
IET Microwaves, Antennas & Propagation

Research Article

Efficient strategy for parallelisation of
multilevel fast multipole algorithm using
CUDA

ISSN 1751-8725
Received on 17th July 2018
Revised 27th February 2019
Accepted on 8th April 2019
E-First on 8th May 2019
doi: 10.1049/iet-map.2018.5568
www.ietdl.org

Eliseo García1 , Carlos Delgado2, Lorena Lozano2, Felipe Cátedra2

1Automatics Dep., University of Alcalá, Alcalá de Henares, Spain
2Computer Sci. Dep., University of Alcalá, Alcalá de Henares, Spain

 E-mail: eliseo.garcia@uah.es

Abstract: The multilevel fast multipole algorithm is a popular technique that enables the efficient solution of the method of
moments (MoM) matrix equations. In this work, the authors address the adaptation of this method to the compute unified device
architecture (CUDA), a relatively new computing infrastructure provided by NVIDIA, and the authors take into account some of
the limitations that appear when the geometry under analysis becomes too large to fit into the memory of graphics processing
units.

1 Introduction
The method of moments (MoM) [1] is a well-known technique for
the electromagnetic analysis of arbitrary 3D geometries. It defines
a system of linear equations by discretising the corresponding
integro-differential equations. The unknowns of such system are
the coefficients of the induced currents with respect to a set of
basic functions. The discretisation process involved, in order to
provide accurate results, must divide the geometry into subpatches
of, typically, around one-tenth of the size of the wavelength. As the
size of the geometry grows, the problem becomes computationally
expensive very quickly, and this is the reason for the emergence of
several techniques whose objective is to make larger problems
manageable. Three of these efficient approaches are the
characteristic basis function method (CBFM) [2], the fast multipole
method (FMM) [3] and its multilevel approach, the multilevel fast
multipole algorithm (MLFMA) [4–6]. The FMM and MLFMA
compute the coupling matrix by only storing the interactions
between geometrically close elements and consider the interactions
between distant elements by means of efficient matrix–vector
multiplications in the iterative process.

With the proliferation of relatively non-expensive high-
performance computers, a noticeable effort has been made to
impulse the development of parallel versions of these numerical
methods [7–10]. Many research groups have implemented efficient
strategies for the parallelisation of the MLFMA, applying the
message passing interface (MPI) paradigm [11–13]. Our work
focuses on accelerating the MLFMA through a relatively new
programming paradigm called compute unified device architecture
(CUDA). The main objective of CUDA is to allow the use of
graphics processing units (GPUs) for high-performance scientific
computing. The performance gains using CUDA are quite
remarkable. It has recently been used for tasks such as the
calculation of the impedance matrix in the MoM, or for the
solution of the linear system that the MoM produces. An example
of the first case is shown in [14]. The reported speedup is up to 70,
compared to the same operation performed on the CPU. In [9], the
authors obtain speedup results for the same task up to 140. They
then perform a LU decomposition of the matrix, but this does not
benefit too much from the GPU, and the total speedup reported for
the entire MoM execution is about 45. The LU decomposition of
the matrix system is specifically addressed in [15]. The reported
speedup, using CUDA, is up to 20 with three GPUs.

In order to address arbitrarily large geometries, the authors
divide in [16] the matrix into blocks that are stored in hard disk
drives instead of RAM. They propose a scheme in which the

impedance matrix is divided into submatrices, and each submatrix
is calculated at the same time, in order to overcome the relatively
low amount of memory available in off-the-shelf graphics cards.
The overall gain is, in this case, a factor of 30 for the calculation of
the impedance matrix, even taking into account the penalty
introduced by this partitioning. This work is especially remarkable
because the authors did not have at their disposal the tools later
provided by NVIDIA for CUDA. A good example of the fine
adjustment that is sometimes necessary when using CUDA is
shown in [17], in this case applied to wire-grid models. The authors
analyse the resources of the graphics card and show how to
partition the tasks among its computing cores to achieve the
maximum possible gain.

The application of GPUs for the application of the MLFMA is
described here. Several works have been published in this field
[18–20]. The main computational burden of GPUs is their limited
memory size when compared to CPU capabilities. Some GPU
cards with a memory capacity of 24 GB have been recently
introduced, which improves the computational range of the
previous cards, but it is still inadequate when analysing moderately
sized electromagnetic problems using only the GPU memory.

The combination of OpenMP and CUDA parallelisation
techniques applied to the MLFMA for complex medium-size
problems is shown in [18]. Some techniques developed to apply
GPU computing for the solution of large problems are based on
transferring data between GPU and CPU during the computation
[14] with the corresponding reduction of efficiency. A multi-GPU
scheme that benefits from an increased capacity for the solution of
larger problems is presented in [19].

Table 1 shows a comparison between the performance of
different methods mentioned in this section and the size of the
problems addressed.

This work aims to contribute to a further optimisation of the
simulation process dealing with some computational limitations.
Here, a novel technique for computing large problems in a single
GPU scheme is presented, based on the reduction of the storage
requirements for the MLFMA data. This approach involves the
introduction of an algorithm that reduces the data that is stored at
the expense of performing a higher number of operations.
However, these operations have a good data-parallelism, so they
are suitable to be run on GPU cards, obtaining an efficient solution
that allows to overcome the memory limitations of the cards while
taking advantage of their computational benefits. The mathematical
description of the algorithm is shown in Section 3.

In our work, we use all the experience provided by the
aforementioned papers and managed on our own numerical scheme

IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

1554

http://crossmark.crossref.org/dialog/?doi=10.1049%2Fiet-map.2018.5568&domain=pdf&date_stamp=2019-05-08

to accelerate the MLFMA with CUDA. Since the MLFMA is based
on the MoM, we must first calculate the impedance matrix for the
geometry. Most of the previous works use a meshing scheme based
on triangulation. We use square NURBS patches because, in our
experience, this kind of patches offer an improved fit to the
geometry, requiring the use of fewer surfaces [21], but the
proposed technique can be applied for any type of mesh. When
calculating the elements of the impedance matrix, we use a variable
number of integration points, depending on the distance between
the active and passive subdomains whose coupling is being
calculated. When they are geometrically close, a greater number of
integration points are recommended to provide better accuracy.
When they are further apart, we can reduce this number to make
the process more efficient without the risk of compromising the
accuracy.

