in the same way and the results were practically the 
same and are therefore not shown here).

The next specimen was an aluminium rod bar (specimen 
2). It underwent a total axial elongation of 3.3 mm, at which 
point fracture occurred. The onset of necking appeared at an 
engineering stress of Se  =  462 MPa and an engineering strain 
of e  =  10.9%, produced at a force of F  =  13.86 kN; the axial 
displacement registered during the test was about 3.1 mm. 
The strength coefficient and the strain-hardening exponent 
necessary to determine the RSS curve were respectively 
k  =  648 MPa and εN  =  0.1040.

This specimen presented a fragile rupture, and no necking 
formation was detected with the FP  +  2D-DIC data analysis. 
Considère’s criterion placed the onset of necking at about 
0.2 mm before the fracture, but there was an error of about 
the same value at this position associated with the noise at the 
maximum force in the last steps of the acquired GÜNT data. 
Therefore, it can be considered that no necking formation 

Figure 1. (a) Experimental set-up; (b) test specimen painted with red speckles on white background and illuminated with blue white 
fringes; (c) schematic of tensile specimen in mm.

Figure 2. Force-displacement curves obtained at the tensile test for 
all specimens, with GÜNT and with FP  +  2D DIC.
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happened in the case of this specimen. For this, the RSS is not 
appropriate for describing the material behaviour.

The last specimen was a copper rod bar (specimen 3). It 
underwent a total axial elongation of 4.9 mm, at which point duc-
tile fracture occurred. The onset of necking appeared at an engi-
neering stress of Se  =  363.85 MPa and an engineering strain of 
e  =  1.4%, produced at a force of F  =  10.3 kN; the axial displace-
ment registered during test was about 0.42 mm. The strength coef-
ficient and the strain-hardening exponent used to plot the RSS 
curve were respectively k  =  391.5 MPa and εN  =  0.014. For this 
sample, the onset of necking began almost immediately after the 
elastic range. When processing the FP  +  2D-DIC data, necking 
started at the 3rd load stage at one position, but then moved to 
another position and was re-initiated at the 5th load stage.

3. Image processing

The deformation experienced by the specimen when sub-
jected to successive load stages was measured using the com-
bined 2D-DIC and FP technique with the experimental set-up 
is shown in figure 1. In order to perform 2D-DIC, ncorr-V1.2 
open source program for MATLAB has been used [26].

One RGB image, Is  =  IR,s  +  IG,s  +  IB,s of size M  ×  N  ×  3 
at each deformation stage (load case s  = 1,2, …, S) was 
acquired. The red speckle pattern painted on the specimen 
and used for 2D-DIC can be observed through the B channel 
(IB,s) and the blue and red projected fringe pattern used for FP 
can be observed through the R channel (IR,s), as shown in fig-
ures 4(a) and (b), which provides an example of the image of 
the load stage s  =  56 (last stage just before breaking point of 
specimen 1) with a size of M  =  239 and N  =  1009 pixels. The 
size of the subset used for DIC depends of the speckle size 
(e.g. in this work a subset size of 16  ×  16 pixels for a speckle 
size of about 1 to 5 pixels).

3.1. In-plane displacements, measurements and corrections

By performing 2D-DIC on the speckle images of the specimen 
surface at a load stage s, each displaced pixel within the region 
of interest (Os) of the speckle image (IB,s) is searched in the 
image at the previous load stage of the specimen (IB,s−1), as 

shown in the example given in figure 5. The region of interest 
is a mask taking the value one for the pixels that contain infor-
mation (i.e. on the specimen surface), otherwise zero, defined 
manually for each image at each load stage. 2D-DIC then finds 
the position of the pixel before it has been displaced due to the 
applied load. Thus, at each load stage, the initial (designed 
with subscript 1) and final positions (designed with subscript 
2) of each surface element (i,j ) corresponding to a pixel of the 
visualized specimen surface are computed, being:

 i.  x2(i, j) and y2(i, j), the matrix elements of the pixel posi-
tions within the image IB,s in the x- and y -directions after 
the load stage. These matrices are respectively rows [1 
2 3 … N] repeated M times and columns [1 2 3 … M]’ 
repeated N times.

