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Abstract—In energy efficiency applications, Non-Intrusive
Load Monitoring techniques (NILM) are typically used to deduce
which electrical loads are being used in a building at a given
time. The identification of household appliances, in particular
manually operated ones, is relevant information that can also be
applied to infer the routines of tenants in Active and Assisted
Living environments (AAL). These tools and applications
are becoming increasingly interesting, especially in Western
countries, where the ageing population is putting a strain on
public social and health services. In this context, this work aims
to classify the on/off events of the devices considered in the
BLUED database. For this purpose, an architecture is presented,
consisting of a Convolutional Auto-Encoder (CAE) followed by
a classifier neural network. The CAE is used to implement
a dimensionality reduction process after the encoder. Input
data are formatted as images, created with extracted sections
of the high-frequency electric current signal captured around
the switching events. It is noteworthy that this dimensionality
reduction also allows a decrease in the computational load of the
classifier. Regarding the CAE functionality, the reconstruction
error reaches a value of 1.579 · 10−3, whereas in the validation
stage a weighted average classification F1-score of 87 % is
obtained for the whole architecture.

Index Terms—Non-Intrusive Load Monitoring (NILM), Con-
volutional Auto-Encoder (CAE), Appliance Identification, Active
and Assisted Living (AAL).

I. INTRODUCTION

The concept of Active and Assisted Living (AAL) [1] is
defined as the use of novel technologies to create a supportive
environment, whose purpose is to improve the independent life
of the elderly and people with mild cognitive impairments,
allowing them to remain active in society for longer. Within
these technologies, Remote Patient Monitoring (RPM) [2] is
a key aspect. The functionality of these systems is to provide
information on the health state of patients in their own homes
or even in remote areas. Furthermore, they increase access to
medical care whereas decreasing its cost and improving the
detection of deterioration by making it faster.
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Within the methods to develop sustainable monitoring sys-
tems for social and medical care, there are direct and indirect
methods. Direct monitoring is when the state of health is
deduced directly from the biomechanical and/or physiological
variables that are measured through the use of Body Sensor
Networks (BSN) [3]. However, their intrusive nature makes
them less attractive. On the other hand, indirect monitoring
seeks to obtain information about the patient’s health through
other parameters that are not related to biomedical variables
and, hence, are less or even non-intrusive. An illustrative
example of these indirect methods is the Non-Intrusive Load
Monitoring (NILM) [4] techniques, whose initial objective
is to identify the electrical loads by analysing the aggregate
consumption of a building or household. This information may
be also used for RPM, although it is important to highlight that
in these scenarios the number of factors involved is large and
it will be necessary to implement other types of evaluations
to know the real patient’s health state.

To measure the degree of dependency or health status,
the term Activities of Daily Living (ADL) [5] is widely
used. It refers to the fundamental skills that a person must
show to care for herself/himself independently. In this way,
NILM techniques allow information to be obtained about
the activities that involve the use of electrical appliances.
More precisely, typical activities that might be monitored
are cooking, housekeeping, laundry or home entertainment
activities, among others. It should be mentioned that some
of them are defined as Instrumental Activities of Daily Living
(IADLs) [6].

To identify the appliances, the switching events should be
detected and classified. Currently, a large number of works
in this field are focused on using Artificial Neural Networks
(ANNs). As their name suggests, they are a structure that seeks
to mimic how biological neurons connect to each other. These
neurons are arranged in layers, where they work together such
that each unit processes a specific input, using a particular
function, and the extracted information is sent to the next
neuron. According to different applications, it is possible to
find diverse topologies in the definition of ANNs: Recurrent
Neural Networks (RNNs) include feedback connections, which
make them useful for processing sequential or time data series;



Convolutional Neural Networks (CNNs) use linear algebra
principles to identify patterns within an image, such as matrix
multiplication; and finally, Auto-Encoders (AEs) work in such
a way that the decoder aims to reconstruct the input from a
reduced dimensionality encoding created by the encoder. For
example, in [7] it is described a 1-D convolutional combined
with a long short-term memory RNN for a load disaggregation
application, and in [8] authors proposed a structure based on
the one-dimensional Convolutional Auto-Encoder.

About ANNs, there are two approaches depending on the
learning process: supervised and unsupervised learning [9].
During the training process, the supervised algorithms have
information about the correct result and make adjustments to
their configuration based on the comparison of the obtained
and expected results. However, the alternative topologies (un-
supervised) learn on their own without information about
the expected result. The baseline ANNs with unsupervised
learning are the AEs. Considering the above, they are able to
modify their structure by adjusting the parameters according
to the reconstruction error.