The rest of this paper is organised as follows: in Section 2, we
review the MoM and its combination with the MLFMA, and
describe the benefits obtained from this combination. The
implementation of the algorithm using CUDA is described in
Section 3, which is followed by some experimental results in
Section 3. We dedicate Section 5 to the conclusions that can be
derived from this work.

2 MoM and MLFMA
The MoM [1] is used to transform a number of integral-differential
equations into a set of linear equations. When applied to
electromagnetic simulation the final result is the linear system of
(1), where Z is known as the coupling or impedance matrix, the V
vector contains the impressed voltage for each subdomain,
representing the excitations, and the J vector contains the induced
current coefficients to be calculated.

V = Z J (1)

Using rooftop functions as basic functions, composed of S1 and S2
patches, and razor-blade functions as testing functions [22], the
term zij of the coupling matrix can be expressed as:

zij = zij
ind + zij

cap (2)

where (see (3)) and

zi j
cap = PS j1(rb) − PS j1(ra) − PS j2(rb) − PS j2(ra) , (4a)

Terms like PS j1(rb) can be obtained from:

PS j1(rb) = −1
j4πωε0

∫S j1

G(rb, r′)
AS j1

dS′ (4b)

Equations (3) and (4b) include terms such as the Green's function
G(r, r′), defined as:

G(r, r′) = e− jk r − r′

r − r′ . (5)

They also include terms like J j
S j1, which is the current density of the

j-subdomain over the Sj1 patch, whose area is represented by AS j1.
r′ and r are the position vectors for the points on the j-source
subdomain and the i-observation subdomain, respectively. Finally,
ra and rb are the end-points of the razor-blade for the i-subdomain.
A more detailed mathematical description of the process that leads
to these equations can be found in [23].

Computationally, the integrals for (3) and (4b) are calculated
using the Gaussian Quadrature [24]. The integral of a given
function f is approximated by a series in which we select weights
and abscissas in an appropriate way:

∫
a

b
W(x) f (x)dx ≃ ∑

j = 1

N
wi f (xi) (6)

where wi is the Gaussian weights and W(x) is a function chosen to
eliminate the singularities of the integrand. All the integrals are
treated similarly. In the case of the integrals between the brackets
of (3), the transformation is:

∫S j1
G(r, r′)J j

S j1(r′)dS′ ≃ ∑
l = 1

N

∑
k = 1

M
wlwkG(rl, r′k)J j

S j1(r′k) (7)

where G(rl, r′k) is the evaluation of the Green's function at the r′k
source and the rl observation point. In this case, we choose W(x) = 
1, so that f(x) is the product of G and J. N is the number of
sampling points chosen and depends on the desired precision.

2.1 Multilevel fast multipole algorithm

Once the matrix [Z] has been calculated, it can be used to solve the
electromagnetic problem. However, [Z] becomes very large
quickly as the size of the geometry increases. Solving the linear
equation system given by (1) using a direct method can be very
time-consuming and impose a memory bottleneck.

In order to reduce this problem, some techniques can be
applied. One of the most common approaches to easing the burden
on the computational resources involves storing only the
interactions of geometrically close elements of the coupling matrix
and computing the interactions between distant elements via the
MLFMA [4].

In the application of the MLFMA, we compartmentalise all the
geometry into several first-level cubical groups which, in turn,
generate higher order cubes as they are grouped. For the first level,
the cubes include a few basis-functions, and the coupling between
basis functions associated with geometrically close cubes is
calculated in a rigorous way (2) and stored for later use. The
interactions between geometrically distant elements are computed
very efficiently in the iterative solution process and do not need to
be stored [25]. For these interactions, the equations include the
Green function, shown in (5). Applying the addition theorem, it can
be expressed as:

G(r, r′) = e− jk r − r′

r − r′ = e− jk D + d

D + d = ∫ τL(k, D , k
^
D^)e− jk(kd)d2k

^ (8)

Table 1 Speedup comparison for some of the existing
techniques
Technique
reference

Speedup in the
matrix

computation

Speedup in
the whole
problem

Electrical size

[9] 140 45 about 5λ (7701
unknowns)

[14] 70 no applicable about 1λ (3008
unknowns)

[15] no applicable 20 about 240λ (151,898
unknowns)

[16] 30 18 about 2λ (9936
unknowns)

[18] 37 26 about 2λ (37,905
unknowns)

[19] 124 21 about 30λ (342,237
unknowns)

zij
ind = ∫

ra

rb jωμ0

4π ∫S j1
G(r, r′)J j

S j1(r′)dS′ + jωμ0

4π ∫
S j2

G(r, r′)J j
S j2(r′)dS′ dl, (3)

IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

1555

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

where the integral is defined over all the directions of the unit
sphere, and considering that

D + d = r − r′, d < D (9)

If we denote D as the distance vector between the centre of the
cubes m and m′ containing subdomains i and j, respectively, and
dm′i and dmj as the distance vector between each subdomain and
the centre of its cube, the coupling terms between distant
subdomains i and j can be computed in the iterative process as
matrix–vector products applying the expression shown in (10). For
the electric field integral equation (EFIE) case, the coupling
between element j and element i can be computed using:

Aji = ∫ Vmj
AGG(k^)τmm′(k

^, rmm′)Vm′i
DIS(k^)d2k

^
(10)

where Vmj
AGG(k^) represents the aggregation term for the j-subdomain

to the centre of the cube m, expressed as follows:

Vmj
AGG(k^) = ∫

u
∫
v

e− jk^ ⋅ rjm(I − k
^
k
^)T j(u, v)du dv (11)

where rj, m represents the vector that extends from the sampling
point to the aggregation point, and T j(u, v) represents the basis
function associated to the source element j.

Analogously, the disaggregation term can be computed as:

Vm′i
DIS(k^) = ∫

u
∫

v
ejk^ ⋅ rim′(I − k

^
k
^)Ri(u, v)du dv (12)

where ri, m′ represents the vector that extends from the sampling
point to the disaggregation point, and Ri(u, v) represents the testing
function associated to the element i.

