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COVID-19 hit the economy in an unprecedented way, changing the data generating process of many
series. We compare different seasonal adjustment methods through simulations, introducing outliers
in the trend and seasonality to reproduce the heterogeneity in the series during COVID-19.
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1. Introduction

COVID-19 has destroyed the dynamics of many economic time
eries. In particular, trend and seasonality have been greatly
it by the effects of the lockdown. In this context, seasonal
djustment, a frequently used tool to monitor the state of the
conomy in real time, has become a difficult task generating great
istress about the reliability of the alternative estimations. As a
onsequence, the different statistical offices reacted quickly and
rovided some guidelines to adapt seasonal adjustment method-
logies to cope with this new and unexpected situation; see, for
nstance, the Australian Bureau of Statistics (2020), the European
tatistical Office (European Commission, 2020), or the updated
nformation provided by the United States Census Bureau ac-
ompanying the release of some indicators (United States Census
ureau, 2021). Two main options stand out within the recom-
endations: the use of concurrent seasonal adjustment with
dditive outlier interventions or the projection of the previous
ear’s estimated seasonal factors. All in all, there is great un-
ertainty about how to proceed to deseasonalize economic time
eries nowadays.
This paper sheds some light onto this process by means of

imulations where we know the true seasonal and deseasonalized
ime series. On the basis of a basic structural time series model,
e simulate a distortion in the trend and seasonal component to
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replicate the effect of COVID-19. In the simulations we know both,
the raw data as well as the data clean of seasonality. Therefore,
the application of alternative seasonal adjustment methods on
the simulated time series enables us to approximate the effect
that COVID-19 has had on the deseasonalized data as well as the
relative reliability between different procedures.

The benchmark seasonal adjustment strategy considered is
the well-known X-13ARIMA-SEATS of the Census Bureau (https:
//www.census.gov/data/software/x13as.html). We have also in-
cluded as an alternative the newly introduced non-parametric
Circulant Singular Spectrum Analysis (CiSSA), see Bógalo et al.
(2021). The comparison exercise also considers the projection of
last year’s seasonal factors.

The remainder of the paper consists of four sections. In Sec-
tion 2, we revise the different methodologies for seasonal ad-
justment. In Section 3, we introduce our simulation strategy. In
Section 4, we present the results. Finally, in Section 5, we draw
our conclusions.

2. Deseasonalizing strategies

The most common methods for seasonal adjustment used
nowadays are included in X-13ARIMA-SEATS, developed by the
US Bureau of Census. This comprises enhanced versions of both,
the non-parametric X-11 (Shiskin et al., 1967) and the ARIMA
model based TRAMO-SEATS (Maravall, 1993; Gómez and Mar-
avall, 1996). Given, for simplicity, a zero mean time series xt , t =

1, . . . , T , X-11, first, estimates an initial trend using a moving

https://doi.org/10.1016/j.econlet.2021.110206
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verage. After removing the trend from the time series, it esti-
ates the seasonal component by also moving average filters.
e-estimation of the previous components is done in an itera-
ive way. For more details, see: https://www.census.gov/topics/
esearch/seasonal-adjustment.html. As an alternative, TRAMO-
EATS (TS) is based on the ARIMA model decomposition. TS de-
ives ARIMA models for each unobserved component and identi-
ies and estimates the different signals according to the identified
pecifications.
Our new proposal Circulant Singular Spectrum Analysis

CiSSA), is a novel variant of SSA. CiSSA is a signal extraction
lgorithm that decomposes the original time series into the sum
f oscillatory components at known frequencies. In what follows,
e briefly describe the CiSSA algorithm. In the first step, we
efine a window length L, and transform the original vector of

data xt , t = 1, . . . , T into a related trajectory matrix X of size
L × N where N = T − L + 1, given by:

X =

⎛⎜⎜⎝
x1 x2 x3 ... xN
x2 x3 x4 ... xN+1
...

...
...

...
...

xL xL+1 xL+2 ... xT

⎞⎟⎟⎠ .