Considering this context, this work presents a neural net-
work architecture focused on identifying different appliances
by using as input the switching events on the electrical current
signal sampled at high frequency (in the range of kHz).
Input data pre-processing includes the transformation of the
temporal signal into images for the proposed convolutional
layers. After that, the main structure comprises a first stage
for the reduction of dimensionality and a final classification
stage. The proposal has been verified thanks to the recorded
high-frequency signals obtained from Building-Level fUlly
labelled Electricity Disaggregation (BLUED) database [10]
which achieved an experimental classification performance of
87 %. The main contribution of this work is the definition of an
architecture for the identification of household loads in order to
be used as a starting point for RPM. This architecture includes
a CAE for the prospective creation of a system capable
of solving the problem of classifying in an unsupervised
method. In connection with this part of the model, a value
of 1.579 · 10−3 for the maximum reconstruction error in the
CAE is obtained. The rest of the manuscript is structured as
follows: Section II describes the proposed architecture; Section
III presents its performance making use of the experimental
data; and, finally, conclusions are discussed and possible future
developments are commented in Section IV.

II. PROPOSED ARCHITECTURE

The proposed architecture consists of a first pre-processing
stage, where the input samples from the electric current are
prepared, a second stage where the CAE plays a leading
role, and a final stage for appliance identification, where the
intermediate input samples are processed by a plain neural
network classifier. The details for each stage are specified
thereupon.

A. Pre-Processing Stage

Firstly, the sampling frequency of the aggregate electrical
current signal is adjusted to the operation of a determined
commercial Analog Front-End (AFE) [11]. In this specific
experimental case, the frequency is fixed at 4 kHz. This allows
that all the definitions and design decisions made hereinafter
for the data coming from BLUED dataset might be easily
extended to future experimental developments based on an
AFE with the same sampling frequency. Additionally, temporal
windows are captured around the switching events in order to
reduce the amount of data to be processed. To avoid possible
errors, the event detector stage has been omitted and the events
are extracted directly from the database. The duration of these
temporal windows is 1.024 seconds; bearing in mind that the
frequency is 4 kHz, the total number of samples per window
is 4096.

Since the AE topology is constituted by convolutional layers
and they are usually used for feature extraction from images,
the temporal windows are divided into sections and then
organized as rows of a matrix to create the input images. It is
worth mentioning that this procedure was previously described
in [12]. In this work, three CNN architectures are proposed
for load identification in the field of NILM techniques. The
different versions aim to reduce the complexity of the initial
architecture without affecting its classification capability. Fi-
nally, the second version has significantly fewer parameters
with similar results to the other two proposed alternatives.
Specifically, it achieves an F1 score of 92.85 %, around the
values of previous works using similar classification tech-
niques, with a number of trainable parameters of 523560.
The BLUED database was also used to validate the proposal.
The resulting images for training present a square size of
64 × 64. Furthermore, before inserting them into the ANN
model, their values are normalized between 0 and 1 as the
model’s functionality saturates at those limits, thus providing
vanishing gradient problems. Fig. 1 shows an example of the
resulting images.

B. Dimensional Reduction Stage

The approach proposed for dimensional reduction is a CAE.
This architecture has two main parts: an encoder which maps
the image to a code thanks to convolutional layers, and
a decoder which reconstructs the image from the code by
convolutional transpose layers. The specific structure of the
CAE, shown in Fig. 2, is configured as follows:

• Encoder:
– Convolutional 2D Layer: The number of channels

produced by the convolution operation is 16, the size
of the convolution kernel is 3 × 3 and the value of
the stride parameter for the cross-correlation is 2.
Henceforward, the kernel and stride settings will stay
the same, unless otherwise indicated.

– ReLU Activation Layer.
– Convolutional 2D Layer: The number of output

channels is 32.



– ReLU Activation Layer.
– Convolutional 2D Layer: The number of output

channels is 64.
– ReLU Activation Layer.
– Convolutional 2D Layer: The number of output

channels is 128.
– ReLU Activation Layer.
– Convolutional 2D Layer: The number of output

channels is 256. However, in this case, the size of
the convolution kernel is 4 × 4 to obtain a code of
one dimension and the stride parameter is 1.

– ReLU Activation Layer.
• Decoder:

– Convolutional Transpose 2D Layer: The number
of channels produced by the transposed convolution
operation is 128. Moreover, to follow the same
sequence as in the encoder, the size of the convolving
kernel is 4× 4 and the stride parameter is 1.

– ReLU Activation Layer.
– Convolutional Transpose 2D Layer: The number

of output channels is 64. However, the size of the
convolution kernel is again 3 × 3 and the value of
stride for the cross-correlation is 2. Additionally, for
this type of layer, an additional size is added to one
side of each dimension in the output shape. Once
again, this configuration will stay the same, unless
otherwise indicated.