Vmj
AGG(k^) and Vmj

DIS(k^) only have θ and ϕ components
(Vm′i

AGG(k^) = Vθm′i
AGGθ

^ + Vφm′i
AGGφ^). Finally, the translation term

between point m and m′ is obtained by:

τmm′(k
^, rmm′) = jk

4π ∑
l = 0

L
jl(2l + 1)hl

(1)(krmm′)Pl(r^mm′ ⋅ k
^) (13)

where hl
(1)(x) is a spherical Hankel function of the first kind and

Pl(x) is a Legendre polynomial. The integral in (10) is defined over
all the directions of the unit sphere, but this integral can be
truncated to a number of points Nk that provide a non-significant
error, as explained in [4].

The previous expressions allow the use of an efficient iterative
solver to address the system solution considering the coupling
terms between distant elements. In this work, we have used the
stabilised biconjugated gradient (BiCGSTAB) and the generalised
minimal residue (GMRES) methods.

This numerical approach involves two separate phases [26].
First, at a pre-processing stage, we compute the contribution of
every single j-subdomain to the aggregation (and disaggregation,
analogously) to its first-level cube m. These contributions are the
Vmj

AGG and Vmj
DIS terms in expressions (11) and (12), respectively,

and they need to be applied to each subdomain of the scenario and
to each direction sample of the unit sphere. The coupling terms
between geometrically close elements are also obtained at this
stage using expression (2).

The second stage applies to the equation solving process, in
which the matrix–vector product computation is efficiently
obtained. For any first-level cube of the problem, the addition of
the aggregation term of the subdomains contained is calculated. If
there is more than one level in the problem considered, the
aggregation for any cube at level x is calculated by adding the
aggregation terms of all the x − 1 level cubes it contains. Once the
aggregation terms are computed for every cube, they are translated
to the corresponding cubes of the same level. Finally, the

contributions are disaggregated from the high-level cubes to the
first-level cubes, and subsequently to every subdomain contained.
The contribution of geometrically close elements to the matrix–
vector product is computed by using the stored terms.

Note that if in the election of the MoM basis and testing
functions T j(u, v) and Ri(u, v) the same functions are chosen, which
is known as the Galerkin method, the aggregation and
disaggregation terms are computed using the same expression.

The aggregation expression can be interpreted as the radiation
pattern associated to each first-level cube, because it represents
how the current over the basis functions contained in the cube
radiates in a number of directions. If the aggregation and
disaggregation terms are the same, it can be concluded that the way
in which a set of basis functions radiate is the same as how it
receives the external radiation. This is a consequence of the
reciprocity theorem, which leads to relevant properties in the
analysis of electromagnetic problems.

From a computational point of view, this election involves a
significant reduction of the memory requirements because only one
term associated to the MLFMA must be computed and stored and,
as it will be shown in the next sections, its impact in the total
memory requirements is remarkable. It is also important to note
that the main burden in the use of GPUs is the limited amount of
available memory, so the reduction obtained due to this choice is a
relevant advantage.

The MLFMA has been widely used in combination with the
MoM and its computational benefits have been illustrated in
several publications [4–6].

3 Implementation
3.1 Cuda

The method described above can greatly reduce the amount of time
and memory required to solve problems using the MoM. However,
it is still necessary to calculate the MLFMA terms and solve the
system equation using an iterative solver. These tasks still take up a
considerable amount of time and memory, and, to reduce these,
some parallel computation methods can be taken into account.

Here, we present one of these methods, which makes use of a
recent innovation in high performance computing: CUDA [27].
CUDA is a technology that allows the use of GPUs for general
purpose computing. GPUs have traditionally been used for
graphics applications but can also be used to perform scientific
calculations. GPUs are designed with a large number of processing
devices, which makes them well suited to execute highly parallel
scientific code. CUDA often requires a significant redesign of the
algorithms, but provides considerable speedups. The CUDA
programming paradigm and system architecture are defined to a
greater extent in [28]. In this section, we present a brief description
of the underlying framework.

CUDA allows to access hardware resources of the GPUs that
basically are processing cores and memory. Cores are very simple
processing units. They are physically grouped into clusters called
streaming multiprocessors (SMs). A SM has several processing
cores as well as registers and shared memory. A GPU typically has
several SMs. The number of cores per SM depends on the
architecture. The GPU memory is organised in a hierarchy, ranging
from a relatively slow global memory, accessible to all the SMs, to
very fast shared memories, visible only by cores in the same SM,
all the way to very fast registers, visible only by one core each. A
simplified diagram of the architecture of a GPU is shown in Fig. 1.

Due to the availability of the parallel resources of the GPU, it is
particularly suitable for applications with a large amount of data
parallelism, or those applications which repeatedly perform the
same operations on large data sets. In order to use the resources
made available by CUDA, the application must be designed with a
special structure from the point of view of its programming. The
application is organised as a succession of kernel calls. A kernel is
a special kind of function or procedure, which runs on the GPU. It
is executed in single instruction, multiple data (SIMD) mode,
which means that multiple instances of the sequence of instructions
that make up the function are executed in parallel. These instances
are called threads. Each thread works over a different piece of the

1556 IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

data, and runs on one core. As the cores work in parallel, the
overall effect is that several portions of the data are processed at
the same time.

Threads in a kernel are grouped into logical units called thread-
blocks for easier handling inside the GPU. One thread-block is
completely (i.e. all its threads) assigned to one SM in the GPU. The
number of threads in a thread-block is specified by the
programmer, but there is a limit. Since this number of threads may
not be sufficient for regular applications, a kernel consists of
several thread-blocks. Thread-blocks are organised in logical grids.

At the time of execution, the thread-blocks in a kernel are
dynamically assigned to the SMs for execution. The number of
thread-blocks assigned to every single SM depends on the
hardware requirements of the thread-blocks (in terms of registers,
shared memory, and number of threads). When all SMs are full, the
remaining thread-blocks must wait until they can be assigned. One
of the benefits of handling the threads in this way is that the
application can run on a wide variety of GPUs, from those with
only one or two SMs to others with many more, without the need
to be modified.