In the second step, we find the eigenstructure of a matrix of
second moments related to X to obtain the so called elementary
matrices of rank 1. The trajectory matrix X can be recovered
as the sum of the elementary matrices which are associated to
different frequencies. In particular, CiSSA builds a circulant matrix
related to the second moments of the time series, SC given by:

SC =

⎛⎜⎜⎝
ĉ0 ĉ1 ĉ2 ... ĉL−1
ĉL−1 ĉ0 ĉ1 ... ĉL−2

...
...

...
...

...

ĉ1 ĉ2 ĉ3 ... ĉ0

⎞⎟⎟⎠
where the elements ĉj are ĉm =

L−m
L γ̂m +

m
L γ̂L−m, m = 0,

, . . . , L−1 , being γ̂m =
1

T−m

∑T−m
t=1 xtxt+m,m = 0, . . . , L−1. the

estimated autocovariances
The eigenvalues and eigenvectors of SC are given by (see

Lancaster, 1969):

λL,k =

L−1∑
m=0

ĉm exp
(
i2πm

k − 1
L

)
(1)

and uk = L−1/2(uk,1,..., uk,L)H respectively, for k = 1, . . . , L, where
indicates the conjugate transpose and

k,j = exp
(
−i2π (j − 1) k−1

L

)
.

The diagonalization of SC allows us to write X as sum of
lementary matrices Xk of rank 1 as:

=

L∑
k=1

Xk =

L∑
k=1

ukw′

k,

here wk = X′uk.
In a third step, we go back from the matrices to the vectors

f the time series and transform the elementary matrices Xk into
lementary signals of the same length as the original series for
ach frequency wk, k = 1, . . . , L by

(k)
t =

⎧⎪⎨⎪⎩
1
t

∑t
i=1 x̃i,t−i+1, 1 ≤ t < L

1
L

∑L
i=1 x̃i,t−i+1, L ≤ t ≤ N

1
T−t+1

∑T−N+1
i=L−N+1 x̃i,t−i+1, N < t ≤ T

,

where x̃i,j are the elements of the elementary matrix Xk.
In the final fourth step, we group the extracted elementary

signals according to the frequency they represent. Notice that the
kth eigenvalue in (1) is an estimate of the spectral density at
wk =

k−1
L , k = 1, . . . , L and, therefore, the kth eigenvalue and

orresponding eigenvector are associated with this frequency.
 m

2

3. Simulation strategies

We simulate time series, modify their trend and seasonal
dynamics to approximate the impact of COVID-19 and state the
basis for understanding and comparing the effect that the pan-
demic might have had on real economic time series data. We take
as the series free from COVID-19 effects, the addition of the sim-
ulated trend, cycle, seasonal, and irregular components. This can
be considered as the data that we should have obtained, had the
pandemic not taken place, i.e. a counterfactual time series. Notice
that the sum of all the components except the seasonal one con-
stitutes the ‘‘true’’ time series, free of seasonality, denoted as x0SA,t .

The knowledge of the original components enables us to assess
he reliability of the different methods (denoted by the subindex
) by comparing precisely the ‘‘true’’ seasonally adjusted time
eries (x0SA,t ) with the deseasonalized series resulting from each
estimation method (x0m,t ).

In the free-COVID-19 BSM model the data are generated as
the sum of trend, cycle, seasonality and irregular components as
follows1 (we denote this counterfactual time series by x0t ):

x0t = µt + ct + st + et (2)

where µt is the changing level or trend component, ct is the cycle,
st is the seasonal component and et is the irregular component.
The ‘‘true’’ deseasonalized time series will be given by x0SA,t =
0
t − st .
Regarding the data generating process for x0t given by (2),

we assume an integrated random walk for the trend, see, for
instance, Young (1984), given by

Tt = Tt−1 + βt−1 (3)
βt = βt−1 + ηt (4)

with ηt ∼ N(0, σ 2
η ). The cyclical and seasonal components are

specified according to Durbin and Koopman (2012). The cycle is
given by the first component of the bivariate VAR(1):(
ct
c̃t

)
= ρc

(
cos(2πwc) sin(2πwc)