– ReLU Activation Layer.
– Convolutional Transpose 2D Layer: The number

of output channels is 32.
– ReLU Activation Layer.
– Convolutional Transpose 2D Layer: The number

of output channels is 16.
– ReLU Activation Layer.
– Convolutional Transpose 2D Layer: The number

of output channels is 1.
– Sigmoid Activation Layer.

Within the encoder, the images are processed by five Convo-
lutional 2D layers, which extract the most significant features
to finally obtain the specific code for each image; whereas
in the decoder, the rest of the information in the images is
derived from the code, by using five Convolutional Transpose
2D layers. All these layers are followed by a ReLU activation
function, except for the last layer of the decoder that uses
the Sigmoid function. Both functions are used to introduce
non-linearity. However, the ReLU function is exclusive with
values equal to or less than zero (making them equal to zero),

Fig. 1. Examples of a 64 × 64 input image for the CAE, containing on-
switching events of the a) refrigerator, b) printer, c) air compressor and d)
garage door.

Fig. 2. Structure of the proposed CAE for the dimensional reduction stage.

which implies a loss of information for the reconstruction of
the images at the end of the decoder.

C. Appliance Identification Stage

A plain neural network classifier is proposed to classify the
codes obtained at the middle point after the encoder in the
CAE (between the encoder and the decoder). The configuration
of the network, shown in Fig. 2, is described below:

• Linear Layer: The size of each output sample is four
times the input size, which is 256.

• ReLU Activation Layer.
• Linear Layer: The final size of the output samples

corresponds to the number of classes, which is 16 due
to the number of appliances considered from the dataset.

• Sigmoid Activation Layer.
The values from the reduction space of the encoder are

inserted into the classifier to be processed by two Linear
layers: the first layer provides more output features than inputs
since this potentially leads to better results (it has more values



to learn patterns from); and, finally, the second layer computes
the scores for each considered class or appliance, where the
label with the highest score reveals the identified appliance.

III. EXPERIMENTAL RESULTS

Since the electrical signals obtained from the BLUED
database [10] are sampled at 12 kHz, the first step is down-
sampling to 4 kHz. Besides that, for the extraction of the
temporal windows, the location of the events is provided by
the ground truth of the database.

It should also be noted that to make up for the class
imbalance, the total set of input images includes samples
artificially created by introducing noise. This disproportion is
caused due to the fact that there may not be enough switching
events for all the considered appliances. Likewise, the images
have been divided into three independent subsets: the training
set with the 50 % of the images, the testing set with half of
the remaining samples and the validation one with the other
half.

The validation of the model’s performance has been done by
the consumption signals extracted from the BLUED database.
The involved appliances are also electrical devices which are
not relevant for the estimation of routines, but it is important
to identify them in order to be able to discard them in a
later process where the routines are extracted. In view of the
above, the total number of electronic devices that have been
considered is sixteen, as can be observed in Table I.

Before detailing the metrics of the experimental results, it is
worth including some information about the training settings.
The learning algorithm for the optimization process is the
Adam algorithm [14] with an initial learning rate of 10−4 for
the case of the CAE, whereas for the classifier is 10−5. This
parameter is modified using a decay rate of 10−6 and 10−7,
respectively. Furthermore, some regulation techniques to avoid

TABLE I
SELECTED DEVICES FOR PROPOSAL EVALUATION

Class Device
00 Refrigerator
01 Hair Dryer
02 Iron
03 Television
04 Air Compressor
05 Kitchen Aid Chopper
06 Garage Door
07 Computer 1
08 Printer
09 Lamps (Living Room Desk)
10 Lights
11 Laptop 1
12 Basement Receiver, DVR, Blue-ray Player
13 LCD Monitor 1
14 Monitor 2
15 Living Room A/V System

over-fitting are used. In addition to the data augmentation
procedure mentioned previously, the early stopping technique
is employed to stop the training process when validation loss
does not improve. Another key factor that may influence the
model performance is the batch size. For this case, the number
of samples or images per batch is 32. Finally, every subset
is shuffled before using it, so the order does not affect the
effectiveness of the algorithm.

To evaluate the reconstruction efficiency, the Mean Squared
Error (MSE) loss function is used [15]. Particularly, the testing
MSE obtained for the CAE achieves a value of 1.579 · 10−3.
Furthermore, the similarity between the input images and the
reconstructed ones is calculated by using the Deep Image
Structure and Texture Similarity (DISTS) index [16]. In this
case, the values obtained for the test set are between 0.170
and 0.230, which means that the obtained images are highly
similar, since the lower this metric the better the reconstruction
is.