 ii.  ∆x′s(i, j) and ∆y′s(i, j), the corresponding computed in-
plane displacements in pixels of the pixels (i, j ) at the 
load stage s, with respect to their positions at the previous 
load stage s  −  1. For the first load stage (s  =  1), in-plane 
displacements are set to zero. Figure 6 shows the in-plane 
displacements at s  =  56. The computed displacements 
have a sub-pixel resolution of  ±  0.05 pixels.

 iii.  The matrices of the pixel positions within image IB,s−1, 
prior to the deformation stage s, are obtained as follows:

x1,s(i, j) = �x2(i, j)−∆x′s(i, j)�
y1,s(i, j) = �y2(i, j)−∆y′s(i, j)� (5)

  where �� denotes that the value is rounded to the next 
integer pixel positions for (x1,s, y 1,s) because of the sub-
pixel resolution of the 2D-DIC algorithm.

Two corrections must be applied to these obtained ∆x′s and 
∆y′s values:

During the image acquisition at the different load stages, 
rigid body displacements (∆x′s,rb and ∆y′s,rb) may happen 
(when the whole specimen displaces relative to the camera). 
This is corrected by subtracting the displacements obtained 
by performing 2D-DIC on a single reference pixel (ir,j r). It is 

Figure 3. TSS and RSS curves and onset of necking according to 
Considère’s criterion for all specimens.

Figure 4. (a) Example of acquired image (Is) for s  =  56; (b) 
corresponding R-channel image (IR,s); (c) corresponding B-channel 
image (IB,s).
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known beforehand, that this reference pixel is not subjected to 
any deformation between the consecutive load stages (e.g. a 
pixel next to the fixed specimen grip)

∆x′s,c = ∆x′s −∆x′s,rb(ir, jr)
∆y′s,c = ∆y′s −∆y′s,rb(ir, jr).

 
(6)

The obtained in-plane displacement of the surface elements is 
affected by their out-of-plane positions (if no telecentric lens 
is used). For this correction, the out-of-plane distances z1,s and 
z2,s are required. These are the distances of the specimen sur-
face elements (before and after being displaced, respectively) 
with respect to a flat reference surface perpendicular to the 
optical axis of the lens. Also, the following parameters are 
required: the inverse of the lateral magnification of the lens 
at the reference plane, L, the distance z0 from the reference 
surface to the camera and the relative distance of each surface 
element to the optical axis, which can be approached by the 
distance to the centre of the image (x0A, y 0A). The in-plane 
correction for each pixel displaced to (x2, y 2) is then given by 
the following equation:

∆xs = L ·
ï
∆x′s,c +

Å
(x2 − x0,A)

z2,s

z0
− (x1,s − x0,A)

z1,s

z0

ãò
,

for s = 2, S. (7)

Distortion effects were neglected because measurements were 
made close to the optical axis of the lens.

The same equation is valid for the y -direction. L is given in 
mm/pixel and the corrected displacements are given in mm. For 
example, for the 1st experiment introduced in this paper, (x0A, 
y 0A)  =  (468, 132), L  =  0.045 mm/pixel and z0  =  329 mm. Details 
of calibration process to obtained these parameters are given in 
[25]. Nevertheless, since the out-of-plane distances (maximum 
value of 3 mm) are much smaller than z0, the second correction is 
negligible in our experiments and ∆xs ∼= L ·∆x′s,c (the mean of 
the absolute value of the differences is 6 · 10−4 mm).

Figure 7 shows an example of averaged ∆xs profiles along 
the x- or axial load direction (averaged in the y -direction 
over several measured profiles at each load stage s) obtained 
for specimen 1. Besides the noise (standard deviation of 
about  ±0.012 mm, corresponding to a oscillation between 
1 and 4,4 pixels), it can be observed that for initial loading 
stages (s  <  22) the values of ∆xs increase linearly with x2 and 
therefore the deformation is homogeneously distributed along 
the specimen length of the observed area (the stress state is 
uniform and uniaxial over the entire specimen volume). For 
higher loading stages (s  ⩾  22), there is no longer linear behav-
iour and the slope of the profile becomes practically zero 
everywhere, except at a decreasingly smaller zone, where all 
deformation is concentrated corresponding to the necking 
zone. This load stage, at which the transition to non-uniform 
axial deformation starts to appear, is designed sN.