With all this in mind, the design of the application consists of
several steps. First of all, it is necessary to decide which parts will
be executed on the GPU and which ones will run on the CPU.
Typically, those parts exhibiting a fair amount of data parallelism
will run on the GPU, and the rest will run on the CPU. The next
step is to organise the parts assigned to the GPU into kernels.
Sometimes it is possible to fit each part in one kernel, and
sometimes it is necessary to divide it into several, depending on the
logical structure of the application. Finally, the disposition of the
data in the GPU memory must be decided, and the necessary data
transfers must be included. The data must be transferred to the
GPU for use by the kernels, and results must be transferred out.

In the process of designing the GPU code, it is important to
keep in mind that the code in one kernel is executed as-is by all
threads in it. There are thread and thread-block indices, so that each
thread can identify itself (find out which one it is) and, depending
on that, decide which data it must work on. In principle, it is
possible that, by using conditional branches based on those indices,
different threads can do different things, but this should be avoided
whenever possible. The cost of a conditional branch that some
threads take and others do not (i.e. a divergent branch) is a loss of
efficiency. Whenever possible, all threads must execute exactly the
same instructions.

3.2 Algorithm

3.2.1 General overview: We have worked on a previous
sequential version of the application [21] and made the necessary
modifications so that the desired part of the code will run on the
GPU. Most of this code has been transformed into custom-made
CUDA kernels. The calculation of the matrix and multipole terms
have been adapted in the pre-process stage, and the MLFMA
matrix–vector product has also been modified. These parts of the
code are the most decisive when analysing the computational cost
of the method.

In the matrix computation stage, the parallelisation strategy was
the definition of two CUDA kernels, each of then computing (3)
and (4). These codes are applied to any coupling term between
subdomains, so the theoretical number of threads that could run
these kernels concurrently is limited to the number of pairs of
coupled subdomains of the problem. Due to the use of the
MLFMA, only the near-field coupling terms corresponding to the
nearby subdomains are stored. Therefore, if we assume that each
subdomain could have a reduced set of subdomains near it, there is
an almost linear dependence between the coupling terms and the
number of subdomains of the problem. As a consequence, the same
linear dependence is obtained with respect to the size of the
computed Z matrix.

→Copy geometrical description of the subdomains
to GPU global memory
→Run a CUDA kernel to obtain geometrical
parameters (one thread per subdomain)
→Run a CUDA kernel to obtain inductive term (3)
(one thread per pair of coupled subdomains)
→Run a CUDA kernel to obtain capacitive term (4)
(one thread per pair of coupled subdomains)
→Copy Z matrix to CPU memory

The next computation step is the calculation of the multipole terms.
These terms are obtained by computing (11) and (12) for all the
subdomains. A kernel implementing each equation has been
created. There is no dependency between them, so, assuming only
software limits, the maximum number of instances that run these
kernels could be the number of subdomains of the problem.

→Run a CUDA kernel to obtain geometrical
parameters (one thread per subdomain)
→Run a CUDA kernel to obtain aggregation term
(17) (one thread per subdomain)
→Run a CUDA kernel to obtain disaggregation term
(one thread per subdomain)
→Copy matrices to CPU memory

In the iterative process, a kernel has been created for each of the
phases of the MLFMA matrix–vector product. Assuming a N-level
problem, the phases are:

• First-level aggregation: The CUDA kernel code in this stage
collects the contribution of each subdomain to the centre of its
first-level parent cube. The aggregation term for cube m is
computed as shown in (14):

Vm
AGG(k^) = ∑

j = 1

Nj ∫
u
∫

v
e− jk^ ⋅ rjm(I − k

^
k
^)T j(u, v)du dv

= ∑
j = 1

Nj
Vmj

AGG(k^)
(14)

where Nj is the number of subdomains contained in the cube m.
Every thread of the GPU computes the contribution of one

subdomain for one direction of the spectrum and a single
polarisation. Then, considering that the spectrum size at this
level is 12 × 23, a maximum number of threads of Ns*12*23*2
can be calculated simultaneously. Note that several subdomains
belong to the same first-level cube, so in order to prevent
concurrency problems an atomic operation is required for their
storage.

• Aggregation from the second to the Nth level: At each level, a
parent-cube adds the contribution of its child-cubes from the
previous level. A kernel is implemented to perform this part of
the algorithm. This kernel computes the aggregation term of all
the cubes in a single level, so it must be executed N − 1 times for
each matrix–vector product. Every thread of the GPU calculates,
for any parent-cube in the level, the contribution to one direction
of the spectrum and to one polarisation created by one of its

Fig. 1  GPU architecture

IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

1557

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

child-cubes. The number of the spectrum directions increases
when computing higher levels, while the number of empty cubes
decreases.

It is important to note that at any level, there is no
dependence between the data used for each thread. As in the
previous phase, an atomic operation must be included to
consider the computation of several threads that access to the
same parent-cube. In addition, the computation of one level
depends on the results of its previous level, so a synchronising
procedure between levels needs to be established.

• Translation and disaggregation from the Nth to the second level:
In this step, an i-level cube collects the contribution of the same
level cubes (translation at i level) and the contribution of its
parent at the (i + 1) level. Finally, it spreads that contribution to
its child cubes at the (i − 1)-level. Two kernels perform these
actions until first-level cubes contributions are reached. The first
kernel obtains the contribution for all the cubes in the level due
to the cubes of the same level. Each thread in the GPU
calculates the contribution to a single direction and a single
polarisation created by a single cube of the level.

The second kernel performs the distribution of the
aggregation term of a parent-cube, computed in the previous
kernel, to its child-cubes.

Both kernels handle the translation-disaggregation of a single level,
so they must also be executed N − 1 times at each matrix–vector
product, and there is also dependency between levels, as in the
previous phase.

• First-level disaggregation: Terms computing the interactions of
distant elements for each subdomain are obtained by
disaggregating the contributions of their first-level cube. A
kernel has been developed for this phase, similarly to that of the
first-level aggregation, and in consequence, the same conclusion
can be applied.

• Near-field matrix–vector product computation: The kernel uses
the stored [Z] matrix. Each GPU-thread computes the
contribution to a single subdomain of all nearby subdomains.
There is no dependence of the data involved, which leads to
good performance in this computation.