− sin(2πwc) cos(2πwc)

)(
ct−1
c̃t−1

)
+

(
εt
ε̃t

)
(5)

with
(

εt
ε̃t

)
∼ N(0, σ 2

ε I) and 1
wc

is the cyclical (business cycle)

eriod, wc ∈ [0, 1]. The seasonal component is given by

t =

[s/2]∑
j=1

aj,t cos(2πwjt) + bj,t cos(2πwjt) (6)

ith wj =
j
s , j = 1, . . . , [s/2] and s the seasonal period, where [

·] denotes the integer part, and aj,t and bj,t are two independent
random walks with noise variances equal to σ 2

j . Finally, the
irregular component is white noise with the variance σ 2

e . All the
components are independent of each other. We set ρc = 1, so the
trend, cycle and seasonal components all have unit roots.

To approximate the COVID-19 effects on the simulated time
series we address both, the impact on the trend and the seasonal
components. Regarding the trend, we considered a shock at time
TCOVID−19 of magnitude δTrend drawn from a uniform distribution
in [a, b], 0 < a < b < 1 where b and a would represent
the minimum and maximum impact on the level of the series,
respectively. This heterogeneity in the value of δTrend will capture
the alternative effects of COVID-19 in different economic time
series.

1 There is no clear consensus about how the modelling strategy should be
pproached and some authors have advocated the use of multiplicative rather
han additive time series models given that some quantities are zero or close
o zero. We do not take a strong stand on this because were the model is
ultiplicative, just by taking logs we will have produced an additive model.

https://www.census.gov/topics/research/seasonal-adjustment.html
https://www.census.gov/topics/research/seasonal-adjustment.html
https://www.census.gov/topics/research/seasonal-adjustment.html
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To represent the dynamics of the shock we include the pos-
sibility of transitory effects by means of including a Transitory
Change intervention.

In this sense, the simulated series is of the form:

xTrend−Seas∗
t =

{
x0t if t < TCOVID−19
µ∗

t + ct + s∗t + et otherwise (7)

with

µ∗

t =

{
µt if t < TCOVID−19
µt × δTrend × Dt otherwise

where Dt is of the form Dt =
ITCOVID−19

1−ωB , with B representing the
backshift operator such that Bxt = xt−1, ITCOVID−19 an impulse
variable that takes the value 1 at time TCOVID−19 and 0 otherwise
and ω ∈ [0, 1). For seasonality, we consider

s∗t = st × ut , t = TCOVID−19+1, . . . , T

and ut a random shock from a uniform [0, 1] distribution with a
possible effect from total disruption to a non-significant damp-
ening of the seasonality. This represents a complete disruption of
the component during the time the intervention lasts and we call
this effect total (seasonality) disruption.

4. Simulation results

To understand the possible effect of the COVID-19 pandemic
on seasonal adjustment, we performed a set of simulations under
different conditions. In the first set of simulations, the different
procedures for seasonal adjustment were put to work for the
non-contaminated BSM with the idea of understanding their per-
formance and relative accuracy gains, if any. In a second set of
simulations, we contaminate the 12 last observations to try to
replicate the effects of the COVID-19 in an economic time series
and analyse the results with respect to the previous stable period
and the relative accuracy amongst the different deseasonalizing
procedures.

The Basic Structural Model is generated by considering Eqs. (2)
to (6), s = 12 (monthly time series) and the cyclical period
equal to 1

wc
= 48 months. The noise variances of the different

components are given by σ 2
η = 0.00062, σ 2

j = 0.0042, σ 2
ε =

.0082 and σ 2
e = 0.062. We considered three different sample

izes, T = 97,193 and 243.
We generated R = 1000 replications from the base model and

n each replication we also generated the different contamination
chemes. Then, for each replication, we assessed the accuracy of
he alternative procedures by means of the root mean square er-
or (RMSE) between the generated time series free of seasonality
nd the estimated seasonally adjusted time series:

MSEm =

√ 1
T

T∑
t=1

(X0
SA,t − Xm,t )2. (8)

Afterwards, we computed the average of the RMSEs across repli-
cations.