3.2. Out-of-plane displacements

The out-of-plane displacements or z-positions were obtained 
using the FP technique on the fringe images of the R-channel 

Figure 5. Example of two consecutive speckle images for s  =  56: 
(a) IR,s−1 and (b) IR,s, the displaced speckle image multiplied by the 
region of interest matrix (Os).

Figure 6. Mapping of in-plane displacements (∆x′s and ∆y′s) 
obtained by applying 2D-DIC to the images shown in figure 5.

Figure 7. Example of profiles of the displacements in the axial 
direction between consecutive load stages, ∆xs, for several load 
stages s. The green continuous lines are the corresponding fitting 
results of equation (13) to the experimentally obtained data.
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(IR,s), where the shifted phase of the projected fringes rela-
tive to the straight fringes corresponding to the plane refer-
ence surface (I0) was calibrated and related to z-positions 
(in mm) using a second-order polynomic, the coefficients 
of which were obtained through a calibration process [25]. 
At any load stage s, the matrix elements of the z-positions of 
the pixels z2,s(i, j) were obtained. An example of IR,s and I0 
at load stage s  =  56 is shown in figures 8(a) and (b), respec-
tively). Figure 9(a) shows the wrapped phase difference (∆φ) 
directly obtained by the application of the FP algorithm to the 
two previous fringe images. Figure 9(b) represents the corre-
sponding z-positions of the surface elements computed from 
the unwrapped and calibrated phase map.

To obtain the displacements in the z-direction that each 
pixel (i,j ) has experienced after each load stage s  =  2,3…, it 
is necessary first to obtain the z-positions, z1,s(i, j), in the pre-
vious stage, as follows:

z1,s(i, j) = z2,s−1(x1,s, y1,s) for s = 2, 3 . . . , S. (8)

For s  =  1, before applying the first load stage, there is no 
change in the out-of-plane displacement: z1,1(i, j) = z2,1(i, j). 
For the following load stages, the out-of-plane displacements 
experienced by each pixel are given by:

∆zs(i, j) = z2,s(i, j)− z1,s(i, j) for s = 2, 3 . . . , S. (9)

3.3. Total displacements

The total displacements or accumulated displacements at each 
load stage, s, are calculated as before, by tracking back the 
displaced pixels of all the previous load stages. The values are 
calculated iteratively as follows:

∆xT ,s(i, j) = ∆xs +∆xT ,s−1(x1,s, y1,s)

∆yT ,s(i, j) = ∆ys +∆yT ,s−1(x1,s, y1,s) for s = 2, 3 . . . , S,
∆zT ,s(i, j) = ∆zs +∆zT ,s−1(x1,s, y1,s)

 (10)
where ∆xT ,1 = ∆yT ,1 = ∆zT ,1 = 0

As mentioned in the second section  of this paper, the 
applied force for each total x-displacements and the force-
elongation values obtained with the GÜNT system are as 
shown in figure 3.

4. Determination of the Bridgman’s necking 
parameters

The onset of necking appears when the homogeneous defor-
mation no longer happens in the axial load direction (x-direc-
tion), i.e. when ∆xS  is no longer linear with x. This can clearly 
be seen in figure 7 at the deformation stage sN  =  22 and coin-
cides with Considère’s criterion for the ultimate stress, as 
shown in figure 3.

4.1. Using in- and out-of-plane displacements

The FP  +  2D-DIC technique makes it possible to determine 
the shape of the specimen or position of each surface element 
after each loading stage, z2,s, measured at the positions (x2, 
y 2), which have to be multiplied by the lateral magnification, 
L, to have the same units (no longer in pixels) and the total 
displacements in each spatial direction given in equation (10).