Note that this scheme presents a computational burden. The
main restriction in the use of GPUs to solve MoM-based moderate-
size problems is its memory limitation. The memory size of the
GPU is usually smaller than the memory of the CPU. When the
traditional MoM is applied, the [Z] matrix is the term that
consumes the most memory and, as a consequence, it conditions
the electrical size of the problems that can be handled. The transfer
of data from GPU to CPU memory is a solution for computing
larger problems, but the performance is strongly affected, as shown
in [14].

In the MLFMA, the most memory-expensive terms are those of
aggregation and disaggregation, computed as shown in (11) and
(12). These terms have a linear dependence with the number of
unknowns, an also a linear dependence with the number of angular
samples Nk at the first level defined by the MLFMA. When the size
of the problem increases, the storage of these terms becomes the
main burden for the computation using a GPU card.

The objective of this work is to overcome this restriction by
introducing an algorithm to avoid the storage of these terms. It is
based in a different manner of retaining the terms of the first-level
aggregation and disaggregation, which reduces the need for
MLFMA memory at the cost of increasing the number of
operations to be performed. The computation of these operations,
however, presents a good data parallelism, which makes them
suitable to be carried out on GPU cards, obtaining efficient results.

As previously shown, the aggregation term is calculated using
expression (11). For its numerical computation, a number of
angular samples over the unit sphere are obtained:

Vθm′i
AGG(Nk) = ∫

u
∫

v
e− jk^k ⋅ rjmTi(u, v)du dvθ

^
(15)

where k
^
k is the unit vector over the unit sphere of the sample k.

Using the Gaussian quadrature method described in (6), the
integrals can be computed as a weighted addition of points, so (15)
can be approximated as

Vθm′i
AGG(Nk) = ∑

pu = 1

Nu
wu ∑

pv = 1

Nv
wv e− jk^k ⋅ r(pu, pv)imTi(pu, pv)θ

^
(16)

where wu and wv are the coefficients of the Gauss quadrature
method at points pu and pv, respectively, Ti(pu, pv) is the value of
the Basis Function of the subdomain i at point (pu, pv), and
ri(pu, pv) is the position vector of that point. Since the only
dependence with the sample k is on the exponential, we can define

Vsθm′i
AGG(Nu, Nv) = ∑

pu = 1

Nu
wu ∑

pv = 1

Nv
wvTi(pu, pv)θ

^
(17)

Note that Vsθm′i
AGG(Nu, Nv) has no dependence on samples k. As

Nu*Nv is smaller than Nk, the memory needed to store this term is
reduced, and the computational burden is overcome. For this
purpose, the Vs term is stored and applied in the iterative process
as shown in (18), instead of using (14).

Vθm
AGG(Nk) = ∑

i = 1

Ni

∑
pu = 1

Nu
wu ∑

pv = 1

Nv
wv e− jk^k ⋅ r(pu, pv)imTi(pu, pv)θ

^

= ∑
i = 1

Ni

∑
pu = 1

Nu

∑
pv = 1

Nv
e− jk^k ⋅ r(pu, pv)imVsθm′i

AGG(pu, pv)θ
^

(18)

According to our experience, a value of 2 for Nu and Nv is
sufficient to render an accurate computation of the coupling, since
the MLFMA is only applied to compute coupling terms between
distant elements. In addition, when choosing a first-level cube size
over λ/4, the number of angular samples Nk that provides accurate
results should be about two hundred, so the memory reduction with
the modification presented on Vm′i

AGG and Vm′i
DIS is ∼50 times, and

allows the solution of electrically larger problems.
The use of this technique presents an inconvenient: the first-

level aggregation and disaggregation stages in the iterative process
must perform more operations, since they need to calculate the
operations shown in (18) instead of (11). The consequence is that
for an only-thread code, the CPU-time spent in these steps
increases, which slows down the resolution of the problem.
Fortunately, the kind of operations shown in (18) are suitable to be
accelerated using a machine with many threads that run simple
operations, and that is the case of the use of GPUs.

We can conclude that the computational algorithm presented in
this section reduces the memory need of the MLFMA method
(increasing the electrical size of the problems that can be solved).
The CPU-time increment associated with the algorithm in the
solution process is compensated by using parallelised code
executed on the GPUs.

There are other implementations of the MLFMA designed for
GPUs. In [16], the authors define the OpenMP-CUDA-MLFMA
method. The parallelisation for a GPU device with the application
of the OpenMP paradigm to be executed in the CPU is the same
simulator. In addition, they describe a strategy to adapt the code to
multi-GPU platforms. All of these strategies can be combined with
the presented approach to increment its performance.

The main difference between both strategies is that due to the
application of the computational algorithm shown here, our
approach reduces the memory requirements of the method without
CPU-time penalty, which allows performing matrix–vector
products without transferring data between CPU and GPU. In [16],
the option to solve large problems relies on the use of several
GPUs, due to the large amount of memory needed to store the
matrices. This can be avoided with the approach presented in this
work due to the reduction of the memory described, which allows
the solution using a single GPU.

1558 IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

With respect to the strategy for the allocation of the data in the
architecture of the GPU and the implementation of the kernels,
both strategies are similar. As the memory requirements are
reduced in our approach, most data are stored in the global memory
of the device instead of using pinned memory, which prevents the
transfer of data between the GPU and the CPU.

4 Results
This section is organised as follows: first, we validate the version
of the application which uses the GPU by comparing its results
with those of the version that runs only on the CPU for different
test cases, proving that the results obtained by using the GPU are
accurate enough to be accepted. Next, we measure the speedup
obtained by using the GPU at any of the stages: the calculation of
the MLFMA terms and coupling matrix at pre-process, and the
computation of a single iteration in the solution process of the
system of equations.

The computer considered for the validation has an Intel i7
processor with 8 GB of RAM, and a TESLA C2075 GPU with 6 
GB of RAM. It runs a Windows 7, 64-bit license. We use the 3.1
CUDA toolkit. Currently, newer GPU cards are available in the

market with an improved architecture, which also contain more
parallel blocks and RAM. Recently, cards with 24 GB of RAM
have been made available. In addition, the CUDA 9.0 version is
currently available, which is suitable for those more powerful
cards. It would be interesting to test the algorithm presented with
these cards and toolkit, although the authors do not have these tools
provided by NVIDIA at their disposal at the moment. Since the
main contribution of this paper is the algorithm that allows the
computation of large test cases on the GPUs, we can expect that
with the hardware improvements of the new cards the speedup
increases over that shown in this section.