For the classification, the F1-score is used to combine the
precision and recall metrics: the precision evaluates the quality
of the model for the classification task, whereas the recall
reports on the quantity the model can identify. It is noteworthy
that, for problems with unbalanced classes, instead of using
accuracy, it is better to use precision, recall and F1-score.
Table II presents the results for every class where a weighted
average F1-score of 87 % is attained. The worst performance
is obtained for class 13 (LCD Monitor 1).

For further analysis, the confusion matrix is depicted in Fig.
3. The largest number of errors are introduced by class 10
(Lights). In particular, the number of samples from class 10
misclassified as class 13 is nearly half of the total number of
samples from this last mentioned class. The reason for the
misclassifications in this class 10 is because the switching

TABLE II
EXPERIMENTAL RESULTS FOR THE PROPOSED ARCHITECTURE

Class Precision Recall F1-score
00 0.91 0.93 0.92
01 0.92 0.92 0.92
02 0.89 0.80 0.84
03 0.79 0.77 0.78
04 0.99 1.00 1.00
05 0.95 0.95 0.95
06 0.94 0.98 0.96
07 0.68 0.66 0.67
08 0.92 0.97 0.94
09 0.86 0.71 0.77
10 0.81 0.68 0.74
11 0.81 0.98 0.89
12 0.95 0.96 0.96
13 0.52 0.57 0.54
14 0.69 0.80 0.74
15 0.95 1.00 0.97

Weighted average 0.87 0.87 0.87



events of lights are not noticeable in comparison with other
appliances, whether there is another appliance switched on in
the image, as is shown in Fig 4. Conversely, class 4 scores
are close to perfection even though this class has a large
number of samples compared to other classes. This may be
because the level of consumption and the type of electrical load
(resistive, inductive, capacitive) of the air compressor differs
to a larger extent from the rest of the loads. Furthermore,
looking at the number of samples per class shown in Fig. 3,
it can be observed that there exist an unbalanced number of
events for the validation. In these situations, the minority class
is more difficult to classify because there are few samples, as
well as the abundance of the majority class can cause the
model to ignore the minority class. However, as mentioned
above, the worst results are obtained for class 10, which has
a considerable volume of samples. Therefore, as this class is
also misclassified with a large part of the other classes, the
cause of these results may be that the model is introducing all
mislabelled samples in this class.

Finally, a comparison with other previous works is consid-
ered here. In [17] it is proposed a CAE, which uses advanced
training techniques such as batch normalization (BN) and
hill climbing (HC), to disaggregate the appliances’ power
consumption. In this case, NILM is modelled as a regression
problem and results show that the method performs the best
in comparison to other schemes for the fridge and microwave
cases, with a maximum MAE of 9.594 and a maximum SAE of
0.082 for the REDD database. On the other hand, in [18] it is
proposed to model the dynamic behaviour of the NILM prob-
lem by a Long Short-Term Memory (LSTM) auto-encoder,

Fig. 3. Confusion matrix obtained in the test process.

Fig. 4. Example of a temporal window, where an event from the lights is
almost imperceptible.

which outperforms several state-of-the-art techniques with a
micro F1-score of 0.74 for the REDD and 0.81 for the Pecan
Street databases. Furthermore, in [19] a simple plug-and-play
type smart measuring device is presented, which integrates
a web application and a mobile application to visualize the
estimated equipment-wise energy consumption by a denoising
auto-encoder. The proposal has demonstrated its effectiveness
for the refrigerator in house 1 of the REDD database and has
shown promising results for the unseen data of the refrigerator
in house 2. The MAE and RMSE values calculated with the
proposed model are 16.66 and 47.47 for the seen data and
43.05 and 80.11 for the unseen data, respectively. Finally,
in [20] a generative algorithm is proposed that integrates
a variational autoencoder to detect unknown appliances and
identify the known ones. Experimental F1-score on PLAID
and WHITED databases for the known appliances are 0.9530
and 0.9831, respectively.

IV. CONCLUSIONS

In this work, a CAE-based classification architecture for
the identification of electrical loads is proposed as a starting
point to create an RPM system that may be able to provide
information related to the health status of patients based
on electricity consumption. In order to test the effectiveness
of the proposal, the BLUED database has been used. A
reconstruction error of 1.579 · 10−3 and a weighted average
classification F1-score of 87 % have been obtained. These
preliminary results are encouraging, as a performance in the
same range as previous works is achieved.

Future work will extend this study by applying unsupervised
machine learning to avoid the need of human intervention for
unknown electrical loads as is proposed in [20]. This feature
will allow the proposal to be as close as possible to real-
life situations, where household appliances are often replaced
because their useful life is limited. Furthermore, the future
purpose is to infer certain routines and daily activities through
the information obtained from the appliances, in the context
of developing supporting tools and RPM systems.
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