4.1.1. Before necking. Before necking (s  <  sN), there is a 
slight decrease in the specimen radius, rs, with the increas-
ing load. The radius is obtained by fitting a half circle to the 
mean z-positions of the specimen’s surface elements along the 
specimen’s loading axis, as follows:

zfit,s(rs, y0,s, z0,s) =

…∣∣∣r2
s − (y2 − y0,s)

2
∣∣∣+ z0,s, (11)

where (y0,s, z0,s) is the centre of the half circle. Figure  10 
shows two of these fitted half circles. The nonlinear least 
squares formulation is used to fit the half circle to the exper-
imental data [27]. An initial estimation for (rs, y0,s, z0,s) is nec-
essary for the iterative approach, which is guided by a trust 
region fitting algorithm. Only the initial estimation for s  =  1 

Figure 8. (a) Reference fringe image (I0). (b) Example of specimen 
fringe image (IR,s) at s  =  56.

Figure 9. (a) Wrapped phase difference map between the two 
previous fringe images. (b) z-positions in mm obtained from the 
calibrated unwrapped phase map.
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has to be introduced manually; the following fittings use the 
resulting fitted parameters of the previous fitting process as 
initial estimations.

4.1.2. After necking. After necking (s  ⩾  sN), the specimen 
shape is no longer cylindrical and to estimate the TSS curve, 
the following Bridgman’s parameters are defined: the radius 
of curvature of the necking zone, RN,s, and the minimum 
radius of the smallest cross-section area or necking radius, 
rN,s. To estimate these parameters from z2,s, a nonlinear least 
square fitting process is performed; as a fitting function, a 
ring torus function (according to Bridgman) with torus radius 
RN,s and radius of revolution RN,s  +  rN,s is used, which can be 
defined as follows:

zfit,s(RN,s, rN,s, yN,s, zN,s)

=

 ∣∣∣∣RN,s + rN,s −
√

R2
N,s − (x2 − xN,s)

2 − (y2 − yN,s)
2
∣∣∣∣

+ zN,s for s = sN , . . . , S
 

(12)

where (RN,s, rN,s, yN,s) and zN,s will be the fitting coefficients 
of the fitting process to the values of z2,s at positions (x2, y 2) 
and (xN,s, yN,s, zN,s), which are the coordinates of the centre of 
the torus or necking point. For the fitting of this function, it is 
necessary to undertake the following steps:

 i.  Delimit and define the zone around the necking used for 
the fitting of equation  (12). This zone can be identified 
using the x-displacement profiles, but it is not clearly 
delimited, as shown in figure  7. To delimit it and the 
corre sponding data points to which the torus will be fitted, 
we propose selecting the data for which the derivatives of 
the total x-displacements are within a bandwidth, close 
around the maximum slope of the total x-displacements, 
which happens at the necking position, xN,s.

 ii.  Estimate the value of xN,s.

To calculate a noise free derivative of the total x-displace-
ments and at the same time estimate xN,s, the following simple 
function is proposed as an in-loading direction displacement 
model:

∆xfit,s(xN,s,α′
s,β

′
s) =

α′
s

1 + e−β′
s (x2−xN,s)

for s = sN , . . . , S (13)

where α′
s is the maximum displacement and 0, 25α′

sβ
′
s is the 

slope at the necking point xN,s. Examples of some fitting pro-
files are shown in figure 7. For the total x-displacements, it is 
necessary to account also for the homogeneous displacements 
before the necking takes place; the final model proposed to be 
fitted to these profiles is then:

∆xT ,fit,s(xN,s,αs,βs, γs) =
αs

1 + e−βs(x2−xN,s)
+ γs · x2

for s = 1, . . . , S
 

(14)

where xN,s,αs,βs and γs are the fitting coefficients, being γs 
the slope of the linear part of the function. These coefficients 
are obtained by fitting equation  (14) to the exper imentally 
obtained total x-displacement profiles using a nonlinear 
least squares formulation. Figure  11, as an example, shows 
all the fitted total x-displacement profiles obtained from a 
sequence of 56 images acquired from steel specimen during 
the tensile test, before and after necking, until the break. This 
figure shows a biased noise in the unfitted total displacement 
measurements, this is due to the propagation of the errors 
(standard deviation of  ±0.012) between each load stage and 
the previous one. Nonetheless the fitting of the proposed dis-
placement model behaves as expected.