4.1 Validation

The first test case is the computation of the bistatic Radar cross-
section of a 10λ radius sphere. A comparison between the values of
analytical, CPU-code and GPU-code version is shown in Fig. 2.
The incident angle is φ = 0° and θ = 180° and we consider a θ-cut at
φ = 0° plane. The number of low-level basis functions obtained has
been 251,956, and the numerical results have been obtained with a
residual error of 0.01 in the iterative solver.

In order to estimate the differences between the approaches, we
have computed the error between the CPU and GPU versions with
respect to the analytical values, following expression (19):

Errorversion = ∑
i = 1

N RCSiMIE − RCSiversion
RCSMie

(19)

where N is the number of observation directions, and RCSiMIE and
RCSiversion are the RCS value at the i direction when applying the
analytical solution and our algorithm, respectively. RCSiversion is
calculated with both CPU-code and GPU-code. Errorversion in the
CPU-code version has been 0.011016 and 0.005110 for the E-plane
and H-plane series, respectively, while in the GPU-code the error
has been 0.011018 and 0.005113. When comparing numerical
results of CPU-code version with GPU-code version, we can see
that the error is minimal, and given by the numerical errors due to
finite precision of the data represented in simple precision.
Therefore, the results clearly validate the adaptation of the
algorithm presented to CUDA

The next geometry considered is the airplane model shown in
Fig. 3. We have considered three frequencies to show the variation
of the speedup with the electrical size of the problem. These
frequencies are 225, 500 and 1450 MHz, that give rise to problems
containing 19,693, 85,373, and 694,142 unknowns, respectively.

We have computed the monostatic radar cross-section (RCS)
and compared the results obtained using the GPU and the CPU
algorithms. Figs. 4a–c show the RCS for the θ-polarisation and for
the ϕ = 180 angular cut with θ ranging from 0 to 180° in steps of 1°
for each frequency. As in the previous test cases, for all the
incident directions, the results have been practically identical.

Another test case presented for validation is shown in Fig. 5a. It
is another airplane model, and its monostatic RCS is computed for
the theta polarisation, considering the ϕ = 90 angular cut and θ
from 0 to 180° in steps of one degree at 1125 MHz. The results
obtained are shown in Fig. 5b.

The next test case presented for validation consists of the
computation of the monostatic RCS of a 9 inch ogive at a
frequency of 15 GHz, considering the θ–θ polarisation. The ogive
(Fig. 6a) is a symmetrical case that has a half-angle of 22.62° and a
maximum radius of 1 inch. The results obtained using the CPU and
GPU code versions are compared with measurements in Fig. 6b,
which shows a good agreement.

The mathematical description of this geometry is

−4.5 ≤ x ≤ 4.5
−π ≤ ϕ ≤ π

Fig. 2  Bistatic RCS of a sphere
(a) H-plane, (b) E-plane

Fig. 3  Airplane geometry

IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

1559

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

f (x) = 1 − x
4.5sin(22.62°)

2

− cos(22.62°)

y = f (x) ⋅ cos(ϕ)
1 − cos(22.62°)

z = f (x) ⋅ sin(ϕ)
1 − cos(22.62°)

(20)

The last test case considered in this work is the monostatic RCS of
the Cobra geometry at a frequency of 17 GHz, described in Fig. 7a.
The analysis has been performed for the θ-polarisation in the ϕ = 0
angular cut and with θ ranging from 0 to 180. A comparison of the
results obtained by the CPU and GPU versions with measurements
is illustrated in Fig. 7b. Very good agreement is shown between the
numerical methods and the measurements.

4.2 Computational analysis

The next step in the validation of the proposed approach is the
comparison of execution times for the CPU and the GPU
approaches. First, we compare the execution times for the test case

shown in Fig. 3. On one hand, it is interesting to know how much
faster the GPU version is, compared to the CPU version, when
calculating the MoM coupling matrix and the MLFMA data, and
when solving the linear system of equations using the MLFMA. On
the other hand, the memory requirements need to be compared as
well. Both versions have been fully implemented by the authors
without the need of external linear algebra libraries. As a reference
for the comparisons, we consider the time spent by the CPU of the
Intel i7 processor with 8 GB of RAM, so, a speedup of 10 means
that when using TESLA C2075 GPU with 6 GB of RAM the time
is only tenth part of the CPU time. Table 2 shows for both methods
the time spent to calculate the [Z] matrix and the MLFMA data.
The results shown correspond to the airplane at three different
frequencies. Similar results have been obtained for other
geometries. The results for the CPU version are obtained using a
single CPU thread, since we need a reference value for comparison
purposes. As expected, the improvement provided by the GPU
grows with the size of the problem. There are several tasks that
require an amount of time that is almost independent of the
problem size, such as memory initialisation, transferring geometry
data to the GPU etc. These tasks have a proportionately greater
influence on the total execution time for smaller problems. As
problems get larger, their impact is less noticeable, and the speedup
increases. The pre-processing calculations are suitable to be
performed in parallel, where the calculation of each element is
independent from the rest. This is not the case for the subsequent
steps of the algorithm, since the process to solve the system of
equations has a lower degree of parallelism.

As mentioned above, the MLFMA should be applied with an
iterative solver. Table 3 shows the CPU-time spent in one iteration
when solving the problem. The analysis is performed for the three
frequencies of the first test case. We obtain a remarkable speed-up
because with the presented algorithm all the data can be stored in

Fig. 4  Monostatic RCS for the geometry of the airplane of Fig. 3 at
(a) 225 MHz, (b) 500 MHz, (c) 1450 MHz

Fig. 5  Test case
(a) Airplane geometry and (b) Monostatic RCS at 1125 MHz for the geometry of
airplane

1560 IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563

© The Institution of Engineering and Technology 2019

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the GPU memory (Z matrix and Vs terms) and, for one iteration,
only the input vector is transferred from the CPU to the GPU
memory, and only the result vector is transferred from GPU to
CPU memory.

Several conclusions can be obtained from these results. First,
the improvement in this case is lower than in the previous one. This
is because the dependencies within the MLFMA algorithm. For
example, the x-level aggregation cannot be computed until the (x − 
1)-level aggregation has been performed. As a result, the total
improvement is reduced.