4.1. Seasonal adjustment in normal times

To assess the relative performance of the different parametric
and non-parametric seasonal adjustment strategies, the first set
of simulations were run under the non-contaminated original
Basic Structural Model.

All the models considered were applied in an automated way
with no outlier treatment. Regarding CiSSA, we needed to choose
the window length L, such that L < T/2, because the trajectory
atrices with window length L and N = T −L+1 are transposed.
3

Table 1
Non-COVID-19 basic structural model. Average RMSE between seasonally ad-
justed simulated and estimated time series, 1000 replications for different
strategies and values of L in CiSSA estimation.
T CiSSA SEATS X-11

L = 24 L = 48 L = 96 L = 144

97 0.056 0.049 0.053 0.058
193 0.056 0.048 0.054 0.050 0.055
289 0.056 0.047 0.053 0.062 0.049 0.054

Table 2
Basic structural model with trend and seasonality COVID-19 proxy shocks.
Average RMSE between seasonally adjusted simulated and estimated time series,
1000 replications.
T CiSSA TRAMO- X-11 CiSSA* TRAMO- X11*

L = 48 Lmax SEATS Lmax SEATS*

COVID-19 period (Last 12 observations)

97 0.073 0.073 0.083 0.095 0.249 0.255 0.251
193 0.109 0.092 0.099 0.117 0.302 0.319 0.317
289 0.146 0.109 0.115 0.136 0.333 0.369 0.367

Whole sample

97 0.059 0.059 0.062 0.068 0.106 0.107 0.107
193 0.059 0.064 0.057 0.062 0.091 0.096 0.098
289 0.062 0.074 0.056 0.062 0.088 0.092 0.094

We chose several values of L, multiples of s = 12, according
o the different sample sizes T analysed. Table 1 shows the
verage RMSE for the 1000 replications for the different seasonal
djustment strategies and sample sizes.
Table 1 suggests that in normal times, there are no noteworthy

ifferences among the alternative procedures. Table 1 also allows
s to assess the sensibility to the different values of the window
ength L. The best results were obtained with L = 48, that is a
multiple of the seasonality and matches the simulated cycle.

4.2. Seasonal adjustment in COVID-19 times

In this section we show the impact of the COVID-19 pandemic
whose effect was simulated with changes in trend and seasonality
according to (7) for the last 12 observations. The new parameters
were δTrend and w in (7). δTrend is related to the COVID-19 effect of
the trend which is drawn from a uniform [0.2, 0.8]. These limits
on the magnitude of the intervention attempt to accommodate
the heterogeneity of the impact in different time series according
to the relationship with the mobility of their corresponding sec-
tor. The other parameter takes the value w = 0.8 for a Temporary
Change (TC), to account for the long-term effects of the pandemic.
Seasonality is totally disrupted with each alternative seasonal
factor multiplied by a uniform [0,1] random value. Regarding the
different alternatives m, we considered the automated versions
of X-13ARIMA-SEATS (both, SEATS and X-11) with an outlier
intervention. In the case of CiSSA, we included the results for
L = 48 and Lmax = T/2 + 1 as an alternative choice when no
information about the cycle periodicity was known. No outlier
correction was made for CiSSA due to its non-parametric nature
and the good performance showed by Bógalo et al. (2021) in
nonlinear and nonstationary signals. Finally, we also considered
the results of projecting the seasonality of the previous year and
have denoted this option by CiSSA*, TRAMO-SEATS* and X11*.