The criteria proposed for determining how many data 
points around the necking position, xN,s, is extracted from the 
derivative of equation (14), which is a symmetrical distribu-
tion with the maximum at the necking zone. When this deriva-
tive is ‘µ’ times the maximum value (with µ  <  1), the cutting 
positions around xN,s are obtained for each load stage, s, as 
follows:

xc,s =
1
βs

· arccos αsβs(2 − µ) + 4γs

µαsβs − 4γs
. (15)

The necking zone can then be limited to the interval:

x2 = [xN,s − xc,s, xN,s + xc,s] . (16)

The most adequate value for µ is µ  =  0.9 because it provides 
the smallest necking zone with enough data points for esti-
mating the Bridgman’s parameters. Figure 11 also shows the 

Figure 10. Examples of half circle fitting (continuous lines) to 
the experimental data (dots) to obtain the specimen radius before 
necking for s  =  1 and s  =  21.

Figure 11. The average and fitted profiles of ∆xT ,s along the x-axis.
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corresponding estimated necking position and zone for s  ⩾  sN. 
The experimental data are represented by dotted lines and the 
continuous lines are the fitting results of equation  (12). For 
s  ⩾  sN, the red dots show the necking positions and the black 
crosses represent the limits of the necking zone interval, that 
will be used to estimate the Bridgman parameters.

Now, the curvature of the necking zone, RN,s, and the 
necking radius, rN,s, can be obtained by once again introducing 
a nonlinear least square fitting process of the torus function 
of equation (12) to the values of z2,s(x2, y2), belonging to the 
defined necking zone. Some examples of torus fitting results 
are shown in figure 12.

The fitting results for the necking radius before (equation 
(11)) and after (equation (12)) and the radius of curvature 
of the necking zone are shown in figures 15 and 16 at each 
loading stage.

4.2. Using in-plane displacements only

An alternative and simpler way of obtaining the necking 
radius and the curvature radius from in-plane displacements 
only (obtained using 2D-DIC) is proposed by considering no 
changes in the specimen’s volume when it is deformed.

The specimen before being subjected to a deformation is 
supposed to be divided into slices of arbitrary small thickness, 
x0 and radius, r0, perpendicular to the loading axis (x-axis). 
When the specimen is deformed, the slices change their thick-
ness (δx) and radius (δr), but not their volume. Thus, for each 
slice:

π(r0 + δr)2
(x0 + δx) = πr2

0x0. 
(17)

From this equation the radius of the slices when deformed in 
the x-direction changes to:

r0 + δr = r0

…
x0

x0 + δx
= r0

 
1

1 + ex 

(18)

where ex = δx/x0 is the engineering strain for each slice.
This axial strain can be obtained from the total 

 x-displacements experienced by the surface elements ∆xT , 
comprising the total relative displacement of a surface element 
(i.e. pixel) with respect to the surface elements, for which 
there is no x-displacement (in our experiment the pixels of the 

left end of the specimen). Before necking, ∆xT  increases lin-
early along the x-axis because all the pixels undergo the same 
deformation. After necking, the deformation starts to concen-
trate around xN and the relative x-displacement of the surface 
elements along the x-axis is empirically obtained from equa-
tion (14) of the total displacements. No distinction between 
load stages, before and after necking should be done, because 
equation (14) includes the pre-necking behaviour. Therefore, 
the sub-index ‘s’ will be obviated in the following equations.

The experiments deliver the total relative displacements 
of each pixel after being displaced to the position x2; these 
pixels are separated by a constant distance, P, which is 
related to the distance between the pixels before being dis-
placed, x0, as follows: P  =  x0  +  δx. The derivative of ΔxT, 
for small P, is then related to the axial strain in the fol-
lowing way:

d
dx2 ∆xT ≈ ∆xT(x2 + P)−∆xT(x2)

P
=

δx
x0 + δx

=
ex

1 + ex
.

 
(19)

The derivative of equation (14) delivers:

d
dx2 ∆xT ≈

1
4αβ

cosh2
î
β
2 (x2 − xN)

ó + γ. (20)

With equations (19) and (20), the engineering strain for each 
slice results in:

ex =
d

dx2 ∆xT

1 − d
dx2 ∆xT

=

1
4αβ + ccosh2

î
β
2 (x2 − xN)

ó

(1 − γ)cosh2
î
β
2 (x2 − xN)

ó
− 1

4αβ
.