On the other hand, we can see that the improvement is reduced
as the problem size grows. To find the reason for this, we perform a
detailed analysis of the performance of the different kernels of the
iterative solution process for the test case 1. The results of this
analysis are shown in Tables 4–6.

We can conclude that there are significant differences between
the performances of the different kernels. The first-level
aggregation, the second to N-level aggregation and first-level
disaggregation kernels have good improvements while those for
the rest are quite poor. This is because there are very few elements
in these kernels to operate with (the number of cubes at upper
levels is small) and, as a consequence, the ratio between the
operations to be performed by the kernels and the access to GPU
memory leads to this lack of performance. As the problem size
grows, the number of levels also increases, and the less efficient
kernels become more important, so the improvement is reduced.
However, even considering this reduction, the use of the presented
algorithm offers very interesting results for large problems
compared to CPU versions.

Finally, a comparison of the storage requirements of both
versions is presented for the test case shown in Fig. 3. Table 7
shows the memory spent for the CPU version. Note that the more
memory consuming terms of the code are the [Z] matrix, and
aggregation and disaggregation ones. The geometrical description
and other MLFMA data complete the total memory spent.

The memory requirements of the GPU-version code are shown
in Table 8. We can see that we need the same memory to store the
Z matrix, but there is a huge reduction of the aggregation and
disaggregation terms, due to the application of the presented
approach. This allows the use of the GPUs for the analysis of cases
with moderate electromagnetic size.

In the GPU-code version, the aggregation terms are computed
and stored in a pre-processing stage as described in (17), instead of
applying expression (11), which is used in the CPU-code version.
This leads to the difference in the memory requirements between
both versions. Next, in the iterative stage, the first-level
aggregation in the GPU-code version is obtained as described in
(18) instead of (14) for each matrix–vector product performed by
the iterative solver, which introduces more operations to execute.
Since these operations are very suitable to be developed in the
GPU, both memory and CPU-time are reduced using this approach
on a GPU.

Fig. 6.  Test case
(a) Geometry of the ogive, (b) Monostatic RCS of the ogive at 15 GHz

Fig. 7.  Test case
(a) Geometry of the cobra cavity, (b) Monostatic RCS of the Cobra cavity at 17 GHz

Table 2 Time in seconds for the pre-processing
computation for GPU and CPU based methods

GPU CPU Speedup GPU/CPU
19,693 unknowns 2.3 329.5 143.26
85,373 unknowns 8.43 1346 159.66
694,142 unknowns 86.75 16,472 189.87

Table 3 Time in seconds for the iterative process
computation for GPU and CPU based methods

GPU CPU Speedup GPU/CPU
19,693 unknowns 22 2160 98.18
85,373 unknowns 72 6480 90
694,142 unknowns 240 20,160 84

IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

1561

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

It is also important to note that similar conclusions can be
obtained for the analysis of the other test cases presented in the
validation section.

5 Conclusions
We have presented a procedure to apply the MLFMA that takes
advantage of the current GPUs and overcomes one of the most

important limitations suffered by this novel computing system,
namely, the limitation of GPU memory. We validate the use of a
GPU in terms of accuracy of the results, and we have shown that
the speedups obtained are remarkable, which agrees with other
results available in the literature.

In order to deal with large geometries, we have adapted the
existing MLFMA to reduce the memory requirement of the
algorithm. This modification leads to an increased computational
cost in the execution of the iterative process, which is overcome
due to the parallel nature of the algorithm, amenable to be executed
on GPUs. In future works we will try to solve this problem.

6 Acknowledgments
This work has been supported in part by the Spanish Ministerio de
Economía y Competividad, Projects TEC 2013-46587-R,
PTQ-12-05099 and PTQ-14-07060. The authors declare that there
is no conflict of interest regarding the publication of this paper.

7 References
[1] Harrington, R.F.: ‘Field computation by moment methods’ (McMillan, New

York, 1968)
[2] Prakash, V.V.S., Mittra, R.: ‘Characteristic basis function method: a new

technique for efficient solution of method of moments matrix equation’,
Microw. Opt. Technol. Lett., 2003, 36, (2), pp. 95–100

[3] Engheta, N., Murphy, W.D., Rokhlin, V., et al.: ‘The fast multipole method
(FMM) for electromagnetic scattering problems’, IEEE Trans. Antennas
Propag., 1992, 40, (6), pp. 634–641

[4] Chew, W.C., Jin, J., Michielssen, E., Song, J. (Eds.): ‘Fast and efficient
algorithms in computational electromagnetics’ (Artech House, Norwood, MA
USA, 2001)

[5] Ding, D.Z., Fan, Z.H., Tao, S.F., et al.: ‘Complex source beam method for
EM scattering from PEC objects’, IEEE Antennas Wirel. Propag. Lett., 2015,
14, pp. 346–349

[6] Ding, D.Z., Chen, G.S., Chen, R., et al.: ‘An efficient algorithm for surface
integral equation based on meshfree scheme’, IEEE Antennas Wirel. Propag.
Lett., 2014, 13, pp. 1541–1544

[7] Ludick, D.J., Davidson, D.B.: ‘Investigating efficient parallelization
techniques for the characteristic basis function method (CBFM)’. 2009 Int.
Conf. Electromagnetics in Advanced Applications (ICEAA 09), Torino, Italy,
2009

[8] García, E., Lozano, L., Algar, M.J., et al.: ‘‘A study of the efficiency of the
parallelization of a high frequency electromagnetic approach for the
computation of radiation and scattering considering multiple bounces’,
Comput. Phys. Commun., 2013, 184, (1), pp. 45–50

[9] Lezar, E., Davidson, D.B.: ‘GPU-accelerated method of moments by
example: monostatic scattering’, IEEE Trans. Antennas Propag., 2010, 52,
(6), pp. 120–135

[10] Zoric, D.P., Olcan, D.I., Kolundzija, B.M.: ‘GPU accelerated computation of
radar cross sections with multiple excitations’. 2013 European Conf.
Antennas and Propagation (EUCAP 2013), 2013

[11] Michiels, B., Fostier, J., Bogaert, I., et al.: ‘Full-wave simulations of
electromagnetic scattering problems with billions of unknowns’, IEEE Trans.
Antennas Propag., 2015, 63, (2), pp. 796–799