Table 2 shows the results of the average RMSE for the 1000
replications for each method. The results are presented not only
for the last 12 observations but also for the whole sample to
account for the distortion they may have caused on the previous
estimations. The first column relates to the sample size, while
the remaining columns include the average RMSEs across the
replications of the different seasonal adjustment methodologies.
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Fig. 1. Evolution of economic indicators of the U.S.
o
b

olumns two to five show the results of the estimations using
he whole sample: CiSSA (columns 2 and 3) with L = 48 (the
imulated cycle periodicity) and L = Lmax = T/2+1 (the possible
aximum value), TRAMO-SEATS (column 4) and X-11 (column
). Finally, columns six to eight show the behaviour of projecting
he previous year’s factors during the simulated COVID-19 with
ach of the methodologies.
Comparing Table 2 with Table 1 we can see that the accu-

acy diminishes under the effects of the shocks in trend and
easonality with all the methods. The magnitude of the worsening
anges between 1.1 and 2.5 times the RMSEs presented in Table 1
or estimations made with the whole sample, but between 4.3
nd 9.7 when projecting the previous year seasonal factors. The
econd conclusion is that projecting the previous year seasonal
actors when abrupt changes in trend and seasonality take place
s always the worst option. Looking at the results for the last 12
bservations, we can see that the average RMSE increases with
. Also, we see that CiSSA shows the best results with L = Lmax,
iminishing the RMSE with respect to TRAMO-SEATS by 12% with

= 97, 7% for T = 293 and 4% for T = 289. It is worth
ighlighting that, contrary to Table 1, the best results are obtained
ith Lmax and not with L = 48, which is in line with the disruption
f both the seasonality and the simulated business cycle.
Looking at the RMSE results for the whole sample assesses the

ffects on the re-estimations of the previous values. The conclu-
ion regarding the worst behaviour of projecting the seasonality
4

f the previous year remains. We can also see that CiSSA is only
etter than TRAMO-SEATS when the sample is short (T = 97).

However, when the sample size increases, TRAMO-SEAT obtains
better results than CiSSA. This might suggest that, although for
the last 12 observations CiSSA yields the best results, estimations
before COVID are also affected and some kind of interventions
might be needed as for the other methods.

To illustrate the performance of the different seasonal adjust-
ment methods, we apply them to several US series from the FRED
Economic Data database: Residential Construction (RESIDENTIAL,
millions of dollars), Consumer Price Index (CPI, index), Industrial
Production (IP, index), Air passengers Revenues (AIR REVENUE,
thousands of dollars), Unemployment (UNEMP, thousands of per-
sons), and E-Commerce Retail Sales (RETAIL, millions of dollars).
As it can be seen in Fig. 1 seasonality is a relevant feature in all of
them, being CPI the only one where it is not clearly seen just with
visual inspection. We can also see the different impact COVID-19
has had in the series.

Fig. 2 shows the monthly growth rates of the seasonally ad-
justed series since January 2020 (quarter over the previous quar-
ter in the case of RETAIL) as well as the officially published
seasonally adjusted series. Differences among the considered pro-
cedures appear in Residential, Unemployment, Air Revenues and
Retail. Notice as well that CiSSA is the procedure that departs
more from the official data. As our simulations show, this might
be due the different treatment of COVID outliers.
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Fig. 2. Evolution of the growth rate of the seasonally adjusted economic indicators of the U.S.
. Conclusion

Seasonal adjustment has become a very difficult task since
he COVID-19 pandemic. Several proposals and recommendations
ave appeared to cope with this problem, among them, the use
f outlier techniques and the projection of the estimated seasonal
actors for 2019 in the subsequent months. We have run a set of
imulations contaminating time series with shocks in the trend
nd seasonal components to emulate the type of shock that the
OVID might have in economic time series and computed the
easonally adjusted time series with the widely used X-13ARIMA-
EATS and a new non-parametric technique based on subspace
ethods. From our set of simulations, projecting the estimated
easonality in 2019 in the following months gives the worst
esults for any of the procedures used for seasonal adjustment. On
he contrary, the usual X-13ARIMA-SEATS with outlier detection
eems a better option. Moreover, if the type of shock is a total
isruption in seasonality combined with a shock in the trend, the
on-parametric CiSSA seems to render better results. It seems
hat if the type of outlier is not within those automatically con-
emplated by X-13ARIMA-SEATS, the non-parametric procedure
eveloped in CiSSA might be preferred. Our proposal is just a
tarting point to check how the effect of the COVID-19 affects the
ifferent procedures for seasonal adjustment.
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