 
(21)

Replacing equation  (21) in (18), the radius of the slices at 
x2, after experimenting their corresponding x-deformation, is 
obtained as follows:

r(x2) = r0 + δr = r0

Ã
1 −

1
4αβ

cosh2
î
β
2 (x2 − xN)

ó − γ.

 (22)
In particular, a simple necking radius at x2  =  xN, is obtained 
as follows:

rN = r0
√

1 − m, (23)
where m = 0, 25αβ + γ is the slope of ∆xT  at xN . Thus, the 
necking radius can be estimated from the fitting parameters of 

Figure 12. Examples of torus fitting results to obtain the curvature of the necking zone (RN,s) and the necking radius (rN,s) for: (a) s  =  33, 
(b) s  =  44 and (c) s  =  56.
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the total axial displacements by using the empirically obtained 
equation (14).

Figure 13 shows the radii of all slices of the specimen along 
the longitudinal axis for all load stages. The evolution of the 
displacement of each slice and the specimens profile obtained 
using equation (22) with increasing load stages are shown in a 
video available in the online supplementary information.

The curvature radius of the necking zone, RN, can also be 
estimated by equalling the Taylor-series expansion of equa-
tion (22) around xN , with the Taylor-series expansion of a half 
circle �r (x2):

r(x2) ≈ r0
√

1 − m +
r0αβ

3

32
√

1 − m
(x2 − xN)

2, (24)

�r (x2) ≈ rc −
»

R2
N − (x2 − xN)

2 ≈ rc − RN +
1

2RN
(x2 − xN)

2

 (25)
where (xN, rc) is the centre of the half circle. By equalling the 
second-order terms, we get:

RN =
16
√

1 − m
r0αβ3 , (26)

and by equalling the first term, we confirm that rc = RN + rN .
Figure 14 shows an example of profiles of the sample 

obtained at the last load stage, using experimental data from 

figure 11, the profile obtained with equation (22) and the cur-
vature radius obtained by using equation (26).

5. Results of axial average stress curve at the 
smallest cross section and equivalent stress–strain 
curve obtained from 2D-DIC  +  FP values

The results of the two proposed ways (using the 3D data and 
using the data of the total AD profiles) to obtain the values of 
the minimum radii, rs and rN,s, in the case of necking forma-
tion, and the necking curvature, RN, are shown in figures 15 
and 16, respectively, for the different load stages and for two 
specimens presenting necking formation (steel and Cu bar). 
Figure  15 shows the minimum radius obtained for another 
specimen of Al, in which no necking appeared during the ten-
sile test.

Before necking, quite good agreement is observed for the 
minimum radius for all specimens (steel, Al and Cu speci-
mens). For the Cu bar and especially for the steel bar, there 
is an increasing difference with increasing load after necking 
(at ΔxT,s=22  =  1.66 mm and at ΔxT,s=5  =  0.42 mm for steel 
and Cu, respectively). The rN values obtained from AD are 
always higher, about 0.15 mm at the last load stage for steel 
and about 0.1 mm for cooper, which represents a difference of 
about 7.5% and 5% in the smallest necking radius obtained 
with torus fitting of the 3D data for steel and Cu, respectively.

For the necking curvature, there is an appreciable dif-
ference between the values obtained with the two methods 
(figure 16(a)) for the specimens (steel and Cu), which pre-
sented necking formation. The values for RN obtained with 
AD are in both cases higher, especially at the beginning of the 
necking and when approaching the ductile fracture.

In figure  16(b) the ratio rN/RN with respect the average 
strain at the smallest cross section is shown. When obtained 
with the approach that uses AD data, it is observed that the 
necking curvature (RN) is getting faster smaller for steel than 
for Cu with increasing average strain at the smallest cross sec-
tion, which means that the necking formation is restrained to a 
smaller region in steel than in Cu. However, this is not appre-
ciable when using 3D data, and this tendency can therefore 
not yet be confirmed. In general, in [7] this graphical repre-
sentation was also obtained for several materials from FEM 
analysis and from experimental data of different steel types, 
showing a good coincidence with our results.