[12] Gurel, L., Ergul, O.: ‘Hierarchical parallelization of the multilevel fast
multipole algorithm (MLFMA)’, Proc. IEEE, 2013, 101, (2), pp. 332–341

[13] Pan, X.M., Pi, W.C., Yang, M.L., et al.: ‘Solving problems with over one
billion unknowns by the MLFMA’, IEEE Trans. Antennas Propag., 2012, 60,
(5), pp. 2571–2574

[14] Lezar, E., Davidson, D.B.: ‘GPU acceleration of method of moments matrix
assembly using Rao-Wilton-Glisson basis functions’. 2010 Int. Conf.
Electronics and Information Engineering (ICEIE 2010), Kyoto, Japan, 2010

[15] Zoric, D.P., Olcan, D.I., Kolundzija, B.M.: ‘Solving electrically large EM
problems by using out-of-core solver accelerated with multiple graphical
processing units’. 2011 IEEE Int. Symp. Antennas and Propagation and
USNC/URSI National Radio Science Meeting (APSURSI 2011), Rome, Italy,
2011

[16] Peng, S., Nie, Z.: ‘Acceleration of the method of moments calculations by
using graphics processing units’, IEEE Trans. Antennas Propag., 2008, 56,
(7), pp. 2130–2133

[17] Topa, T., Karwowski, A., Noga, A.: ‘Using GPU with CUDA to accelerate
MoM-based electromagnetic simulation of wire-grid models’, IEEE Antennas
Wirel. Propag. Lett., 2011, 10, pp. 342–345

[18] Guan, J., Yan, S., Ming Jin, J.: ‘An accurate and efficient finite element-
boundary integral method with GPU acceleration for 3-D electromagnetic
analysis’, IEEE Trans. Antennas Propag., 2014, 62, (12), pp. 6325–6336

[19] Guan, J., Yan, S., Jin, J.-M.: ‘An OpenMP-CUDA implementation of
multilevel fast multipole algorithm for electromagnetic simulation on multi-
GPU computing systems’, IEEE Trans. Antennas Propag., 2013, 61, (7), pp.
3607–3616

[20] Xu, K., Ding, D.Z., Fan, Z.H., et al.: ‘Multilevel fast multipole algorithm
enhanced by GPU parallel technique for electromagnetic scattering
problems’, Microw. Opt. Technol. Lett., 2010, 52, (3), pp. 502–507

[21] Rivas, F., Valle, L., Cátedra, M.F.: ‘A moment method formulation for the
analysis of wire antennas attached to arbitrary conducting bodies defined by

Table 4 Time in seconds for different steps of the iterative
process

GPU CPU Speedup
GPU/CPU

first-level aggregation 0.031 7.31 235.80
second to N level aggregation 0.015 2.44 163.28
n to 2 level translation-
disaggregation

0.057 0.28 4.91

first-level translation 0.027 0.078 2.88
first-level disaggregation 0.036 3.728 103.55
Frequency 225 MHz.

Table 5 Time in seconds for different steps of the iterative
process

GPU CPU Speedup
GPU/CPU

first-level aggregation 0.14 31.09 222.07
second to N level aggregation 0.064 11.07 172.96
n to 2 level translation-
disaggregation

0.2494 1.16 4.65

first-level translation 0.113 0.296 2.61
first-level disaggregation 0.151 15.33 101.52
Frequency 500 MHz.

Table 6 Time in seconds for different steps of the iterative
process

GPU CPU Speedup
GPU/CPU

first-level aggregation 1.83 326.99 178.68
second to N level aggregation 1.17 183.20 156.58
n to 2 level translation-
disaggregation

7.01 24.07 3.43

first-level translation 3.54 7.44 2.10
first-level disaggregation 2.01 163.62 81.40
Frequency 1450 MHz.

Table 7 Memory requirements in Mbytes CPU method
Z matrix Aggregation and

disaggregation terms
Total memory

19,693
unknowns

31.4 165.1 262.2

85,373
unknowns

104.6 719.2 1006.9

694,142
unknowns

691.7 5846.7 7997.4

Table 8 Memory requirements in Mbytes GPU method
Z matrix Aggregation and

disaggregation terms
Total memory

19,693
unknowns

31.4 3.6 102.1

85,373
unknowns

104.6 15.7 305.4

694,142
unknowns

691.7 127.1 2281.4

1562 IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

parametric surfaces’, Appl. Comput. Electromagn. Soc. J., 1996, 11, (2), pp.
32–39

[22]]Valle, L., Rivas, F., Cátedra, M.F.: ‘A moment method approach using
frequency independent parametric meshes’, IEEE Trans. Antennas Propag.,
1997, 45, (10), pp. 1567–1568

[23] Cátedra, M.F., Rivas, F., Valle, L.: ‘Combining the moment method with
geometrical modelling by NURBS surfaces and Bezier patches’, IEEE Trans.
Antennas Propag., 1994, 42, (3), pp. 373–381

[24] Press, W.H., Flannery, B.P., Teukolsky, S.A., et al.: ‘Numerical recipes in
FORTRAN: the art of scientific computing’ (Cambridge University Press,
Cambridge, 1992, 2nd edn.)

[25] Velamparambil, S., Chew, W.C., Song, J.: ‘10 million unknowns: is it that
big?’, IEEE Antennas Propag. Mag., 2003, 45, (2), pp. 43–58

[26] González, I., García, E., Sáez De Adana, F., et al.: ‘Monurbs: a parallelized
fast multipole multilevel code for analysing complex bodies modelled by
NURBS surfaces’, Appl. Comput. Electromagn. Soc. J., 2008, 23, (2), pp.
134–142

[27] Nickolls, J., Buck, I., Garland, M., et al.: ‘Scalable parallel programming’,
ACM. Queue., 2008, 6, (2), pp. 40–53

[28] NVIDIA Corporation: ‘CUDA programming guide’ (NVIDIA, Santa Clara,
CA, 2013). Available at http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 10, pp. 1554-1563
© The Institution of Engineering and Technology 2019

1563

 17518733, 2019, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-m

ap.2018.5568 by U
niversidad D

e A
lcala, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