For our proposal with regard to obtaining the equivalent 
stress–strain curve of equation (3) after the onset of necking, 
the effect of an error in the estimation of RN does not exert 
as great an effect as in the estimation of rN because there 
is a dependence of the curve with the inverse of the area of 
the smallest cross section (A  =  πr2

N). The noise in the esti-
mation for rN will be amplified when calculating the corre-
sponding smallest cross section, which is then transmitted 
to the average true stress (F/A), to the Bridgman’s stress 
C·(F/A) and to the average strain Ln (A0/A). This can be 
appreciated in the respective curves designated with ASS|3D 
and BSS|3D in figures  17(a) and (b) for the steel and Cu 
specimens, where the sub-index 3D denotes that they have 

Figure 13. The radius of the specimen obtained with equation (22) 
along the x-axis.

Figure 14. Example of the experimental profile obtained using 
equation (9) (discontinuous green line) and equation (22) (red 
continuous line) and curvature radius using equation (25) (yellow 
dotted line).
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been obtained using torus fitting of the 3D data. In the same 
figure, the curves ASS|AD and BSS|AD are also represented, 
where the sub-index AD denotes that they were obtained 
using the proposed equations  (23) and (26) derived from 
the total AD profiles. As can be observed, both samples pre-
sent a large deformation after necking formation but then 
behave in quite different ways. Both stresses ASS and BSS 
(obtained with 3D and AD data) at the smallest cross sec-
tion of the steel bar increases slow but steadily during the 
necking formation until rupture, while the Cu bar shows a 
decrease in the stresses at about the strain of 0,3. This result 
appoints for a smaller stress concentration in Cu probably 
distributed over a larger necking zone than for the steel 
sample. This is in accordance with having a larger necking 
curvature radius (for a certain necking radius), since it starts 
to increase over the steel curvature radius (for the same 
necking radius) at about the same strain of 0,3 as can be 
appreciated in figure 16(b).

The stress strain curves obtained with the 3D data, 
although noisier, is supposed to be closer to the real stress 
strain curve obtained from the equation (23) since it considers 
the experimentally obtained necking curvature (i.e. without 
the approach of volume conservation). Therefore, the curves 
ASS|3D and BSS|3D can be used to estimate the error of the 
ASS|AD and BSS|AD curves. Furthermore, it is noticeable that 
the curves ASS|AD and BSS|AD remain below their respective 
ASS|3D and BSS|3D curves for all load stages; their estimated 

values of stress and strain are lower, thus, anticipating the duc-
tile rupture of the specimen.

The errors committed for the BSS curves are shown in 
figure 18 for the different load stages (note that in the case 
of the Cu specimen, finite RN values using torus fitting are 
obtained a few steps after the initiation of necking, at s  =  9). 
The error was calculated as follows, taking the sign into 
account:

ξ(%error) = 100
BSS|3D − BSS|AD

BSS|3D
.

 
(27)

Figure 18 shows the average tendency of the mean error and 
their standard deviations. For the Bridgman’s stress values 
in steel, we obtain an underestimated value using AD of 
about 11.5  ±  2.7% for the ductile fracture and this decreases 
to  −0.8  ±  2.7% for the initiation of necking. For the strain 
values obtained with AD, we determined that they are also 
underestimated by about 28  ±  8.7% for ductile fracture, 
decreasing to about 6  ±  8.7% for the necking initiation. For 
the Bridgman’s stress and strain for the Cu specimen, we 
obtain for all load stages an underestimated value using AD 
of 1.2  ±  1.2% for Bridgman’s stress and 10  ±  6.2% for the 
strain.

The estimated error is in accordance with errors observed 
in [7], which predicts values between 2.6% and 10.6% in 
the evaluation of Bridgman’s equivalent stress for different 
materials.

Figure 15. Minimum specimen radius (rs, before necking and after necking rN,s) using both estimation methods (using 3D or AD data).

Figure 16. (a) Radius of curvature of necking for the two specimens (steel and Cu) and the two proposed estimation methods (using 3D or 
AD data). (b) Evolution of the rN/RN ratio with the strain for both materials and approaches.
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Figure 17. Average axial true stress at the smallest cross section area and equivalent stress–strain curve for (a) steel specimen and (b) Cu 
specimen.

Figure 18. Error in the estimation of Bridgman’s stress and strain using AD data relative to the estimated result using 3D data, for the steel 
specimen ((a) and (b)) and for the Cu specimen (c) and (d).
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6. Discussion and conclusions

The main problem in determining the Bridgman’s stress–
strain curve after necking initiation is the correct estimation 
of the Bridgman’s parameters, rN and RN. The problem in 
the estimation of the necking curvature (RN) is that the real 
necking profile does not exactly coincide with a half circle, 
and the determination of the smallest necking radius (rN) has 
to be very precise because its value greatly affects both the 
stress and the average true strain. The main proposal of the 
present work is to estimate these parameters experimentally in 
a convenient and feasible way, suitable for use for engineering 
purposes.

One possibility is to obtain these parameters from the 3D 
displacement measurement maps of the specimen’s surface at 
the necking zone. For this, we propose using an alternative 
technique to 3D-DIC, namely a combination of 2D-DIC and 
FP. We consider this to be much easier to develop as a ‘home-
made’ technique. Detailed information on the set-up and cali-
bration is given in a few references and detailed explanations 
of the data processing for our purpose are given in the present 
work. The initiation of necking is then detected when the axial 
displacement map is no longer uniform, and the location of 
the minimum necking radius is determined from the position 
of the maximum slope of the axial displacement, which can be 
well-fitted with equation (13). Therefore, the onset of necking 
is identified accurately. The 3D shape of the necking zone is 
obtained from the out-of-plane displacements acquired by FP. 
The 3D data points obtained around the necking zone result in 
a shape that does not quite fit with a torus, making the deter-
mination of RN ambiguous.

Therefore, we delimit the zone around the necking location 
with equation (15) in a convenient way through a parameter µ. 
The torus function given by equation (12) is then fitted to the 
3D data of this necking zone, obtaining the estimated values 
for rN and RN. Nonetheless, the values obtained for rN are 
noisy, affecting the values of the minimum cross section area 
and the derived average TSS and Bridgman’s stress–strain 
curves (designated ASS|3D and BSS|3D). The curves obtained 
provide a useful range of estimated stress–strain values for the 
plastic behaviour of the specimens.

An alternative easier approach for determining the 
Bridgman’s parameters is also proposed. This is derived 
from only the AD values obtained with 2D-DIC, consider-
ably reducing the experimental and computational com-
plexity. The good fitting of equation  (14) to the total axial 
displacements (shown in figure  11) makes it possible to 
derive an equation  (22) for the radius of the specimen 
along the loading axis. For this approach, the conservation 
of volume is assumed. In particular, the minimum radius at 
the necking location is obtained (equation (23)). Applying a 
simple Taylor expansion around the necking location, equa-
tion (26) for the local curvature radius RN is formulated. The 
fitting of equation  (14) provides smooth values for both rN 
and RN, resulting in a smooth variation of the average TSS 
and Bridgman’s stress–strain curves (designated ASS|AD and 
BSS|AD). In particular, the smooth ratio rN/RN versus average 
strain at the smallest cross section, allows to appreciate 

possible differences in the extension of the necking zone for 
a given average strain for different materials. It was observed, 
for instance, that Cu presented a larger extension of the 
necking zone than steel for average train values higher than 
about 0,3, the same strain for which ASS and BSS started 
to decrease, probably because the stress concentrated at the 
smallest cross section  is being distributed over the necking 
zone while, for the steel sample, the ASS and BSS continu-
ously increased producing an increasing stress concentration 
at the smallest cross section  with increasing average strain 
values, until fracture.

Finally, the ASS|AD and BSS|AD curves are below the 
ASS|3D and BSS|3D curves for the two studied samples pre-
senting necking formation. The difference depends on the 
specimen’s material. Considering that the ASS|3D and BSS|3D 
curves are closer to the real plastic behaviour of the material, 
the ASS|AD and BSS|AD curves estimate the stress and strain 
values below the real values, allowing the anticipated predic-
tion of ductile fracture.
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